2,870 research outputs found

    In Pursuit of Optimal Workflow Within The Apache Software Foundation

    Get PDF
    abstract: The following is a case study composed of three workflow investigations at the open source software development (OSSD) based Apache Software Foundation (Apache). I start with an examination of the workload inequality within the Apache, particularly with regard to requirements writing. I established that the stronger a participant's experience indicators are, the more likely they are to propose a requirement that is not a defect and the more likely the requirement is eventually implemented. Requirements at Apache are divided into work tickets (tickets). In our second investigation, I reported many insights into the distribution patterns of these tickets. The participants that create the tickets often had the best track records for determining who should participate in that ticket. Tickets that were at one point volunteered for (self-assigned) had a lower incident of neglect but in some cases were also associated with severe delay. When a participant claims a ticket but postpones the work involved, these tickets exist without a solution for five to ten times as long, depending on the circumstances. I make recommendations that may reduce the incidence of tickets that are claimed but not implemented in a timely manner. After giving an in-depth explanation of how I obtained this data set through web crawlers, I describe the pattern mining platform I developed to make my data mining efforts highly scalable and repeatable. Lastly, I used process mining techniques to show that workflow patterns vary greatly within teams at Apache. I investigated a variety of process choices and how they might be influencing the outcomes of OSSD projects. I report a moderately negative association between how often a team updates the specifics of a requirement and how often requirements are completed. I also verified that the prevalence of volunteerism indicators is positively associated with work completion but what was surprising is that this correlation is stronger if I exclude the very large projects. I suggest the largest projects at Apache may benefit from some level of traditional delegation in addition to the phenomenon of volunteerism that OSSD is normally associated with.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Software Supply Chain Development and Application

    Get PDF
    Motivation: Free Libre Open Source Software (FLOSS) has become a critical componentin numerous devices and applications. Despite its importance, it is not clear why FLOSS ecosystem works so well or if it may cease to function. Majority of existing research is focusedon studying a specific software project or a portion of an ecosystem, but FLOSS has not been investigated in its entirety. Such view is necessary because of the deep and complex technical and social dependencies that go beyond the core of an individual ecosystem and tight inter-dependencies among ecosystems within FLOSS.Aim: We, therefore, aim to discover underlying relations within and across FLOSS projects and developers in open source community, mitigate potential risks induced by the lack of such knowledge and enable systematic analysis over entire open source community through the lens of supply chain (SC).Method: We utilize concepts from an area of supply chains to model risks of FLOSS ecosystem. FLOSS, due to the distributed decision making of software developers, technical dependencies, and copying of the code, has similarities to traditional supply chain. Unlike in traditional supply chain, where data is proprietary and distributed among players, we aim to measure open-source software supply chain (OSSC) by operationalizing supply chain concept in software domain using traces reconstructed from version control data.Results: We create a very large and frequently updated collection of version control data in the entire FLOSS ecosystems named World of Code (WoC), that can completely cross-reference authors, projects, commits, blobs, dependencies, and history of the FLOSS ecosystems, and provide capabilities to efficiently correct, augment, query, and analyze that data. Various researches and applications (e.g., software technology adoption investigation) have been successfully implemented by leveraging the combination of WoC and OSSC.Implications: With a SC perspective in FLOSS development and the increased visibility and transparency in OSSC, our work provides potential opportunities for researchers to conduct wider and deeper studies on OSS over entire FLOSS community, for developers to build more robust software and for students to learn technologies more efficiently and improve programming skills

    Human Factors in Secure Software Development

    Get PDF
    While security research has made significant progress in the development of theoretically secure methods, software and algorithms, software still comes with many possible exploits, many of those using the human factor. The human factor is often called ``the weakest link'' in software security. To solve this, human factors research in security and privacy focus on the users of technology and consider their security needs. The research then asks how technology can serve users while minimizing risks and empowering them to retain control over their own data. However, these concepts have to be implemented by developers whose security errors may proliferate to all of their software's users. For example, software that stores data in an insecure way, does not secure network traffic correctly, or otherwise fails to adhere to secure programming best practices puts all of the software's users at risk. It is therefore critical that software developers implement security correctly. However, in addition to security rarely being a primary concern while producing software, developers may also not have extensive awareness, knowledge, training or experience in secure development. A lack of focus on usability in libraries, documentation, and tools that they have to use for security-critical components may exacerbate the problem by blowing up the investment of time and effort needed to "get security right". This dissertation's focus is how to support developers throughout the process of implementing software securely. This research aims to understand developers' use of resources, their mindsets as they develop, and how their background impacts code security outcomes. Qualitative, quantitative and mixed methods were employed online and in the laboratory, and large scale datasets were analyzed to conduct this research. This research found that the information sources developers use can contribute to code (in)security: copying and pasting code from online forums leads to achieving functional code quickly compared to using official documentation resources, but may introduce vulnerable code. We also compared the usability of cryptographic APIs, finding that poor usability, unsafe (possibly obsolete) defaults and unhelpful documentation also lead to insecure code. On the flip side, well-thought out documentation and abstraction levels can help improve an API's usability and may contribute to secure API usage. We found that developer experience can contribute to better security outcomes, and that studying students in lieu of professional developers can produce meaningful insights into developers' experiences with secure programming. We found that there is a multitude of online secure development advice, but that these advice sources are incomplete and may be insufficient for developers to retrieve help, which may cause them to choose un-vetted and potentially insecure resources. This dissertation supports that (a) secure development is subject to human factor challenges and (b) security can be improved by addressing these challenges and supporting developers. The work presented in this dissertation has been seminal in establishing human factors in secure development research within the security and privacy community and has advanced the dialogue about the rigorous use of empirical methods in security and privacy research. In these research projects, we repeatedly found that usability issues of security and privacy mechanisms, development practices, and operation routines are what leads to the majority of security and privacy failures that affect millions of end users
    • …
    corecore