
 بسم الله الرحمن الرحیم

An Automated System for Identification of Useful User

Reviews for Mobile Application Development

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

July 2021

By

Mohammadali Tavakoli

Department of Computer Science

2

Contents

Abstract .. 10

Declaration ... 11

Copyright ... 12

Dedication .. 13

Acknowledgements .. 14

Publication List.. 15

 Introduction ... 17

1.1 Introduction .. 17

1.2 Problem Background .. 17

1.3 Problem Statement ... 19

1.4 Aims and Objectives of the Research .. 19

1.5 Thesis Context .. 21

1.6 Thesis Outline .. 24

1.7 Conclusion .. 25

 Related Work .. 26

2.1 Introduction .. 26

2.2 Survey Methodology .. 27

2.3 Research Questions .. 27

2.4 Identifying Relevant Primary Studies .. 28

2.5 Selecting Relevant Primary Studies ... 29

2.6 Extracting and Synthesizing Data .. 32

2.7 Survey Results .. 33

2.7.1 Mobile App Review Mining Approaches and Techniques (RQ1) 33

2.7.2 Support Tools for Mining Mobile App Reviews (RQ2) 51

2.8 Open Issues .. 57

3

2.9 Validity Threats to This SLR ... 59

2.10 Conclusion .. 60

 Identification of Factors Relevant to the Usefulness of App

Reviews 61

3.1 Introduction .. 61

3.2 Research Framework .. 61

3.3 Survey Methodology .. 62

3.3.1 Defining Research Questions.. 62

3.3.2 Searching Online Repositories.. 63

3.3.3 Exclusion Criteria ... 65

3.4 The Usefulness Factors .. 66

3.4.1 Application Aspect ... 67

3.4.2 Feature Request... 70

3.4.3 Issue Report .. 72

3.4.4 User Action ... 73

3.4.5 System Action ... 74

3.4.6 Expected Action .. 74

3.4.7 Device Information ... 74

3.4.8 Pros and Cons ... 75

3.4.9 User Expertise ... 75

3.4.10 User Rating ... 76

3.4.11 Length of the Review ... 77

3.4.12 Readability .. 78

3.5 Discussion .. 78

3.5.1 Usability of the Research Output .. 79

3.5.2 Open Issues and Challenges ... 79

3.5.3 Validity Threats .. 81

4

3.6 Conclusion .. 81

 Validation of the Usefulness Factors .. 83

4.1 Introduction .. 83

4.2 Focus Groups.. 83

4.2.1 Selecting Focus Group Discussion ... 84

4.2.2 Aim and Research Questions for the FGD ... 85

4.2.3 Sampling Strategy and Characteristics of Participants 86

4.2.4 Composition of Focus Group .. 87

4.2.5 Number and Size of Focus Group... 88

4.2.6 Planning the Focus Group... 89

4.2.7 Content and Conduct of Focus Group Discussion 90

4.2.8 Data Analysis .. 91

4.2.9 Conclusion .. 98

 Modelling the Usefulness of App Reviews 100

5.1 Introduction .. 100

5.2 Components of a Review ... 100

5.3 Conceptualising the Application Reviewing Process 104

5.4 Conclusion .. 107

 The Proposed Approach ... 108

6.1 Introduction .. 108

6.2 Architecture of the Proposed Approach ... 108

6.3 Review Parser ... 109

6.4 Extracting Usefulness Factors .. 111

6.4.1 Convolutional Neural Network (CNN)... 112

6.4.2 Word Embedding .. 113

6.4.3 Extraction of Issues ... 115

6.4.4 Extraction of Feature Requests, User Actions, and System Actions 119

5

6.4.5 Extraction of Aspects .. 119

6.5 Measuring the Usefulness .. 127

6.6 Conclusion .. 130

 Results and Discussion ... 131

7.1 Introduction .. 131

7.2 Data Collection ... 131

7.3 Performance Results ... 133

7.3.1 Evaluation Metrics .. 133

7.3.2 Component Level Evaluation ... 134

7.3.3 System Level Evaluation .. 140

7.4 Comparison with Baseline Studies ... 142

7.5 Conclusion .. 145

 Research Limitations and Challenges ... 146

8.1 Introduction .. 146

8.2 Limitations of the Approach .. 146

8.3 Research Challenges .. 148

8.4 Conclusion .. 150

 Conclusion ... 151

9.1 Introduction .. 151

9.2 Research Questions .. 151

9.3 Future work .. 153

9.3.1 Tool Extensions and Improvements ... 153

9.3.2 Expanding the Current Research .. 154

9.4 Summary .. 155

References .. 156

Word Count: 39,914

6

List of Figures

Figure 1.1: The Activity diagram of this study ... 24

Figure 2.1: Phases in the selection process. N denotes the number

of papers. ... 30

Figure 2.2: Distribution of the selected 56 primary studies from

2011 to 2020 ... 32

Figure 3.1. The Conceptual Framework of this study 62

Figure 4.1. The process of conducting the FGD 84

Figure 4.2: Ranking of the usefulness factors according to experts’

scorings ... 98

Figure 5.1: Available data and metadata for a review on Google Play

Store .. 101

Figure 5.2: Available data and metadata for an application on App

Store .. 103

Figure 5.3: Ontological Conceptual Model of Application and

Review (Partial) .. 104

Figure 5.4: A useful review containing issue, Aspect, User action,

and System action .. 106

Figure 6.1: Architecture of the proposed approach 109

Figure 6.2: CNN model for sentence classification [184] 113

Figure 6.3: CBOW architecture (predicting word from context) and

Skip-gram architecture (predicting context from word) [188] 115

Figure 6.4: Summary of the model configuration 118

Figure 6.5: An example of POS tags... 120

Figure 6.6: An example of Stanza POS tagger output 121

https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693467
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693468
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693468
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693469
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693469
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693470
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693471
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693472
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693472
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693473
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693473
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693474
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693474
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574456
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574459
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574460
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574461

7

Figure 6.7: An example of dependency tree and its relationships 122

Figure 6.8: Logical representation for Rule1 ... 124

Figure 6.9: Dependency tree for Rule1_example 124

Figure 6.10: Logical representation for Rule2 125

Figure 6.11: Dependency tree for Rule2_example 125

Figure 6.12: Logical representation for Rule3 126

Figure 6.13: Dependency tree for Rule3_example 126

Figure 6.14: Logical representation for Rule4 126

Figure 6.15: The customized Decision Tree for measuring the

usefulness.. 128

file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574462
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574463
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574464
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574465
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574466
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574467
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574468
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574469
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574470
file:///C:/Users/M.Ali/Dropbox%20(The%20University%20of%20Manchester)/PhD/Writing%20up/Viva/Corrections/FinalVesrsionOfThesis2021.docx%23_Toc74574470

8

List of Tables

Table 2.1: Types and Components of The Search Strings 29

Table 2.2: Search Results (2011 – 2020) .. 29

Table 2.3: Data Extraction Form ... 33

Table 2.4: Categories and Techniques Used to Classify Reviews 44

Table 2.5: Selected Papers Extracting Opinion-Aspect Pairs.................. 48

Table 2.6: Selected Papers Studying Relations Between Review

Components .. 51

Table 2.7: Support tools for mining mobile app reviews 56

Table 3.1: Groups and keywords in the search term 64

Table 3.2: Number of selected papers during the search process 65

Table 3.3: List of the Usefulness Factors .. 66

Table 4.1: Information of Participants.. 88

Table 7.1: Accuracy of the neural network used for identifying

Issues in reviews .. 135

Table 7.2: Accuracy of the neural network used for identifying

Feature Requests in reviews ... 136

Table 7.3: Accuracy of the neural network used for identifying User

Action in reviews .. 137

Table 7.4: Accuracy of the neural network used for identifying

System Action in reviews ... 138

Table 7.5: Accuracy of the semantic rules used for identifying

Aspects in reviews text .. 138

Table 7.6: Accuracy of the integrated system designed for

identifying the degree of usefulness of a given review 141

https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693492
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693493
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693494
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693495
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693496
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693497
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693497
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693498
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693499
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693500
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693502
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693503
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693503
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693504
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693504
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693505
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693505
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693506
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693506
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693507
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693507
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693508
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693508

9

Table 7.7: Accuracy of the neural network used for identifying

Issues from review text compared to the baseline studies 143

Table 7.8: Accuracy of the neural network used for identifying

Feature Requests from review text compared to the baseline

studies ... 143

Table 7.9: Accuracy of the semantic rules used for identifying

Aspects from review text compared to the baseline studies 144

https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693511
https://liveutm-my.sharepoint.com/personal/tmohammadali2_liveutm_onmicrosoft_com/Documents/04-10-2020-Thesis.docx#_Toc72693511

10

Abstract

In recent years, mobile app reviews are known to provide a rich source of user

feedback which is of great value for software evolution. However, the volume of such

user reviews is huge, particularly for famous applications and large companies

offering several applications. Addressing this issue, several automatic approaches

are proposed recently for identifying useful reviews. The applied criteria for

measuring the review usefulness in these approaches are originated from the few

existing exploratory studies, wherein the usefulness of a review is interpreted as

inclusion of requirement engineering related topics. Such interpretations of

usefulness, however, is based on authors’ understanding of usefulness rather than

developers’ requirements. Ignoring developers’ viewpoint, the authors defined

some usefulness metrics based on their own observations, and developed extraction

approaches accordingly. Thus, expecting interesting results from such approaches

for developers dealing with thousands of reviews daily is awkward. To bridge this

gap in this study, related studies across several domains analysing human generated

feedback, such as reviews, tweets, requirement notes, bug reports, and application

testing reports, were perused to define a set of factors for accurately measuring the

usefulness of user reviews. The usefulness factors were, then, validated in a focus

group discussion session by experienced mobile app developers. Next, the task of

extracting each of the approved factors was automated applying Deep Learning and

Natural Language Processing (NLP) techniques. Finally, the models designed for

extracting each factor were integrated to form a final system for automatically

extracting useful reviews. Testing on different review datasets, the novel system

achieved high accuracy (i.e., Aspects: 87%, Feature Requests: 72%, Issues: 67%,

User Actions: 73%, and System Actions: 81%) and outperformed state-of-the-art

extraction techniques. Moreover, unlike the state-of-the-art, the proposed system is

completely aligned with developers’ viewpoint as it emphasises on developers’

approved factors for measuring the usefulness.

11

Declaration

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or

other institute of learning.

Submitted in 2021

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright, in-

cluding for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-

tronic copy, may be made only in accordance with the Copyright, Designs and

Patents Act 1988 (as amended) and regulations issued under it or, where ap-

propriate, in accordance with licensing agreements which the University has

from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other in-

tellectual property (the “Intellectual Property”) and any reproductions of copy-

right works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and

may be owned by third parties. Such Intellectual Property and Reproductions

cannot and must not be made available for use without the prior written per-

mission of the owner(s) of the relevant Intellectual Property and/or Reproduc-

tions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property

and/or Reproductions described in it may take place is available in the Univer-

sity IP Policy (see http://www.campus.manchester.ac.uk/medialibrary/poli-

cies/intellectual-property.pdf), in any relevant Thesis restriction declarations

deposited in the University Library, The University Library's regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The Uni-

versity's policy on presentation of Theses.

13

Dedication

This thesis is dedicated to Imam Hasan ibn Ali (peace be upon him) for his

generosity and favours.

14

Acknowledgements

I express my heartfelt gratitude to my compassionate wife, Atefeh Heydari, for her

countless sacrifices and encourages over these years. She sacrificed her own wishes

and provided me with encouragement and support to complete this thesis

successfully. She has also been doing her PhD which is admirable. My special thanks

to her again

In addition, I would like to thank my courageous son Amirabbas for his lovely

smiles and for tolerating my absence while I was studying. Also, my resplendent

daughter, Ellarose, welcome your birth with love.

My deepest gratitude goes to my supervisors, Dr. Liping Zhao and Prof. Goran

Nenadic, for all their unwavering support and tremendous guidance to my PhD.

Their guidance, experience, patience, and clarity have been invaluable.

In addition, I express my appreciation to The University of Manchester and

School of Computer Science for supporting my research over three years granting

me a President's Doctoral Scholar Award and a School of Computer Science Kilburn

Award.

Finally, I would like to thank the examiners of my oral examination, Dr. Sandra Sampaio

and Dr. Hoshang Kolivand, for their constructive comments helping me to improve the

presentation of this research.

15

Publication List

• Mohammadali Tavakoli, Liping Zhao, Atefeh Heydari, Goran Nenadic,

"Extracting useful software development information from mobile

application reviews: A survey of intelligent mining techniques and tools,"

Expert Systems with Applications, 2018.

16

Blank Page

17

 Introduction

1.1 Introduction

Mobile application reviews reflect complaints, expectations, and requirements of

users which is of great importance to developers. They can assist developers in

diagnosing and updating the target app effectively. In this thesis, a novel system is

proposed to automatically measure the usefulness of a given app review with

respect to the developers’ viewpoint. To measure the usefulness, five novel

usefulness factors are proposed to be extracted from review text. The system, then,

labels the review into useful or useless based on the extracted factors.

Section 1.2 discusses the problem background. The research problem to be

addressed in this thesis is stated in Section 1.3. Section 1.4 explains the research

methodology used in this study. Finally, Section 1.5 outlines and introduces chapters

included in the thesis.

1.2 Problem Background

In order to develop effective and efficient software systems, incorporating users’

requirements and needs is significant [1-3]. User involvement in development of

software systems leads to not only high-quality software, but also user satisfaction

[4, 5], and maximising the amount of application sales [6].

Addressing user expectations in development process, software development

teams frequently involve users in various development stages [7] by gathering early

feedback and expectations for prototyping the system [8], and interfering users in

design [9] and implementation [10, 11] phases. Therefore, early stages of software

18

development have been targeted by majority of previous research in extraction of

user needs [12]. However, recent studies have pointed out that involvement of user

feedback and requirements in post deployment phases is also crucial for

maintaining a software system up to date [13], improving upcoming releases [14],

and obtaining user satisfaction [15].

In recent years, mobile app reviews are known to provide a rich source of user

feedback. Web-based software application distribution platforms have become

increasingly popular among the Internet users. According to statista.com, the

number of mobile app downloads from Google Play and App Store has increased

from 17 billion in 2013 to 218 billion in 2020. These platforms also allow users to

share their opinions on their downloaded apps. From the user perspective, such

opinions can influence their decision on purchasing or choice of a particular app [16,

17].

From the app provider perspective, positive reviews can attract more

customers and bring financial gains [17]. Similarly, negative reviews often cause

sales loss [18, 19]. Instructive feedback written by app users usually contains

valuable information, such as reporting bugs and seeking causes, offering solutions,

complaining about cost or performance, requesting features to be added to the

application, explaining their personal experiences with different parts of the

application, and appreciating developers, to name a few. Application vendors and

developers are enthusiastic about mining and analyzing such contents [20].

Interviewing 73 developers, Palomba et al. [21] found that over 75% of developers

carefully monitor user reviews to improve their applications. Addressing these

requirements is also of paramount importance. Carefully responding to user needs

discussed in reviews in a reasonable period of time is known as a key factor for any

successful mobile application [22].

However, there are several restrictions for developers effortlessly reaping

benefits of user feedback. Firstly, the quality of reviews varies significantly which is

due to the openness of online review sharing websites for everyone [23]. Many

people generate reviews for asking question from or answering to other users,

advertising other applications, or repeating their assigned star rating in words.

19

Besides, some of the applications require a certain level of expertise causing

ordinary users encountering difficulties using them. Reviews generated by these

users are not usually interesting for developers. Secondly, reliability of reviews

could not be guaranteed. Stakeholders sometimes hire spammers to generate not

only glamorized positive reviews on their applications, but also harmful negative

reviews on competitors’ [24, 25]. Finally, huge amount of generated reviews and the

unstructured nature of its textual content demand a lot of effort and cost to be

manually analysed by development teams.

1.3 Problem Statement

In recent few years, researchers have developed several techniques, ranging from

sentiment analysis [26-28] and spam detection [23, 29-31] to more general mining

techniques [32-34] for automating the task of processing user reviews to reduce the

developers’ effort spent in collecting and understanding informative user feedback

from app reviews. The proposed review mining approaches automatically discern

relevant reviews from irrelevant ones have been systematically analysed before

setting out to address the research aim of this project.

The main shortcoming of these studies is interpretation of the usefulness.

Many of the authors applied their own opinion for defining usefulness metrics [35,

36], while others hired improper persons, such as undergraduates studying

software engineering, to annotate reviews, and defined usefulness metrics inspiring

from the annotation output [37, 38]. Such behaviours have resulted in disregarding

the viewpoint of developers in identifying useful reviews. Therefore, the output of

such research projects might not be in line with what developers trying to achieve.

After analysing the state-of-the-art, the lack of research on properly measuring

usefulness of app reviews with respect to developers’ viewpoint became apparent.

1.4 Aims and Objectives of the Research

After conducting a systematic review of the existing literature to discover existing

research efforts and proposed approaches in analysing mobile application reviews,

research gaps and limitations were identified. Accordingly, the following aim was

defined.

20

The aim of the research presented in this thesis is to bridge the

abovementioned gap found in current approaches by conceptualising the usefulness

and proposing Deep Learning and NLP based approaches for effectively measuring

the usefulness of mobile app reviews for software development purposes. To

achieve this, the key research questions are defined:

RQ1. How to effectively measure the usefulness of app reviews? What usefulness

factors could be used?

RQ2. How to validate the proposed factors for measuring the usefulness of app

reviews?

RQ3. How to automatically extract the usefulness factors from the text of app

reviews?

RQ4. How to automatically detect useful reviews using the usefulness factors?

RQ5. How to evaluate the proposed automatic approaches?

With the aim of systematically addressing these research questions, the objectives

of this project are defined as follow:

Obj1. To conceptualise and formulate the usefulness attribute for app reviews. This

is to quantifiably measure the usefulness of app reviews using a set of

usefulness factors.

To fulfil this objective, a list of candidates for usefulness factors for measuring

the usefulness of app reviews was defined inspiring from in-depth analysis of

related work on several domains and the dataset of app reviews.

Obj2. To validate the effectiveness of usefulness factors using experienced mobile

application developers. This validation will help not only to ensure the

inclusion of developers’ viewpoint in measuring the usefulness, but also to

approve the effectiveness of such factors in measuring the usefulness.

To achieve this, the list of candidates of usefulness factors was evaluated in a

Focus Group Discussion (FGD) composed of six experienced mobile app developers.

The output of the FGD was a set of five usefulness factors. Proposing five effective

21

and approved factors for measuring the usefulness of app reviews is one of the

contributions of this thesis.

Obj3. To propose Deep Learning and NLP based approaches for extracting each

usefulness factor from reviews. This is not only to check the applicability of the

factors in real world, but also to facilitate development of the final system.

Neural networks, NLP techniques, and combination of them was used to

automatically extract each usefulness factor from the text of a given review. Another

contribution of this thesis is proposing these extraction approaches that achieved

higher accuracy compared to state-of-the-art. Besides, extraction of User Action and

System Action are automated for the first time in this domain.

Obj4. To integrate extraction approaches as a unique system for detecting useful

reviews.

Successfully proposing automatic extraction approaches for each of the usefulness

factors, the models built for extracting the factors were placed in a pipeline to form

the whole system. The system gets a review as input, extracts usefulness factors, and

applying a decision tree-based approach estimates the usefulness of the review.

Proposing a fully automated system for measuring the usefulness of app reviews

completely aligned with developers’ viewpoint is another contribution of this thesis.

Obj5. To evaluate the integrated system and individual extraction approaches.

To measure the effectiveness of the usefulness factors individually and as a

whole system, datasets of app reviews manually coded by app developers as a part

of this project were used. The achieved Precision, Recall, and F-Score reported in

Chapter 7 shows how the proposed approach outperforms the state-of-the-art in

this domain.

1.5 Thesis Context

To provide a clear description of this study, a context diagram is illustrated in Figure

1.1 representing the activities of this project. The diagram is designed based on

Design Science Research Methodology [42] which consists of the following steps.

1. Identifying the problem,

22

2. Providing evidence for the existence of this problem,

3. Making a testable hypothesis about how to solve the problem and/or

formulating research questions,

4. Designing and developing a solution,

5. Demonstrating and evaluating the solution, and

6. Communicating the results to research community.

The diagram consists of three main phases (i.e., Literature review, Proposing

the Approach, and Validation) to properly fulfil the objectives defined in previous

section and meet the aim of this PhD project.

There are three tasks to be addressed in the Literature Review phase: First, to

identify the research problem and provide evidence for the existence of this

problem. The research problem stated in Section 1.3 was identified by identifying

and perusing related work in the area of app review analysis and requirements

engineering followed by a technical discussion with scholars and professionals in

the domain. Providing evidence for existence of such problem, discussed in Chapter

2, is another part of this task. This task was the cornerstone of this research forming

the overall aim and initiating the research questions.

Second, studies related to user feedback analysis are collected and reviewed

for extracting any factor used to measure the usefulness of reviews. In a broader

scale, studies reporting on analysing user requirements for software development

are also analysed. This task is to fulfil the first objective for conceptualising the

usefulness of app reviews.

Finally, existing datasets are collected and assessed in this phase for the

purpose of validating any further implemented approach. This task is designed to

address the last objective about evaluating the approaches.

The Approach phase contributes to objectives 1, 3, and 4. In this phase, the

usefulness of app reviews are to be measured (Obj1) defining a set of usefulness

factors to be used as metrics for judging the usefulness. These factors are then

discussed and validated in the FGD of well-skilled app developers and requirements

engineers (Obj2) as a part of Validation phase.

23

Moreover, the task of automatically extracting the usefulness factors using

machine learning and NLP techniques is one of the tasks defined in the Approach

phase to fulfil Obj3. This is also a step designed, according to step 4 of the

abovementioned methodology, to provide solution for the research problem.

The last phase of this study, Validation, is responsible for validating any

approach developed in the former phases. The tasks assigned in this phase are

designed to address objectives 2 and 5.

The first major task in this phase to address objective 2 is conducting a FGD

with professional mobile application developers to validate significance of

usefulness factors defined in phase 1. The output of this FGD is a set of professionally

approved usefulness factors for measuring the usefulness of app reviews.

The second task to fulfil objective 5 is manual coding of a set of real mobile

application reviews to validate the accuracy of the proposed approaches from the

previous phase. The approaches are designed to automatically extract the

usefulness factors that are manually labelled in the ground truth dataset. Two

datasets of app reviews obtained from related work were manually annotated with

the usefulness factors by experienced app developers to form the ground truth

datasets of this project. The datasets are then used to train and test the models. So,

the accuracy of the approaches is measured by comparing their outputs against the

ground truth dataset labels.

24

1.6 Thesis Outline

This thesis is organised into six chapters as follow:

• Chapter 2. Literature Review: A systematic literature review of current

approaches analysing application reviews for software evolution is

presented. The research gaps are identified and demonstrated to be

alleviated with a novel approach.

• Chapter 3. Identification of Factors Relevant to the Usefulness of App

Reviews: To address the identified gap in Chapter 2, any possible metrics

to be used for measuring the usefulness of application reviews from

developers’ viewpoint were gathered from related approaches in variety

of domains, analysed carefully, and reported in this chapter.

• Chapter 4. Validation of the Usefulness Factors: The list of usefulness

factors was discussed in a Focus Group Discussion (FGD) session with

senior mobile application developers for validation and amendments. The

results are reported in this chapter.

Figure 1.1: The Activity diagram of this study

25

• Chapter 5. Modelling the Usefulness of Application Reviews: This chapter

describes an app review and available data and metadata associated to it

for analysis. The partial process of reviewing an application is also

conceptualised in this chapter.

• Chapter 6. The Proposed Approach: This chapter discusses the proposed

approaches for automatically extracting each usefulness factor and

integrating them in a pipeline to form a final system. In this chapter, the

architecture of the proposed approach is illustrated, data pre-processing

steps are explained, and the strategy for measuring the usefulness is

discussed.

• Chapter 7. Results and Discussion: Apart from explaining the datasets used

for this experiment, in this chapter, results obtained from testing each of

the proposed approaches for extracting usefulness factors are discussed.

The final system is also validated, and the results are presented in this

chapter. The chapter also covers a detailed discussion on the obtained

results.

• Chapter 8. Research Limitations and Challenges: Challenges and

limitations encountered in different phases of the project are reported in

this chapter.

• Chapter 9. Conclusion: This chapter provides a summary of the thesis

emphasising on addressing research questions. It also discusses the future

work and possible research directions.

1.7 Conclusion

To provide readers with a general understanding and an overview of the research

reported in this thesis, the following key concepts and elements of the project are

discussed in this chapter.

After providing a general introduction to the field of research, the problem

investigated in this project is discussed. Aim, research questions, and objectives are

elaborated to reflect contributions and novelties of this project. Finally, the

structure of the thesis is outlined after discussing the context of the research.

26

 Related Work

This chapter is based on a paper published in The Journal of Expert Systems With

Application [39] in 2018. This survey highlights and compares the areas of research

that have been explored thus far, drawing out new directions future research could

take to address open problems and challenges.

2.1 Introduction

Extraction of useful information for software evolution from mobile app reviews is

crucial because of the importance of user post-release feedback on the success of

the application [40]. However, not all the user reviews are relevant and useful for

app development [41]. In order to unleash the value of app reviews for app

development, intelligent mining tools that can help discern relevant reviews from

irrelevant ones are required. In recent years, a variety of such techniques have been

proposed, ranging from sentiment analysis [26], spam detection [23, 29], to more

general mining techniques [32]. Yet, there is a lack of systematic understanding of

these techniques in the context of mining mobile app reviews and their support

tools.

One of the related survey studies assessing App Store mining techniques by

Nayebi and Abran [42] provides an analysis of general data-mining techniques for

spam detection, opinion mining, review evaluation, and feature extraction. The

second survey by Martin et al. [43] is concerned with App Store analysis, such as API

analysis, feature analysis, app review analysis, and so on. So, investigation of the

utilised techniques and proposed tools for mining software development related

information from app reviews was not covered in these survey studies.

In this chapter, specific mining techniques and tools for processing app

reviews are analysed and reported, their shortcomings and gaps are identified, and

the future research directions are highlighted. There are several reasons why this

literature review is conducted. First, it provides a background on processing

techniques used for analysing app reviews. So, it represents research efforts in this

area. Second, the research problem was formulated after analysing existing

27

approaches and identifying their gaps and shortcomings. Third, it provides a

systematic support for the novelty and contribution of this project. Finally, it has

several other advantages for readers, such as summarizing challenges, limitations,

and future research direction in this area.

A process of analysing related works is also reported in Chapter 3, but the aim

of that analysis is to identify potential usefulness factors to be used for measuring

app review usefulness.

We found that the first related paper was published in 2011. So, the starting

point of the study was set to 2011. The most recent selected study was published in

2017 at the time of writing the systematic literature review paper. Recent papers

are also analysed and added to the set of selected papers to set the end point of the

review to 2020.

Over 55 existing approaches dealing with analysing mobile application

reviews have been investigated. Following an analysis of these approaches it was

established that supervised machine learning-based approaches make up the

majority of the current state-of-the-art.

2.2 Survey Methodology

The methodology for conducting our survey is systematic literature review

proposed by Kitchenham et al. [44]. To avoid confusion, we have used the term

“survey”, instead of “review”, to refer to this paper, as the subject matter of the

paper is app reviews. Based on the systematic literature review (SLR) guidelines

provided by Kichenham et al. (Barbara Kitchenham, et al. [44], in what follows, we

describe the steps in our survey process.

2.3 Research Questions

As stated in Section 1, the main goal of this chapter is to survey the state of the art

in the development of mobile app review mining techniques and tools. Specifically,

the survey will cover the primary studies that report the development of mobile app

review mining techniques and tools. In addition, this paper will also find out what

specific app development topics the reported tools are used to discover, as this

28

finding will help us evaluate the maturity of the current mobile app mining tools. In

line with these goals, we have formulated the following research questions and will

use them to drive our survey:

RQ1: What types of analysis on mobile app reviews and what techniques have

been reported in the literature?

RQ2: What software tools have been developed to support these techniques?

2.4 Identifying Relevant Primary Studies

The definition of a robust strategy for performing an SLR is essential as it enables

researchers to efficiently retrieve the majority of relevant studies. In this section, we

discuss our search strategy in detail.

We developed our search string by selecting keywords from the studies that

we had already reviewed in the domain. Then, we identified and applied alternatives

and synonyms for each term and linked them all by the use of AND/OR Boolean

expressions to cover more search results. In order to perform a widespread search,

formulating a comprehensive query is indispensable. Thus, we optimized and

refined our preliminary search string during multiple iterations as mulling over the

revealed results and skimming retrieved relevant studies helped us to manipulate

our search string effectively with more appropriate keywords. We excluded

keywords whose inclusion was not advantageous or replaced them with more apt

ones. Our search terms are presented in Table 2.1 and the finalized search term is

as follow:

‘(mobile OR android OR IOS) AND (app OR application) AND (feedback OR

review OR opinion OR comment) AND (bug report OR feature request OR complain

OR requirement OR issue OR expectation) AND (analysis OR process OR mining OR

extract OR discover) AND (developer OR development team OR requirements team

OR software vendor) OR (requirement engineering OR RE OR requirements

elicitation OR requirements analysis)’

After constructing the search string, we used it to search the following

databases: ScienceDirect, IEEEXplore, ACM, GoogleScholar, Scopus, and

29

SpringerLink. The search returned a total of 59,066 results. We found that the first

related paper was published in 2011 and the last one in 2020. Table 2.2 summarizes

the search results.

2.5 Selecting Relevant Primary Studies

Based on the search results, we have used the following inclusion and exclusion

criteria to select the relevant primary studies. The selection phases are shown in

Figure 2.1.

Table 2.2: Types and Components of The Search Strings

Type Search Term

Domain (mobile OR android OR IOS)

Content (app OR application)

Review (feedback OR review OR opinion OR comment)

Review Type (bug report OR feature request OR complain OR

requirement OR issue OR expectation)

Development (developer OR development team OR require-

ments team OR software vendor)

Requirement

Engineering

(requirement engineering OR RE OR require-

ments elicitation OR requirements analysis)

Technique (analysis OR process OR mining OR extract OR

discover)

Table 2.1: Search Results (2011 – 2020)

Database Search Results

Scopus 10,135
Science Direct 5,118
ACM 4,128
SpringerLink 23,069
IEEEXplore 4,133
Google Scholar 12,483
Total 59,066

30

Inclusion criteria:

Figure 2.1: Phases in the selection process. N denotes the number of papers.

31

I1. Studies reporting app reviews related to application development were

included.

I2. In addition to I1, studies reporting detailed empirical research methods, such

as case studies, surveys, experiments, and ethnographical studies, were

included.

I3. If more than one paper reports the same study, only the latest or fullest paper

was included.

Exclusion criteria:

E1. White and gray literature (i.e. research outputs that are not peer reviewed,

such as reports, online documents, and working papers) was excluded.

E2. Abstract papers with no full-text available were excluded.

E3. Short papers with less than four pages were excluded.

These inclusion and exclusion criteria were applied in the following three steps:

1. E1, E2 and E3 were applied in turn to the search results to exclude irrelevant

studies.

2. I1 and I2 were applied to each remaining study to include the studies that

met these criteria.

3. I3 was applied to duplicate studies to include the fullest studies.

At the end of Step 3, a total of 56 primary studies were selected as relevant to

our survey, the full text of which was imported into an Endnote library for data

extraction. The references of these studies are listed in Appendix I.

Figure 2.2 shows the distribution of the selected 56 studies published from

2011 to 2020. The maximum number of papers was published in 2015, whereas

2011 only had one paper. It is worth mentioning that the small number of the papers

found in 2020 is due to the search period. Of the 56 selected papers, 39 of the

selected papers are conference papers and 18 of them are journal articles. Appendix

II summarizes the number of the papers published in each channel.

32

2.6 Extracting and Synthesizing Data

In this step, the required data were extracted from each of the 56 primary studies.

A predefined data extraction form (see Table 2.3) was used to record the data for

each study. Two types of data were extracted: the data required for answering the

research questions and the data required for displaying the bibliographic

information of the study. The extracted data were stored in an Excel file for further

process and analysis.

The extracted data were synthesized using the constant comparison method

(CCM) [45]. The steps involved in data synthesis were:

1. Comparison within a single paper: To summarize the core of the paper and

to understand, any categories, difficulties, and highlights.

2. Comparison between papers within the same category that is papers, which

used same techniques or had same aims: To conceptualize the subject and to

produce a category of studies.

3. Comparison of papers from different groups: To identify the effectiveness

and efficiency of each category of techniques in solving the overall issue.

Figure 2.2: Distribution of the selected 56 primary studies from 2011 to 2020

33

2.7 Survey Results

This section reports on the analysis of review results and answers our research

questions.

2.7.1 Mobile App Review Mining Approaches and Techniques (RQ1)

RQ1: What types of analysis on mobile app reviews and what techniques have been

reported in the literature?

The aim of this research question is to identify different types of analysis

performed on user reviews. The main goal of analysing and processing mobile

application reviews is to help developers in identifying useful reviews for

application improvements and evolution. There are several purposes researchers

have analysed user reviews for, such as categorizing user reviews in different

groups based on the content, discovering what topics are discussed in reviews,

opinion mining, finding relations between different review component, and so on.

They used several techniques to perform these tasks that are discussed in this

section. Apart from finding gaps to be addressed in this project, answering this

research question provides a comprehensive technical background for factors

extraction components of the proposed approach.

Table 2.3: Data Extraction Form

Data Item Description

Paper ID The unique ID assigned to each paper

Year In which year was the study published?

Author(s) The author(s) of the paper

Title The title of the paper

Venue Publication venue of the study

Techniques Mining techniques used in the study

Tools Support tools for extracting software development information

Topics Software development topics discovered in the study

34

2.7.1.1 Discovering What Topics Are Discussed in Reviews

To better understand the content of mobile application reviews, selected studies in

this group have analysed them to discover what topics are discussed in the text of

reviews. In this section, each of the studies are explained in detail.

Ha and Wagner [46] (S6) manually analysed 556 reviews from 59 different

applications of Google Play to find what users are talking about. They identified 18

categories of topics discussed in the reviews after multiple irritations. To

understanding what recurring issues users like to report in their reviews, Iacob, et

al. [47] (S7) manually analysed 3279 Google play reviews. The authors defined a

coding scheme to capture the recurring issues. Two coders annotated 125 randomly

selected reviews resulting in identification of 9 classes of codes, namely positive,

negative, comparative, price related, request for requirements, issue reporting,

usability, customer support, and versioning. Then they divided each review into

significant snippets of text to assign them an associate refined code. Their approach

is vague, as they have not described how the whole 3279 reviews had been

processed.

In an exploratory study, to demonstrate how user reviews are useful for

developers, Pagano and Maalej [48] (S12) investigated how and when users provide

feedback, how to identify and classify topics in reviews, and how to integrate user

feedback into requirements and software engineering infrastructures (more focus

was on the impact of reviews on rating and on community of users). The authors

applied a descriptive statistic to investigate usage of feedback. They, then, manually

analysed a random sample of reviews (528 reviews) to explore and assign topics to

each review. They grouped their 17 observed topics into four themes, namely

community, rating, requirements, and user experience.

Another group of studies focused on analysing negative reviews to extract

topics related to application problems discussed in them. In preliminary

contribution in the field, Khalid [49] (S8) manually analysed 6,390 one-star and two-

star reviews for 20 iOS apps in order to aid developers by listing the most frequent

complaints. They discovered 12 types of issue and complaint about iOS apps in user

feedback and repeated their approach in [50] (S15). In 2015, they extend their

35

approach by proposing a review system enabling users to see more visualized

ratings, reply to comments, sort reviews by like/dislike, and categorize the reviews

[51] (S19). Another study investigating topics related to application problems is

conducted by Fu, et al. [52] (S5). As a part of their research, the authors applied topic

modelling techniques, Latent Dirichlet Algorithm (LDA), to discover specific

problems of each app behind the users’ complaints. To identifying global trends in

the market, they analysed top complaints of each app and found similar complaints

and the most critical aspects of apps. LDA was also used in [53] (S49) to discover

topics discussed in reviews and to, consequently, identify issues mentioned in

reviews.

Galvis Carreno and Winbladh [54] (S10) used topic modelling and IE

techniques to discover the topics from reviews that can be used to change and/or

create new requirements for a future release of software. They used Aspect and

Sentiment Unification Model (ASUM) for extraction of topics. The authors focused

only on requirement changes, while other kinds of valuable information for

developers are neglected in their approach. Moreover, the authors manually

classified reviews to build their gold standard dataset and acknowledged that this

way of procuring training data is error prone as the expertise of authors in the

domain is under question.

Apart from the studies discussed in this section, there are other topics

discovered in pre-processing and data preparation phases of other experiments. As

the main goal of them for analysing reviews was other than discovering discussed

topics, selected papers reporting such experiments are discussed in further sections.

However, topics discovered by any of the selected papers analysed in this chapter

are grouped and listed in Appendix III.

2.7.1.2 Categorization of User Reviews

Selected papers fallen in this group have proposed methods and approaches for

categorising mobile application reviews into two or more different groups mainly

for assisting developers in more straightforwardly finding useful reviews for

application development purposes. Although NLP techniques are scarcely used for

this task, majority of the selected papers have applied machine learning techniques.

36

In the earliest selected paper analysing content of mobile application reviews

found in this SLR, Platzer [55] (S1) used motivational models to find usage motives

that are addressed in the text of user reviews. To classify reviews based on these

motives, they applied Support Vector Machine (SVM) and Naïve Bayes (NB)

algorithms.

Oh, et al. [56] (S9) believed that uninformative reviews should be filtered out

to help developers overcoming the overload of feedback. To achieve this, they

defined three categories for reviews (i.e., functional bug, functional demand, and

non-functional request) and manually classified 2800 reviews into the categories to

train their filtering model. Identification of categories was done by app developers

who analysed the review contents manually, though details of the process, such as

number of experts, number of analysed reviews, and selection criteria is not

provided. Then, they extracted keywords of each review using Latent Dirichlet

Allocation (LDA) and heuristic methods and applied SVM algorithm to classify

reviews into informative and uninformative. The authors argued that the

performance of LDA in identifying keywords is weak due to shortness of reviews in

length.

Chen, et al. [57] (S13) developed a computational framework for App Review

Mining, namely AR-Miner which filters useless reviews and uses topic modelling

techniques to group informative reviews based on the topics discussed in them, and

a review ranking scheme to prioritize them with respect to the developers’ needs.

AR-Miner uses Expectation Maximization for Naive Bayes (EMNB), a semi-

supervised algorithm in machine learning to classify reviews to informative and

uninformative. In next phase, it uses LDA for grouping, and creates a ranked group

of reviews based on their rating, fluctuation in time of reviews, and volume of

reviews reporting a similar issue/request. The authors compared the performance

of two algorithms in topic modelling, i.e., Latent Dirichlet Allocation (LDA) and

Aspect and Sentiment Unification Model (ASUM) for grouping informative reviews

based on their contents.

In classifying user feedback into informative and non-informative, they did not

justify the superiority of Expectation Maximization for Naive Bayes (EMNB) to other

37

existing algorithms. Testing the performance of other classifiers and comparing the

outcomes was a good way for justification of superiority of their approach.

Moreover, there are several important aspects neglected in their approach. Firstly,

sentiment of the review relates to its content and could be used to leverage the

performance of the tool [58]. Secondly, although they employed time stamp, text,

and rating of a review to do their task, important features such as title of review and

meta-data features are neglected. Finally, they removed stop-words, stemmed, and

applied other pre-processing techniques on raw crawled reviews. State-of-the-art

approaches [59] show that these pre-processing tasks increase the chance of losing

helpful content. Additionally, they discriminated informative and uninformative

reviews based on their own understanding of “informative” and reviewing few

numbers of online forums, while to identify what really is important for mobile app

developers to extract from user reviews, their needs and requirements should be

studied comprehensively.

Maalej and Nabil [60] (S21) designed and applied different probabilistic

techniques and heuristics to automatically classifying reviews into four basic types:

Bug reports, feature requests, User experiences, and rating. They generated a list of

keywords by string matching, bag of words, sentiment scores, NLP pre-processed

text, review rating and length, to be used for classification task. Then, they applied

Naive Bayes, Decision Trees, and MaxEnt to compare the performance of binary to

multiclass classifiers in classification of user feedback into the predefined basic

types. The authors extended their approach in [61] (S29) by adding bigram and its

combinations to utilized classification techniques, and by improving pre-processing

phases and classification scripts. They argued that by the use of meta-data combined

with text classification and natural language pre-processing of the text, the

classification precision rises significantly.

Guzman, et al. [62] (S18) relied on categories found in [48] to form their

taxonomy with 7 categories relevant for software evolution including bug report,

feature strength, feature shortcoming, user request, praise, complaint, and usage.

The authors then used the taxonomy to investigate the performance of various

machine learning techniques (i.e., Naive Bayes, Support Vector Machines (SVMs),

Logistic Regression and Neural Networks) in classification of reviews. The set of

38

features they used includes number of upper/lower case characters, length,

positive/negative sentiment, and rating. However, many other features could be

found in user feedback to be used for classification purposes in order to enhance the

throughput of the model [63]. Similarly, NN was used in [64] (S46) to classify

reviews into General opinion, Functional feature, and Out of domain. To help

developers find useful reviews faster, they also identified review sentiments using

NLTK and found key phrases using RAKE-NLTK which is a domain-independent

keyword extraction algorithm.

Panichella, et al. [65] (S26) argued that among the 17 topics identified by

Pagano and Maalej [48], only 8 of them were relevant to software maintenance and

evolution tasks . They proposed a method to identify constructive feedback for

software maintenance and evolution tasks. The authors hypothesized that

understanding the intention in a review has an important role in extracting useful

information for developers. And to understand the intention of a review, they used

sentences structure, sentiment of a review, and text features contained in a review.

Thus, they formed a taxonomy (i.e., Information Giving, Information Seeking,

Feature Request, and Problem Discovery) by manually reviewing a number of

reviews. Then they extracted a set of features by the use of NLP, text analysis, and

sentiment analysis techniques to train a classifier and finally classified reviews

according to the taxonomy. They compared performance of different machine

learning techniques, namely, the standard probabilistic naive Bayes classifier,

Logistic Regression, Support Vector Machines, J48, and the alternating decision tree

(ADTree) and reported that J48 performed well. The authors identified and grouped

review sentences into 6 categories (i.e., feature request, opinion asking, problem

discovery, solution proposal, information giving, and information seeking). They

compared these categories with topics identified by Pagano and Maalej and found

that all 17 topics match with 4 out of their 6 identified categories.

Panichella, et al. [66] (S32) improved the approach in S26 by proposing ARdoc

(App Reviews Development Oriented Classifier), a tool that automatically classifies

useful sentences in user reviews according to a taxonomy designed in S26 to model

developers' information needs when performing software maintenance and

evolution tasks. After dividing the review into sentences, ARdoc extract lexicon,

39

grammatical structure, and sentiment of each sentence to be used by a machine-

learning algorithm (J48) for classification purposes.

Buchan et al. [67] (S47) also used classification techniques (i.e. SVM, Naïve

Bayes, and Logistic Regression) for classifying reviews into feature requests and

non-feature requests. They used n-gram and review sentiment as classification

attributes. Their results show that the performance of SVM in this task was superior

comparing to other classifiers.

The SURF (Summarizer of User Reviews Feedback) was proposed in [68]

(S27), which is a tool for categorization and summarization of reviews. It splits a

review into sentences and performs the summarization task in three phases. Firstly,

it employs the approach proposed in their previous study S26 and their identified

sentence categories to classify sentences into user intentions and assigns one of the

intentions to each review sentence. Secondly, it employs sets of keywords to build

an NLP classifier and automatically assign one or more concept (topic) to each

sentence in a review. Specifically, the authors manually analysed each sentence in

438 reviews selected as a training set to discover topics discussed by reviewers

resulting in identification of 12 topics. They manually assigned keywords to each

sentence and for each topic, created a finite set of keywords and enriched it with

WordNet synonyms. Finally, for summarization purposes, they relied on their

observations and assigned a score to each sentence for each observation. The tool

categorizes sentences according to their topics and intention categories and

generates summaries as structured HTML. However, their approach suffers from

lack of a comprehensive research on what really is needed by app developers as

these points are observed only by authors and a software developer. Moreover, they

assigned different relevance scores to each category of intentions to score the first

observation without studying the impact of each score.

To overcome the problem of processing colloquial terminologies used by users

in their informal language which causes complex classification models and

overfitting problems, Jha and Anas [69] (S33) proposed a FrameNet tagging based

approach to classify reviews based on the notion of semantic role labelling (SRL).

The aim of using SRL is to obtain a higher level of abstraction from sentences. SLR

40

classifies the words used in a sentence into semantic classes describing an event

along with its participants. In their classification task using Naive Bayes (NB) and

Support Vector Machines (SVM), the authors used frames generated from each

review, rather than each word. However, their target classes are limited to bug

reports and feature requests indicating that other types of valuable information are

ignored in their approach. The authors released their classifier as a tool in [70] (S34)

and conducted a very similar experiment in [71] (S43). Further in 2019, they used a

multi-label classifier to extract non-functional software requirements from user

reviews [72] (S44). They compared the performance of Naïve Bayes and SVM in

classifying reviews into the categories of non-functional requirements defined by

Kurtanovic and Maalej [73] (i.e. dependability, reliability, performance, and

supportability). As classification attributes, they used bag of word, category of the

target application, and sentiment of the review.

In another study targeting only one-star and two-star reviews, McIlroy, et al.

[59] (S31) studied the extent of multi-labelled user reviews (reviews raising more

than one issue type) and proposed an approach to automatically labelling multi-

labelled user reviews. They defined 13 types of issues and labelled a number of

reviews manually to form their gold standard dataset. For labelling task, they

transformed the problem of multi labelling into single labelling and used a classifier

for each label and combined their results. They used several different classifiers e.g.,

support vector machines (SVM), decision tree (J48) and Naive Bayes (NB) as well as

several different multi-labelling approaches e.g., Binary Relevance (BR) [it does not

leverage the correlations between labels], Classifier Chains [74] [it does leverage the

correlations between labels], and Pruned Sets with threshold extension (PSt). They

defined a threshold to assign each label to a review. Finally, they used 10-fold cross-

validation to evaluate results.

In pre-processing phase, they removed numbers and special characters, but

not stop words, expanded abbreviations, filtered words occurring less than three

times in dataset, stemmed words, and removed reviews consisting of three words

or less. However, observations exhibit that reviews with less than three words

report bugs and issues as well (e.g.: “poor camera”, “save button sucks”, and “can’t

upload picture”). Moreover, they used (TF-IDF) as a mean to increase the weight of

41

words that occur frequently in a single user review and to decrease the weight of

words that occur frequently in many user reviews. Although it helps to devalue

ordinary words, this way of weighting words might demote issues repeated and

discussed between several users.

To compare the accuracy of various classifiers in categorization of user

reviews into four software maintenance tasks (i.e. feature request, information

giving, information seeking, and bug reports), Al-Hawari et al., [75] (S35) trained

associative classification (AC) algorithms using the KEEL software [76] and the

RapidMiner studio [77, 78]. The authors used two different datasets taken from [61]

and [65] to test the accuracy and argued that AC algorithms have a better average

performance than J48, KNN, RF, SVM, and NB.

Classification algorithms have also been used in [79] (S36) to classify reviews

of healthcare-domain applications into bug reports, feature requests, sentimental,

security, application performance, and user interface. 7500 reviews from ten

different health-related mobile applications were manually annotated and used for

training and testing purposes. As the classification attributes, they extracted TF-IDF

and n-gram features and used them with Naive Bayes, Multinomial Naive Bayes,

Random Forest, and Support Vector Machines (SVM). They have reported that

Multinominal NB has outperformed other classifiers.

Performance of traditional machine learning techniques and deep learning

techniques are compared in [80] (S52) where the authors employed both

approaches to classify reviews into problem reports, inquiries, and irrelevant. Their

obtained results show that the accuracy of neural networks used is more or less

similar to the traditional classifiers using several text related extracted features.

Manual analysis is one of the main techniques used in abovementioned

approaches to train classifiers. These classification models, however, suffer from

incomprehensiveness as they are classifying reviews into a limited number of

classes. Moreover, these approaches are very domain specific. This is because of the

fact that by changing the target application, aspects and features will be changed as

well. So, major updates in the proposed model would be required.

42

Iacob and Harrison [81] (S11) studied identification of proportion of feature

requests among users’ feedback. They developed a prototype to automatically mine

online reviews of mobile apps and retrieve feature requests. It crawls reviews by the

use of a data crawler, extract feature requests by 237 predefined linguistic rules,

summarize extracted feature requests by ranking them based on their frequency

and length, and visualize the results. The authors crawled 3279 reviews from Google

play to manually read them and formulate the linguistic rules to identify feature

requests. To identify common topics across the feature requests, they then applied

the LDA model.

To facilitate the use of crowdsourcing in manually classifying reviews for

software improvements, Martijn et al. [82] (S41) proposed a list of micro-tasks and

guidelines for crowd workers to categorise useful reviews into the taxonomy

defined in [83]. The guideline has three steps. First, crowd workers need to identify

useful reviews from useless ones. Second, they do the same thing for each sentence

in a review and find if there is any content helpful for developers. Finally, they

classify reviews into the predefined categories. the question here is that how a

crowd worker with almost no experience of mobile application development should

extinguish between useful and useless reviews at the first step? Several rules and

constraints should have been defined for crowd workers to train them how to

identify useful reviews.

To study the enhancement requests of Android OS by users, Lee, et al. [84]

(S20) applied NLP techniques (i.e. n-gram and PMI analyses) to identify the most

pressing requests, though their focus was on android OS which reviews vary from

the ones generated for applications. Their mere focus on text and ignoring the

available meta-data of feedback is an obvious drawback of their approach.

Moghaddam [85] (S22) defined some lexical-POS patterns (8 for

improvements and 5 for defects) to classify implicit reviews containing

improvement/defects. Then she used these reviews as positive cases to train her

distance learning classifier. After using SVM to extract sentences containing

defects/improvements, the author applied LDA to cluster similar sentences and

score the importance of founded topics. However, her effort on finding patterns to

43

capture defects/improvements was not sufficient as in her approach, problem,

issue, and bug report is defined as defects and improvements include modification,

upgrade, enhancement request, but only 13 patterns are defined to extract them

among user reviews. Thus, many forms of explanations used by users to report

defects/improvements are most probably missed by her approach. These patterns

are used to label reviews and it causes inaccuracy in the results. Moreover, the

proposed approach provides developers with more categorized sets of reviews, but

they still need to expend too much effort and sources to explore these sets for the

definition of defects/improvements which is too general in terms of categories

fallen in these two groups.

Yang and Liang [86] (S25) proposed an approach to extract user reviews from

AppStore, extract requirements information from them, and classify them into

functional and non-functional (NFR) requirements. In their approach, requirement

engineers manually identify and classify a certain number of user reviews as NFRs

or FRs. Then, TF-IDF technique extracts keywords from these reviews to be used for

automatic classification of reviews by the use of predefined regular expressions.

However, human judgement is required to check and select the keywords which

makes their approach labour-intensive. Their corpus consists of only 1000 reviews

which is not appropriate to obtain a stable evaluation. Moreover, the authors

annotated the data and extracted keywords by themselves. And they defined the

regular expressions too which was, most probably, based on their observations over

the data. Thus, performance of their approach severely depends on their

preferences and evaluation accuracy is under question. Table 2.4 summarizes the

categories and classification techniques used in the selected papers discussed in this

section.

44

2.7.1.3 Opinion Mining

In this section, selected papers focusing on extracting user opinions about

application/product aspects are discussed. Although extracting user opinions,

opinion mining, is not the target of this thesis, analysing these studies provides a

wide technical background for the task of identifying aspects in this project.

To help developers decide which feature needs to be refined in next

application release, Zhang et al. [87] (S51) proposed an approach to extract

application aspects and estimate rating of each aspect given by all reviewers of a

Table 2.4: Categories and Techniques Used to Classify Reviews

Categories Techniques
Applied

Used in
Study

Informative/ Non-Informative SVM, LDA S9
NB S13

Feature requests/ Non-Feature request SVM, NB, LR S47
Linguistic rules S11
PMI analysis S20

Information Giving/ Information Seeking/
Feature Request/ Problem Discovery

NB, LR, SVM, J48, DT S26, S32,
S27

AC S35
Bug Reports/ Feature Requests SVM, NB S33, S34,

S43, S44
Problem Reports/ Inquiries/ Irrelevant SVM, NB, RF, DT, NN S52

General Opinion/ Functional Feature/ Out of
Domain

NN S46

Issue Types SVM, NB, J48, BR, PSt S31

Bug Reports/ Feature Requests/ User Experi-
ences/ Rating

NB, DT, MaxEnt S21, S29

Bug Reports/ Feature Requests/ Senti-
mental/ Security/ Application Performance/
User Interface

SVM, NB, RF S36

Bug Reports/ Feature Strength/ Feature
Shortcoming/ User Request/ Prise/ Com-
plaint/ Other

SVM, NB, NN, LR S18

Functional and Non-Functional Requirements Regex S25

Feature/ Stability/ Quality/ Performance/
None

Manual S41

User’s Motivations Motivational Models S1

Improvements/ Defects POS Patterns S22

45

certain application. They applied topic modelling techniques, LDA algorithm, to

extract application aspects. Then they used a linear regression model to calculate

the rating for each aspect. Finally, they prioritize aspect refinement tasks based on

aggregated ratings obtained for each aspect.

Guzman and Maalej [58] (S14) extracted features from the text of reviews by

the use of collocation finding algorithm. The algorithm finds collection of words

frequently occurring often (e.g., “battery life” and “screen resolution”). Then they

applied SentiStrength, an automated sentiment analysis techniques [88] designed to

tackle with short and low quality texts, to extract opinions and sentiments

associated with each feature. SentiStrength divides the input text into sentences and

assigns a positive value along with a negative value to each sentence. Finally, they

grouped related features and aggregated their sentiments using topic modelling

techniques [89]. Their aim was to automatically identify application features and

their associated sentiments mentioned in user reviews. Guzman, et al. [62] (S18)

extended their previous approach [58] and studied the identification of conflicting

opinions. They developed DIVERSE, to identify diverse user opinions concerning

different applications. The framework groups reviews by mentioned features and

sentiment. Similar to their previous approach, the authors used collocation finding

algorithm to extract features from user reviews and a lexical sentiment analysis tool

to find opinions and experiences concerning the features. Then, they used a greedy

algorithm to retrieve a set of diverse feature-sentiments.

There are several issues affecting the accuracy of their method. Firstly, a

feature in their approach is a collection of two words occurred in more than three

reviews including different orders, synonyms, and misspells. Limiting the feature to

be consisted of two keywords prevents the approach to comprehensively cover

various types of features mentioned in user feedback. Secondly, according to

definition of a feature, their approach ignores features appearing in less than three

reviews. These features might be very important for development team. finally, the

lexical sentiment analysis scores each sentence in the review. Then it assigns this

score to the feature mentioned in the sentence. However, in many cases, the overall

sentiment of a review is negative, but the user is admiring a feature in that sentence.

In the other word, negative words may be used in the favour of a feature [90].

46

Vu, et al. [91] (S24) developed MARK (Mining and Analysing Reviews by

Keywords), a semi-automated framework assisting developers in searching reviews

for certain features. It uses keyword-based approaches to search for relevant

reviews. Several NLP techniques are used for keywords extraction, ranking

keywords, and categorizing them based on their semantic similarity. MARK uses the

standard Vector Space Model to query its review database and fetch results with

respect to the keyword set.

Gu and Kim [92] (S16) applied sentiment patterns to parse review sentences

and elicit app features. Their proposed tool (SURMiner), firstly, splits each review

into sentences and applies Max Entropy to classify reviews into five categories,

namely aspect evaluation, bug reports, feature requests, praise and others. Then, it

identifies aspects and their associated opinions from sentences fallen in the category

of aspect evaluation by designing a pattern-based parsing method. To design the

method, the authors manually analysed 2000 sentences from reviews labelled as

aspect evaluation and identified 26 templates. The tool, then, analyses the sentiment

of each sentence and assigns a rating to that. It, finally, mines frequent items for all

aspect words and clusters aspect-opinion pairs with common frequent items to

summarize the output. Their focus is merely on aspect evaluation sentences in

reviews. Thus, majority of topics such as feature requests and bug reports are

ignored in their study. The main aim of their study was to extract application aspects

and their associated opinions by designing a pattern-based parsing method.

However, definition of patterns for unclear aspects is error prone as there is

uncertainty in the aspects discussed in the user reviews. Besides, from app to app,

aspects differ significantly which demands dramatic updates in predefined patterns.

In an opinion mining study, Haroon et al. [93] (S38) have also investigated the

extraction of application features using syntactic patterns between nouns and

sentiment words. In a pilot study, they manually extracted application features from

real world reviews and observed that noun and noun phrases do contain 98% of

application features. So, they defined some syntactic rules to capture certain

relations between the nouns and sentiment words to identify application features.

However, their approach misses all features appear in the form of verbs or implicit

ones. Besides, one of the major issues with opinion mining-based feature extraction

47

techniques proposed so far is that they all miss lots of features mentioned in reviews

without any sentiment or opinion mentioned for them. The following review, for

example, does not contain any sentiment or opinion word, but includes ‘menu

button’ which is an application feature.

“When I press the menu button on the top left side of the screen, the app shows only

3 items.”

Syntactic rules was initially used in [94] (S53) to identify product features and

facilitate aspect-based opinion mining task. To find aspect-opinion pairs, the

authors used a lexicon of opinion words [95] and enriched it with WordNet [96]

synonyms and acronyms and Semantics extracted from SenticNet [97]. Then, they

defined five syntactic rules to extract aspects appearing in noun or noun phrase

associating with the opinion words. They experimented employment of neural

networks in identifying aspects, but applied same rules to the output of the

algorithm as the accuracy was not sufficient [98] (S54). Further in 2017, Rana and

Cheah [99, 100] (S55) defined an algorithm to apply syntactic rules and extract

aspect-opinion pairs. The algorithm which is a modified version of the one proposed

in their previous study [101] (S56) finds noun and noun phrases which are

associated with opinions in a sentence. However, aspects might not be associated

with any opinion. Besides, detection of aspects is based on frequency of repeating

aspect candidates in reviews, but observations show that there are aspects not

repeated in several reviews.

To identify useful reviews for software evolution, Guo et al. [102] (S45)

extracted aspects from reviews using bootstrapping method [103] which is a semi-

supervised learning method taking a set of application aspects as seeds, searching

for sentences containing the seeds in dataset of reviews, generating extraction

patterns for seeds, and discovering new aspects mentioned in reviews using the

patterns. In the second step, they applied semantic analysis tools (i.e., SnowNLP) to

discover semantic of reviews and considered reviews containing neutral or negative

semantics along with an aspect as effective reviews. A simple example for

demonstrating ineffectiveness of their approach is the following useless review

containing an aspect and having a neutral sentiment:

48

“I use the navigation feature to travel overseas”

The main reason why most of these approaches are not fully applicable in the

aspect extraction phase of this project is that detection of aspect in them is

contingent upon identification of opinion words. This is because most of these

papers have studied the feedback of users on certain aspects of the target product

or application. The aim of conducting these experiments was to help product sellers,

manufacturers, and developers in understanding satisfactory level of

customers/users about different aspects of products or applications. However, this

study focuses on identifying user requirements and discovering application aspects

is one of the requisites of such a broad aim. Moreover, empirically evaluating several

feature extraction approaches on real world user reviews, Dabrowski et al. [36]

observed that these approaches achieve lower effectiveness than reported

originally which puts a question mark on the accuracy of the reported approaches.

Initial investigations performed in this study confirms this observation as well.

Table 2.5 summarizes selected papers in this section with respect to the techniques

used in them.

2.7.1.4 Relation Extraction Between Review Components

In this section, another group of selected papers that have been investigated the relation-

ships between different components of a review and the target application are discussed.

Table 2.5: Selected Papers Extracting Opinion-Aspect Pairs

Purpose Techniques Applied Used in
Study

Extracting Opinion- Aspect
Pairs

Collocation Finding Algorithm S14, S18
Bootstrapping Method S45
LDA S51
Syntactic Patterns S38, S55,

S56
Sentiment Patterns S16
Syntactic Patterns +NN S53, S54

Searching reviews about a cer-
tain aspect

Keywords, semantic similarity,
VSM

S24

49

The research attention in this group of studies is mainly on the impact of users’ given

star-rating on number of downloads and amount of sale.

In order to understand why users dislike apps, Fu, et al. [52] (S5) developed a

system, named WisCom, analysing reviews in three different levels. Firstly, at the

review level, they discovered reviews with inconsistent ratings by applying a

regularized regression model. This was to understand individual reviews and the

words used in them. Secondly, at the app level, they applied topic modelling (LDA)

techniques to discover specific problems of each app behind the users’ complaints.

Finally, in entire app market level, they analysed top 10 complaints of each app to

find similar complaints and the most critical aspects of apps leading to identifying

global trends in the market. Their focus was only on negative reviews as they

hypothesized that those could be directly used to enhance the quality of

applications. However, researchers observed that feature requests that are

important feedback for developers mostly appeared in positive reviews [47, 81].

AR-MINER [34] was used further by Palomba, et al. [74] (S23) to investigate

how addressing user feedback by developers influences the overall rank of the app.

Their proposed tool, named CRISTAL (Crowdsourcing RevIews to SupporT App

evoLution), collects reviews posted for previous release of a certain application and

tracks its rating. Then it extracts informative reviews using the AR-MINER and

checks whether the comments are applied in next release. Finally, it checks the effect

of them on rating after the last release.

Manually analysing reviews of BlackBerry apps, Harman, et al. [104] (S2)

confirmed that the rating given by user has a significant impact on number of

downloads. To better understand what users communicate in their reviews, Hoon,

et al. [105] (S3) analysed 8.7 million reviews from 17,330 apps and categorized

keywords appearing frequently in each star rating as they hypothesized that it can

inform and focus development efforts. The authors determined the distribution of

word and character counts per star rating respectively applying a regular

expression to extract words from the review entities, and monitored which star

rating the appearance of the extracted keywords pertains to. However, they did not

apply appropriate pre-processing techniques (e.g., stemming, removing of stop

50

words, and spell checking) to normalize input reviews. Moreover, their focus was

only on single words resulting in missing multi-word expressions.

Their dataset was also used in another approach [106] (S4) to discover

possible relations between rating of a review and its content. They argued that

reviews with lower ratings include more useful feedback, and that the depth of

feedback in certain categories is significantly higher than for other. In both of their

approaches, the authors did not discuss details and settings of the analysis.

Obviously, beside manual analysis and observations they have used some automatic

processing techniques that are not mentioned in the studies.

Noei et al. [107] (S48) have also manually analysed mobile application reviews

to investigate the role of application categories and key topics in star-rating

improvements. They discovered 10 categories for applications, such as business,

health and fitness, media and video, travel and local, photography, etc. To assign

topics to each user review they applied topic modelling technique, LDA [89] in

particular, and discovered 23 topics such as comparing versions, bug reports,

feature requests, laying audio and video, web browsing, etc. Finally, they applied

PMVD approach [108, 109] to identify key topics in each category and to identify

contribution of each topic in star-rating. Proportional Marginal Variance

Decomposition (PMVD) applies weighted averages with data-dependent weights to

average over orderings.

Table 2.6 summarizes selected papers in this section with respect to the

techniques used in them.

51

2.7.2 Support Tools for Mining Mobile App Reviews (RQ2)

RQ2: What software tools have been developed to support these techniques?

Thirteen support tools were found in this SLR. A summary of which is

presented in Table 2.7. In what follows, we provide an overview of these tools.

MARA. This tool analyses user feedback in several steps. First, web sources of

reviews are crawled and parsed. Second, the tool uses 273 syntactical rules to mine

the review content for feature requests expressed by users. An example of such a

rule is ‘Adding <request> would be <POSITIVE-ADJECTIVE>’ (e.g., ‘Adding an exit

button would be great’). Feature requests are then summarized according to a set

of predefined rules that rank the extracted requests based on their frequency and

length. To identify topics that can be associated with these requests, Latent Dirichlet

Allocation (LDA) model is used. Finally, during the feature requests visualization

phase, the results of the summarization are displayed to the user.

WisCom. This tool analyses user feedback at three levels of detail, involving

discovering inconsistencies in reviews, identifying reasons why users like or dislike

a given app, and identifying general user preferences and concerns over different

types of apps. Firstly, a regularized regression model is used for discovering

inconsistencies and detect ratings that do not match the actual text of the feedback.

Secondly, feedback comments of individual apps are aggregated and LDA algorithm

is applied to discover why users dislike these apps. The algorithm was trained using

Table 2.6: Selected Papers Studying Relations Between Review Components

Purpose Techniques
Applied

Used
in
Study

Identifying Relations Between Rating and Review Con-
tent

Regression
Models

S5

Manual S4

Identifying Relations Between Rating and Number of
downloads

Manual S2

Identifying Relations Between Rating and Distribution
of Keywords

Manual,
Regex

S3

PMVD approach S48

52

words that receive negative weight in the regression model. Finally, to identify

outstanding complaints in each category of apps, most common complaints from

negative feedback comments of each app identified in the previous step are

aggregated on categories, summarized and displayed to the user.

AR-Miner. This tool analyses user feedback comments. It filters, aggregates,

prioritizes, and visualizes informative (information that can directly help

developers improve their apps) reviews. Non-informative (noises and irrelevant

text) reviews are filtered out applying a pre-trained classifier (i.e., Expectation

Maximization for Naive Bayes). The remaining informative reviews are then put into

several groups using topic modelling techniques (i.e., LDA and Aspect and Sentiment

Unification Model) and prioritized by application of a ranking model. Finally, the

ranking results are visualized in a radar chart to help app developers spot the key

feedback users have.

CRISTAL. This tool is used for tracing informative (providing any insight into

specific problems experienced or features demanded by users) reviews onto source

code changes, and for monitoring how these changes impact user satisfaction as

measured by follow-up ratings. AR-Miner is used first to discard non-informative

reviews. A set of heuristics are used, then, extract issues and commits driven by each

review. IR techniques are used then, to identify possible links between each review

and the issues/commits. The set of links retrieved for each informative review is

stored in a database grouping together all links related to a certain release. This

information is exploited by the monitoring component, which creates reports for

managers/developers and shows stats on the reviews that have been implemented.

DIVERSE. This is a feature and sentiment centric retrieval tool for generating

diverse samples of user reviews that are representative of the different opinions and

experiences mentioned in the whole set of reviews. When a developer queries the

reviews that mention a certain app feature, the tool will retrieve reviews, which

represent the diverse user opinions concerning the app features. The tool applies

the collocation finding algorithm to extract the app features mentioned in the

reviews, uses lexical sentiment analysis in order to excerpt the sentiments

associated to the extracted features, uses a greedy algorithm to retrieve a set of

53

diverse reviews in terms of the mentioned features, and group reviews whose

content and sentiment are similar.

SURMiner. This tool summarizes users’ sentiments and opinions on certain

software aspects. By the use of Max Entropy algorithm, the tool classifies each

sentence in user reviews into five categories (i.e., aspect evaluation, praises, feature

requests, bug reports, and others) and filter only aspect evaluation sentences for

extraction of aspects and corresponding opinions and sentiments. The tool uses a

pattern-based parsing method to extract aspects and sentiments. The method

analyses the syntax and semantics of review sentences. The resulting aspect-

opinion-sentiment triplets are then clustered by mining frequent opinionated words

for all aspect and clustering aspect-opinion pairs with common frequent words.

Finally, the results are visualized on graphs.

MARK. This tool is a semi-automated review analysis framework that takes

relevant keywords from developers as input and then retrieves a list of reviews that

match the keywords for further analysis. The tool has a keyword extraction

component which extracts a set of keywords from raw reviews. These keywords

could be clustered based on Word2Vec and using K-mean algorithm or expanded

based on based on the vector-based similarity of the keywords. Once the analyst

specifies a set of keywords (via clustering or expanding), the tool will query its

database and return relevant the most relevant results. MARK employs the popular

tf-idf (term frequency - inverse document frequency), a standard term weighting

scheme to compute the element values for those vectors, and the Vector Space Model

for this task.

SURF. This tool summarizes user reviews to assist developers in managing

huge amount of user reviews. The tool relies on a conceptual model for capturing

user needs useful for developers performing maintenance and evolution tasks. Then

it uses summarisation techniques for summarizing thousands of reviews and

generating an interactive agenda of recommended software changes. The tool is

equipped with a dictionary of topics and uses the NLP classifier to automatically

assign a sentence in a review to one or more topics. To suggest the specific kinds of

maintenance tasks developers have to accomplish, it also classify intentions in a

54

review using intent classifier [65]. Based on a certain scoring mechanism, the tool

then generates the summaries as structured HTML.

ARDoc. This tool automatically classifies useful feedback contained in app

reviews that are deemed to be important for performing software maintenance and

evolution tasks. The tool divides review text into sentences and extracts from each

of these sentences three kinds of features: Firstly, the lexicon (words) feature is

extracted through the TA Classifier which exploits the functionalities provided by

the Apache Lucene API to extract a set of meaningful terms that are weighted using

the TF (term frequency). Second, the structure feature (i.e., grammatical frame of

the sentence) is extracted through the NLP Classifier. Using NLP heuristics and 246

predefined recurrent syntactical patterns, the NLP Classifier automatically detects

the occurrences of specific keywords in precise grammatical roles and/or specific

grammatical structures. Finally, the sentiment is extracted through the SA Classifier

using the sentiment annotator provided by the Stanford CoreNLP. In the last step

the ML Classifier uses the NLP, TA and SA information extracted in the previous

phase of the approach to classify app reviews according to a predefined taxonomy

by exploiting the J48 algorithm.

Casper: is an automatic method for extracting events from user reviews on

mobile applications proposed by Hui and Munidar, [110] (S37). The tool extracts

events from reviews and classify them into user stories and problems. Then it

represents pairs of user stories-problems to developers. Casper finds verbs in a

sentence using POS-tagging technique and find the subtree rooted on this verb in

the dependency-based parse tree as a candidate of an event. The output events are

then classified into user story and problem. To build the model, the authors used

Universal Sentence Encoder (USE) [111] to convert the event phrases into vectors

of real numbers and adopted SVM to classify the sentence vectors.

IDEA: In order to identify emerging app issues from user reviews, Gao et al.

[112] (S39) proposed a framework named Identify Emerging App issues (IDEA)

which takes reviews of various versions of the target application and applies AOLDA

(Adaptively Online Latent Dirichlet Allocation) which is the LDA algorithm adopted

to work online to identify topics distributions with respect to the application version

55

from reviews. Then it finds emerging topics using anomaly detection methods. Then

it considers emerging topics as the identified application issues.

A year after, the authors found that IDEA does not produce stable results even

with same input data and has a long running time. So, they designed another tool

called DIVER, (i.e. iDentifying emerging app Issues Via usER feedback) [113] (S40)

to more efficiently identify emerging application issues. Similar to IDEA, the tool

takes reviews as input and extracts word collocations using ECLAT (Equivalence

Class Transformation) [114], a depth-first search algorithm for pattern mining.

Then it identifies emerging word collocations to achieve emerging issues by

extracting and comparing proportion of reviews containing the word collocations

for each version at each time.

SRR-Miner: is an automatic tool proposed by Tao et al. [115] (S42) to

summarize security issues and users’ sentiments in the reviews. SRR-Miner applies

a keyword-based approach to identify security related review sentences. Then it

uses six very basic POS-based semantic patterns to capture misbehaviour-aspect-

opinion triples as candidates for security issue reports.

RISING: Review Integration via claSsification, clusterIng, and linkiNG is an

automated approach proposed by Zhou et al. [116] (S50) to categorise user reviews

into fine-grained groups concerning similar user requirements via classification,

clustering, and linking of user reviews. The approach uses ARDOC (explained as

another tool in this section) to classify reviews into information giving, information

seeking, bug reports, and feature requests. Then it focuses only on the two latest

groups for further fine-grained clustering of feature requests and bug reports using

a customised version of traditional K-mean algorithm [117].

56

Table 2.7: Support tools for mining mobile app reviews

Tool
Name

Description
Underlying
Technique

Unit of
Analysis

Study
ID

MARA Identifying and summarizing
feature requests using syntactical
rules

Syntactical
rules, LDA

Sentence S11

WisCom Identifying inconsistent feedback
using a regression model and
complaints using LDA

Regression
models, LDA

Multi-
level

S5

AR-
miner

Filtering out useless reviews using
topic modelling, group and
prioritizing informative reviews

Naive Bayes,
LDA

Sentence S13

CRISTAL Detecting traceability links be-
tween reviews and source code

AR-MINER
IR

Document S23

DIVERSE Detecting conflicting opinions
based on aspects, answering devel-
oper's query by grouping reviews
by their mentioned features and
sentiment.

Collocation
finding,
Lexical senti-
ment analysis,
Greedy
algorithm

Document S17

SUR-
Miner

Classifying and summarizing re-
views using a pattern-based parser

Sentiment pat-
terns,
Max Entropy

Sentence S16

MARK Assisting developers in searching
opinions about aspects

keywords,
NLP, VSM

Document S24

SURF Classifying and summarizing re-
views using topics and intentions
classifiers

NLP classifier,
WordNet

Sentence S27

ARdoc Classifying reviews using a taxon-
omy.

NLP, J48
Sentiment
analysis

Sentence S32

Casper Extracting events and problems
from reviews using POS patterns

POS, SVM, USE Sentence S37

IDEA Identifying emerging app issues by
tracking topics distribution

AOLDA Document S39

DIVER Identifying emerging app issues by
tracking word collocations

ECALT Document S40

SRR-
Miner

Summarizing security issues and
users’ sentiments using a keyword-
based approach

Keywords, POS Sentence S42

RISING Classifying and clustering reviews
using ARDOC and K-mean

ARDOC,
K-mean

Sentence S50

57

2.8 Open Issues

This section reports the challenges and open problems in the area along with some

future research directions for researchers. There are several issues making useful

information extraction from user feedback a challenging task. Majority of these

issues arise from the nature of the feedback to be mined, interpretations of

researchers, and technical environments. While many of these problems have been

identified and investigated, no single extraction technique is capable of addressing

all of the challenges. The selected studies had focused on a subset of these issues to

solve. Thus, a future direction for the research in this area could be to designing

models capable to solve the following issues as much as possible.

1) Huge Volume of User Feedback: The volume of user-generated feedback is

huge. Extracting insights from massive number of reviews is a labour-intensive and

challenging task for researchers. Quantity of reviews generated for an application

usually exceeds a human capacity to manually analyse them and extract useful

information. It makes difficulties in identifying recurring trends and issues across

reviews. Moreover, processing such an amount of data is time consuming. In case of

application updates and revealing new versions, the time commitment involved in

extracting required changes for next release is crucial [54]. Thus, more novel

approaches for effectively and efficiently processing massive amounts of feedback

by taking relations between them into account are on demand.

2) Unstructured Data: Unstructured nature of user feedback is one of the main

challenges in automatically processing them. App users often write their reviews in

unconventional manners making automate interpretation as difficult as possible

[81]. They tend to express their reviews using informal language, which often

includes colloquial terminologies. Moreover, they regularly neglect grammar and

punctuation rules and use eccentric syntactic entities, and ironic and sarcasm

sentences in their reviews [48]. One key challenge to app developers is dealing with

such unstructured short pieces of text. To overcome these problems, technical text

mining and NLP approaches should be integrated into proposed models and

accompany them in order to deal with these types of user generated text.

58

3) Annotating Data: Data annotation is required in supervised approaches for

training the machine and for evaluation purposes. It is a time and cost consuming

task usually accompanied with mistakes and errors, though it is necessary to obtain

better results in supervised and semi supervised approaches. As it is discussed in

Section 3.1, in majority of cases, studies have provided different approaches

demanding certain types of annotation resulting in impossibility of creation of a gold

standard dataset to be used for evaluation of various approaches. Apart from

difficulties of manual annotation of data, accuracy of the annotated data is under

question as instead of domain experts, article authors or non-experts are employed

to do it in majority of cases. Thus, more efforts and novel approaches are required

to alleviate the problem of data annotation.

4) Defective Use of Data Pre-processing: With the use of some certain pre-

processing tasks, researchers try to prepare the data to be used as the input of their

method. Stop-word removal techniques are an example of these tasks. Various

proposed methods include these tasks to perform more efficiently in terms of time

and computation. However, a group of approaches have argued that using some of

the pre-processing tasks causes missing valuable information in user feedback [69].

Therefore, more comprehensive, and analytical research is required to investigate

the impact of applying each pre-processing task on performance and accuracy of the

techniques.

5) Data Interpretation: While various approaches and techniques for

extraction of actionable information from user feedback have been proposed by

researchers, their interpretation of actionable information is, to a certain extent,

different from developers’. Previous research [118] has tried to discover what

developers are highly interested in, and what the designers’ viewpoint is when

mulling the reviews over [119, 120]. Although some of these factors (i.e.

functionality, and app features) are used by Guzman, et al. [62], and informativity of

reviews from developers’ perspective was investigated by reading some relevant

forum discussions by Chen, et al. [57], many proposed approaches have made the

data analysis from the authors’ point of view. Inconsistency between researchers’

and developers’ interpretation results in development of inefficient methods and

59

techniques. This argument is backed up by the discussions provided after analysing

each selected paper in section 2.7.1.1 and 2.7.1.2.

More precise study of what exactly needs to be extracted from user reviews is

required to make proposed approaches more efficient.

2.9 Validity Threats to This SLR

The primary threats to validity of results from this SLR are concerned with

comprehensiveness and coverage of the relevant studies. Firstly, the search only

covers publications that were published before the end of October 2020. We

conducted the review in 2020. We, therefore, used 2020 as an upper bound on the

search term. Other relevant studies might have been published since November

2020 that we have not included in this review.

A further search-related limitation of the review is that we might have missed

some papers in identification of relevant studies. The completeness of the search is

dependent upon the search criteria used and the scope of the search, and is also

influenced by the limitations of the search engines used [121]. We used a set of well-

known references to validate the search string and made necessary amendments

before undertaking the review. However, four papers were identified by

snowballing that were indexed by the digital libraries but were not found with the

search terms used in the review.

Aiming to cope with construct validity which is related to generalization of the

result to the concept or theory behind the study execution [122], we defined and

applied several synonyms for main constructs in this SLR: “requirements

engineering”, “feedback analysis”, and “software evolution”.

The other validity threat could be related to selection, analysis and synthesis

of the extracted data being biased by the interpretation of the researcher.

Inclusion/exclusion of studies has passed through accurate selection, on-going

internal discussion and crosschecking between the authors of the SLR. We tried to

mitigate the thread by conducting the selection process iteratively. Furthermore,

collecting data by two extractors who are PhD candidates in the field was also

helpful to minimize any risk of researchers’ own bias.

60

If the identified literature is not externally valid, neither is the synthesis of its

content [123]. To alleviate this threat, we formed our search process after multiple

trial searches and compromise of the authors. Unqualified papers were excluded as

well by the application of our exclusion criteria.

2.10 Conclusion

This chapter reports our research effort aimed at systematically reviewing and

analysing application feedback processing practices toward assisting developers

with extraction of actionable information and insights. The review was conducted

by the guidelines provided in [44]. In total, 56 relevant studies were identified and

analysed. Firstly, this thesis categorized and discussed studies based on types of

analysis and underlying techniques. Then, available supporting tools for feedback

mining were investigated. Finally, challenges and open problems in feedback

mining, which require further research were discussed. The findings from this

review provide several implications for researchers, requirements engineers and

tool developers to gain a better understanding of the available studies and tools and

their suitability for different contexts resulting in significant improvements in

development of intelligent app review mining techniques and tools.

61

 Identification of Factors Rel-

evant to the Usefulness of App Reviews

3.1 Introduction

According to the literature review reported in previous chapter, a set of effective

metrics for identification of useful reviews based on developers’ viewpoints has not

been proposed yet. In order to facilitate the process of overcoming such a large

problem and to effectively measure the usefulness of user reviews, a comprehensive

set of usefulness factors are required. This chapter discusses the process and

strategy used to achieve these factors. Definition and examples are also provided for

any discovered factor.

3.2 Research Framework

It was discussed in Chapter 1 that one of the objectives of this project is to conceptualise

the usefulness of app reviews with respect to the developers’ viewpoint. To achieve this,

a set of usefulness factors were required to effectively measure the usefulness of a review.

Accordingly, the idea of performing the research reported in this chapter is to analyse

related work for identifying any potential usefulness factor and for discovering any con-

cept helping in definition of a usefulness factor.

To define a comprehensive set of usefulness factors, related studies are

carefully analysed to discover what characteristics of the user generated content

(e.g., forum post, review, comment, email, tweet, etc.) have been reported as helpful

for facilitating the discovery of useful information for application developers,

product designers, etc. Unlike the literature review reported in Chapter 2, the scope

of this analysis covers several domains of research, such as RE reports mining, app

testing reports analysis, customer services emails analysis, etc.

Performing the analysis, a list of potential usefulness factors are identified as

usefulness metrics enabling properly detecting useful reviews. In this chapter, the

62

systematic process of identifying them, definition of each factor, and examples are

explained in detail.

3.3 Survey Methodology

This section introduces the methodology used to conduct this exploratory study.

Figure 3.1 illustrates the process of the literature review. Research questions are

defined at the first step. Then, a set of keywords is identified to narrow down the

scope and limit the number of results to only related works. Using the keywords,

search terms are formulated and applied on an online repository search process to

harvest related publications. Irrelevant retrieved papers are then excluded from this

study defining and applying some exclusion criteria. Finally, the selected primary

publications are analysed in three phases (i.e., Title reading, Abstract reading, and

Full-text reading) to achieve a fine-grained selection of closely related works and to

perform the review process.

3.3.1 Defining Research Questions

The main objective of this literature survey is to find existing factors used in related

studies for measuring the usefulness of user reviews for application development

Figure 3.1. The Conceptual Framework of this study

63

purposes. To achieve this objective, the following research questions are

formulated.

RQ.1 What are the factors for measuring usefulness of user reviews for software

development?

To answer this research question, we searched three different areas of

research working on analysis of user feedback (i.e., analysing reviews on mobile

applications, analysing customer opinions on online products, and analysing post-

deployment customer feedback, reports, logs on software systems). This search was

to find and analyse related studies in order to understand how the researchers have

measured usefulness and what factors they have identified to do so. It is noteworthy

to point out that studying the usefulness of a review from other readers’ viewpoint

has been reported in several papers as well [124, 125]. However, our aim is to assess

it from developers and requirement engineers’ perspective.

RQ.2 How the importance of each factor has been validated?

To report how the importance of each factor is validated in a study, we

analysed the study to see how the authors have justified the importance of the factor.

At the end of each sub-section discussing a factor, we have reported the validation

process of the studies fallen in the sub-section.

3.3.2 Searching Online Repositories

User reviews, usefulness, and requirement elicitation compose the main points of

the focus of this study. Various terms and keywords might have been used in existing

literature to refer to these concepts. Therefore, we defined an extended set of

keywords for each concept represented in Table 3.1. To build the final search term,

conjunction of the groups was used, while disjunction of keywords had built each

group.

64

The search term was validated to fetch more relevant papers and minimise the

remaining search results using a “quasi-gold standard” [126], whereby, five related

works were manually identified. These papers were obtained during the analysis of

selected studies in Chapter 2. The search term was then refined repeatedly to

include these papers when fetching minimum possible number of papers.

To collect related papers from online repositories, the search term was applied

on three well-known online repositories (i.e., ScienceDirect, IEEE Xplorer, ACM

Digital Library). Some of the inclusion and exclusion criteria (e.g., Language, year,

venue) where applicable using the automatic search option provided by the

repositories. So, we applied those criteria at the searching step. However, the

advanced search options of these repositories are reported to reveal huge number

of irrelevant papers [127, 128] impelling us to define and apply manual scripts,

wherever possible, for searching the repository. Finally, we achieved a collection of

893 papers.

Reading title, abstract, and conclusion of the collected papers along with the

application of exclusion criteria explained in further section, we discarded 862

reviews. Snowballing was the last step in the process of selecting relevant papers

wherein references of the selected papers were searched to identify any possible

appropriate publication related to this study. The criteria for analysing the papers

for snowballing were similar to selecting papers in this chapter. Besides, during the

process, more attention was given to identify related papers as, unlike search

engines, human analysis skills were involved.

Table 3.1: Groups and keywords in the search term

Concepts Keywords

User User, End user, Customer, Client

Review Review, Opinion, Comment, Post, Feedback

Usefulness Useful, Helpful

Target product Mobile app, Mobile application, Application, Software, Product

Requirement
elicitation

Requirement elicitation, Development, Evolution, Design,
Preferences, improvement

65

Performing the snowballing, 2 papers were added to the collection of our

selected studies. Hence, we started our analysis with 26 papers. A summary of our

search process is provided in Table 3.2.

3.3.3 Exclusion Criteria

In order to focus on a consistent set of primary studies and reduce the eventual

effort in further in-depth analysis, we decided to approve a paper for further

analysis only if it does not satisfy any of the exclusion criteria. The following

exclusion criteria are, therefore, defined and applied on the selected papers:

• Papers written in languages other than English

• Papers published before 2008 or after 2019. We used 2008 as starting date as

the research on reviewing online products was started at this year.

• Short papers and tutorials for lack of sufficient information for our study

• Duplicated papers as some authors publish extended versions of their works.

We have only considered the last version found as relevant.

• Papers focusing on the helpfulness of reviews from customers’ point of view

• Papers analysing reviews for identifying users’ behaviours

Table 3.2: Number of selected papers during the search process

Step Count

Online repositories search 893

After reading titles 112

After reading abstracts and conclusion 31

After skimming and scanning full text 24

After snowballing 26

66

3.4 The Usefulness Factors

To answer the main research question of this chapter, “What are the existing factors

for measuring usefulness of user reviews for software development?”, selected

Table 3.3: List of the Usefulness Factors

No. Factors Explanation Reference

1 Application
aspect

Where the issue/ requested feature
is/supposed to happened in the applica-
tion? (e.g., function, quality, component,
etc.)

[68, 129] [65]
[130] [58] [62]
[120] [131] [119,
132] [133, 134]
[132, 135-137]
[138-140] [141,
142] [48] [143]

2 Feature request What feature is needed to be added to the
application?

[65] [48] [37] [69,
144] [70] [60, 145]
[61] [57, 146] [54]

3 Issue report What is the problem in the application? [37] [60] [61] [49]
[51] [73] [147,
148]

4 User action How the user has produced or faced the
issue? / How the user will work with the
desired requested feature.

[133] [138] [141]

5 System action What the system does when an issue oc-
curs? / What the system should do with
adding the desired requested feature?

[138, 141]

6 Expected action What the system should do if no issue oc-
curs (i.e., normal situation)?

[138, 141]

7 Device
information

What user device and model are and what
OS and OS version is installed on user de-
vice?

[138, 141]

8 Pros and cons Both pros and cons of the application is
mentioned in a review

[120] [131] [119]

9 User expertise Number of reviews posted by a user [120] [149] [150]
[151]

 10 User rating Number of rating stars given by the user [49] [51] [59]
[106]

11 Length of the
review

Number of words and sentences in the re-
view

[149] [150] [152]

12 Readability Number of grammar and spelling mis-
takes in the review

[138, 141] [150]

67

papers are analysed to figure out how the authors measure the usefulness. The

analysis, then, results in a list of factors represented in Table 3.3. These factors are

defined and explained with examples in the following sub-sections.

According to the table, some of the factors might have received few research

attentions making them sound insignificant at the first glance. However, as the

objective at this step of the project was to perform a systematic method to discover

any possible usefulness factor, this section discusses whatever is reported to form a

comprehensive collection. Moreover, some of the factors receiving minor citations

are proposed in important research projects involving many experts in the domain

confirming the importance of the factor. Besides, at this step, this thesis does not

argue the significance of these factors, but reporting available ones discovered

through the literature review. Further sections report how these factors are to be

validated and filtered with the use of the experts’ judgement.

Research question 2 asks “How the importance of each factor has been

validated?”. To answer this research question, after defining and explaining what

each factor is in the following sub-sections, a summary of the approach is provided

to show how this factor helps or is considered to be helpful in identifying useful

requirements from user feedback in variety of domains. Each sub-section ends with

a discussion on validation process of the selected papers in the sub-section.

3.4.1 Application Aspect

Application aspect is defined as “a prominent or distinctive user-visible aspect,

quality or characteristic of a software system” [153]. This factor refers to the

mentions of any aspect (e.g., component, function, process, etc.) of the application in

a review. It can be any description of specific app functionality visible to the user

(e.g., “viewing pdf”), a specific screen of the app (e.g., “log in screen”), a general

quality of the app (e.g., “load time”, “size of storage”, or “price”), as well as specific

technical characteristics (e.g., “encryption technology”) [58].

Tianjun et al. [143] reviewed product design science literature to extract

concepts related to product design and manually processed a sample of 265 review

sentences to study whether reviewers expressed their requirements on these

68

concepts. Then, they defined some linguistic rules to capture these requirements

from reviews to be used for analysing user preferences during the design phase.

Although these concepts are defined as means of identifying user preferences, one

of them is product feature (Application Aspect).

During the development of SURF (Summarizer of User Reviews Feedback), an

automatic tool for summarizing mobile application reviews, Di Sorbo et al. [68]

manually analysed each sentence in 438 reviews selected as training set to discover

topics in reviews. One of the observations they made through the annotation was

that “developers need reasonably useful sentences discussing a specific aspect of an

app with respect to other review sentences.”

In an exploratory study, to demonstrate how user reviews are useful for

developers, Pagano and Maalej [48] investigated how to identify and classify topics

in reviews. They applied a descriptive statistic to investigate usage of feedback.

They, then, manually analysed a random sample of 528 reviews to explore and

assign topics to each review. Application Aspect was one of the 17 observed topics

in the reviews.

Panichella et al. [65] proposed a taxonomy to classify app reviews into

categories relevant to software maintenance and evolution. To understand

developers’ viewpoint in analysing user feedback, they extracted 300 emails from

the development mailing lists of Qt and Ubuntu projects and tried to categorize

sentences learning from previous studies on this domain [154, 155]. Among

identified categories, the one matching categories identified in [48] was

‘Information giving’ which is defined as follow: “sentences that inform or update

users or developers about an aspect related to the app”. Their approach was

improved in [66] proposing ARdoc (App Reviews Development Oriented Classifier),

a tool that automatically classifies useful sentences in user reviews using the same

taxonomy.

To assess the quality of product reviews for summarization purposes, Liu et al.

[130] defined a set of specifications for judging the quality. They proposed a

classification-based approach to detect low-quality reviews. For training the

classifier and evaluating the model, they collected 23,141 reviews on 946 digital

69

cameras from Amazon website. According to their inspirations from the data they

defined four categories of reviews (i.e., best, good, fair, and bad). They defined best

review as follow:

“A best review must be a rather complete and detailed comment on a product.

It presents several aspects of a product and provides convincing opinions with enough

evidence.”

Extending their previous approach [58], Guzman and Bruegge [62] developed

DIVERSE, to identify diverse user opinions concerning different applications. The

tool groups reviews by their mentioned aspects and sentiment. Collecting and

manually analysing 2800 reviews, the authors argued that “app store reviews

include information that is useful to analysts and app designers, such as user

requirements, bug reports, and documentation of user experiences with specific app

aspects.”

Jin et al. [119, 131] extracted several categories of features from review

content (i.e. linguistic features, product aspects, features based on information

quality and features using information theory) to be used for automatically

predicting usefulness of product reviews. The authors relied on the responds to

their two questionnaires to consider product aspects as a feature. Some subjects

replied to the question ‘Why you have chosen this review as useful?’ as “this review

mentions many product aspects”, while some argued that “many reviews shared the

aspects he\she likes and dislikes”. The impact of this specific feature is not reported

in their examinations.

Qi et al, [120] used similar features plus meta data of reviews and combined

conjoint analysis with the traditional KANO method to measure the helpfulness of

reviews for product designers. The authors confirmed that features proposed in

[131] and [119] combined with features gained from meta data were effective on

identifying helpful reviews. Effectiveness of these features in extracting customer

requirements from mass online product reviews was assessed and confirmed by

them in [135]. They applied SVM-based model to their conjoint analysis model and

reported the impact of number of product aspects in a review as: (Estimate:0.15439,

Std.error:0.01279).

70

Ko et al. [133] analysed the titles of problem reports from several online bug

tracking systems to investigate what roles do the words with various parts of speech

play in identifying software problems. They collected 187,851 reports title from

Eclipse, Apache, Linux, and OpenOffice and manually classified the titles’ words and

phrases, generating descriptive categories. On a sample of 1000 titles, they reported

that App components, User action (steps to reproduce), and Data type are frequently

repeated.

A group of studies in this sub-section [48, 58, 62, 65, 68, 120, 130, 143] have

selected the Application Aspect as an important factor for identifying useful reviews

based on their observations over the collected data, inspirations gained from

analysing the data, or relying on related work. The importance of this factor was

validated in [119, 131] by hiring six product design students for annotating useful

customer reviews for product design purposes and surveying them with two

questionnaires about usefulness factors. Ko et al. [133] found that this factor is one

of the frequently repeated phrases in bug tracking systems indicating the

importance of this factor. The findings of analysing the results of a vast survey of

developers, in [138, 141] revealed the importance of this factor from developers’

perspective (discussed in Section 3.3.4).

3.4.2 Feature Request

This factor indicates the request of any feature, component, or functionality to be

added to the target application. For example, broadening the width of the display is

a feature request in “Very annoying to not be able to see an entire file name. Put

some flexibility in the width of the display”.

To address his/her requirements, sometimes a user suggests workarounds

and ideas that occasionally deliver motivations and ideas for new features

 [156, 157].

Feature request was another category identified in [65] and [48] and is defined

as “sentences expressing ideas, suggestions or needs for improving or enhancing the

app or its functionalities.”

71

Al-Subaihin et al. [37] studied the app store as a phenomenon from the

developers’ perspective. They analysed records of interviewing 10 app

development team members and 103 completed surveys of app developers,

regarding their interactions with app stores. Analysing questionnaires, they found

that 66% of participants have considered reviews containing feature request as

important.

Jha and Mahmoud, [69, 70] proposed a FrameNet tagging based approach to

classify reviews based on the notion of semantic role labelling (SRL) into bug reports

and feature requests. In their classification task using Naive Bayes (NB) and Support

Vector Machines (SVM), the authors used frames generated from each review, rather

than each word. “Our system MARC extracts and classifies user reviews into fine-

grained software maintenance requests, including bug reports and user

requirements”, they said which indicates the importance of these two characteristics

of app reviews.

Galvis and Winbladh, [54] used topic modelling and IE techniques to discover

the topics from reviews that can be used to change and/or create new requirements

for a future release of software. The authors manually classified reviews to build

their gold standard dataset and observed that Feature Request is one of the

frequently repeated topics in reviews.

Maalej et al. [60, 61] proposed a method for classifying reviews into four basic

types: Bug reports, Feature requests, User experiences, and Rating. They defined these

types according to previous studies [48, 54] and for the importance of these types

of reviews for software evolution tasks.

Studying some relevant online forums to identify what kinds of information do

real app developers consider as constructive, Chen et al. [57] found that issue reports

and feature requests contain important information that app developers are looking

to identify.

Validation of the importance of Feature Request as an important factor for

identifying useful reviews was based on authors interpretation of usefulness in [69]

[70] [54], while Al-Subaihin et al. [37] validated it by interviewing developers and

72

analysing questionnaires filled by them. Referring to forum discussions of experts

was the reason of defining this factor in [57] and authors in [60, 61] relied on related

work for proofing the importance of this factor.

3.4.3 Issue Report

This factor will be captured when a review is complaining about an issue. In this

study, an issue consists of bug, crash, freeze, force close, error, lack of a feature,

security issue, usability issue, and any other type of problem that might happen for

a mobile application. For example, the following review is reporting an issue about

uploading videos: “I can upload pics very quickly, but uploading videos is very slow”.

The survey and interviews conducted by Al-Subaihin et al. [37] indicate that

28% of participants receive bug reports from Google play store, 26% from Apple

store, and 14% from other app stores. Moreover, 70% of them said that bug reports

are a very important review type. Bug report was also one of the important types of

reviews defined by Maalej et al. [60, 61].

Khalid [49, 51] manually analysed 6390 one-star and two-star reviews for 20

iOS apps in order to aid developers by listing the most frequent complaints. They

discovered 12 types of issue and complaint about iOS apps in user feedback focusing

on the user rating given to the app.

To explore how accurately they can mine rationale concepts from the reviews,

Kurtanović and Maalej [73, 147] applied classification algorithms Naive Bayes,

Support Vector Machine, Logistic Regression, Decision Tree on a set of annotated

data. Seven software developers analysed 32,414 reviews. Through a grounded

theory approach and peer content analysis, they investigated how users argue and

justify their decisions. In their content analysis task (open coding), codes related to

software evolution were grouped into concepts. They assigned code for Issue

concept to a sentence, if it reports a concrete issue or problem with the software. The

code alternative feature was assigned when the user mentions a feature of another

software, an improved version of a feature, and a missing or requested feature.

According to the discussion in previous sub-section, the authors in [60, 61]

relied on related work for justifying and validating the importance of Feature

73

Request in identification of useful reviews. Inspirations and ideas gained from

manually analysing reviews was the justification for the importance of this factor in

[49, 51], while interviewing developers was conducted for this aim in [37, 73, 147].

3.4.4 User Action

User action refers to the action that the user has taken before encountering the issue.

In particular, user should have taken one or several actions raising the issue. This

factor helps developers to figure out the steps to reproduce the issue. The following

reviews comprise examples of user action: “every time I open it, it forces to shut

down”, and “current file view is lost when I multitask between windows.”

Bettenburg et al. [138, 141] conducted a survey among 872 developers from

APACHE, ECLIPSE, and MOZILLA projects to find out characteristics of a good bug

report. They asked the developers to complete the survey on important information

in bug reports and the problems they faced with them. There were two main

questions for developers in the survey. For the first question; “Which items have

developers previously used when fixing bugs?”, they provided 16 items selected

based on Eli Goldberg’s bug writing guidelines [158] for developers to choose. For

the second question: “Which problems have developers encountered when fixing

bugs?”, they listed 21 problems for developers to choose. The authors analysed a

total of 156 received responses and reported that: “the most widely used items

across projects are steps to reproduce (user action), observed behaviour (system

action) and expected behaviour (expected action)”. OS version, components

(Application Aspects), and spell and grammar errors were considerably voted by

developers as well.

User action (steps to reproduce) was one of the frequently repeated title words in

software problem reports analysed by Ko et al. [133].

As it is discussed in Section 3.3.1, Bettenburg et al. [138, 141] validated the

importance of this factor by surveying developers, while Ko et al. [133] found that

this factor is one of the frequently repeated phrases in bug tracking systems.

74

3.4.5 System Action

This factor is captured when the review is reporting an issue and explaining what

the system does when the issue occurs. Identification of this factors helps the

developers to diagnose the issue easier. The following reviews comprise examples

of system action: “After the last update, it crashes every time I open the manual

upload”, and “after the last update the app has a constant and annoying sidebar that

steals screen real estate.” Analysing the questionnaire results, Bettenburg et al.

[138, 141] reported system action as a most widely used feature. Please refer to

section 3.3.1 for validation of the importance of this factor.

3.4.6 Expected Action

This factor explains what action is expected from the system. Particularly, when an

issue occurs, the system action will be to reflect to the issue (e.g., freezing, showing

an error message, crashing, etc.). when the user reports what was expected from the

app to do instead of performing the system action is named expected action. The

review “Why is the option gone to hide the menu and dedicate that screen real estate

to full screen viewing of content?” is an example of reporting app expected normal

behaviour. Expected action is reported as an important factor in discovering useful

application reviews [138, 141]. Please refer to sections 3.3.1 and 3.3.4 for validation

of the importance of this factor.

3.4.7 Device Information

This factor stands for any information reported in the review helping developers to

identify user device. To meet this factor, three types of information are expected to

be seen in the review. First, what device the user owns (e.g., iPhone, iPod, tablet,

etc.). Second, what model is the device (e.g., S5, 6S plus, Note II, etc.). Finally, what

Operating System is installed on the device (e.g., iOS7, Android 11, etc.). These types

of information are reported as important factors in discovering useful application

reviews [138, 141]. Please refer to sections 3.3.1 and 3.3.4 for validation of the

importance of this factor.

75

3.4.8 Pros and Cons

This factor wants the review to mention both pros and cons of the target application

together.

Jin et al., argued that “A review tends to be regarded as a helpful one once this

review mentions both the pros and cons of a product [131]. To build a model for

extracting helpful reviews, Jin et al. [119, 131] randomly selected 1,000 reviews on

eight mobile phone brands from Amazon and annotated them hiring six full-time

final year undergraduate students as product designers who scored review

helpfulness from -2 to 2. Interviewing the annotators in [119], two subjects

explicitly stressed that the appearance of ‘‘both pros and cons’’ is an important

factor for helpfulness evaluation. Building on results reported in [119, 131], Qi et al,

[120] verified the helpfulness of combining pros and cons with meta-data factors for

identification of useful reviews (Section 3.3.1).

In [119, 131], the validation of the importance of this factor was interviewing

product design students. This validation was cited in [120].

3.4.9 User Expertise

Value of this factor shows how expert is the reviewer of a written review. The

importance of this factor is based on this argument; the more expert user, will

generate more useful review for software development purposes [149]. Considering

limitations of publicly available datasets, user expertise is defined as total number

of reviews generated by a reviewer [151].

Studying forum instructions and developers opinions, and surveying

developers Heydari et al [149, 151] defined several quality metrics and developed a

voting model based retrieval system to retrieve more relevant threads in technical

forums for a given user query. They enhanced the retrieval process by leveraging

the quality metrics. One of these quality metrics was user expertise defined as

number of reviews posted by a reviewer. Their results show that using reviewer’s

metrics, including user expertise enhances the quality of retrieved threads by about

4%. The results of merely using this factor are not reported. However, the

Normalised Discounted Cumulative Gain (NDCG) @30 improved from 0.318 to

76

0.345 using a combination of user related factors. NDCG is an evaluation tool to

validate the effectiveness of search engines.

For identifying useful reviews, reviewer’s expertise, one of the features

obtained from review meta data, was considered as an important factor in [120]

(section 3.3.1) in which two metrics are defined for this factor; Number of reviews

by a reviewer which is the volume of reviews posted by a reviewer, and The grade

of reviewer which indicates the reviewer’s activeness in the website. They applied

SVM-based model to their conjoint analysis model and reported the impact of ‘The

grade of reviewer in a review’ as: (Estimate:0.00091, Std.error:0.0002).

With the aim of predicting the helpfulness of product reviews, Lee and Choeh

[150] proposed a tool to predict the level of review usefulness using the

determinants of product data, the review characteristics, and the textual

characteristics of reviews. They collected and analysed 1834 product reviews from

Amazon.com and adopted A neural network with a three-layer architecture

consisting of input, hidden, and output layers for detection of usefulness. In a table,

they listed the strengths of features as a result of running the experiment. Although

product type (product name), number of spelling mistakes, and reviewer’s expertise

was in the list, greater values were for product rating, review extremity and length of

review.

Heydari et al [149, 151] defined user expertise as an important factor based

on their analysis of technical forum guidelines, interviewing reviewers and

engineers using these forums. This factor was validated in [120] by citing related

studies. In [150], the factors were defined based on authors’ discretion.

3.4.10 User Rating

Rating is the number of stars given to an application in a review. It has been argued

that more negative reviews (i.e. receiving less than 3 stars) contain more useful

information for application development [58] [62] [133] [135]. Researchers have

argued that negative comments should be considered more helpful than positive

ones because they deviate from the accepted norm of staying positive [159, 160].

77

Focusing on the rating of reviews, Khalid et al. [49, 51] manually analysed 6390

one-star and two-star reviews to aid developers by listing the most frequent

complaints. They discovered 12 types of issue and complaint about iOS apps in user

feedback focusing on the user rating given to the applications.

In another study targeting only one-star and two-star reviews which

highlights the role of user rating, McIlroy et al. [59] studied the extent of reviews

raising more than one issue type and proposed an approach to automatically

labelling user reviews to help developers better understand users’ concerns. They

defined 13 types of issues and labelled a number of reviews manually to form their

gold standard dataset.

User rating was also highlighted in [106]. To better understand the reason of

leaving positive or negative review by a user, the authors analysed 8.7 million

reviews from 17,330 apps and categorized keywords appearing frequently in each

star rating as they hypothesized that it could inform and focus development efforts.

The authors determined the distribution of word and character counts per star

rating respectively applying a regular expression to extract words from the review

entities, and monitored which star rating the appearance of the extracted keywords

pertains to.

Definition of this factor in [49, 51, 59, 106] was based on authors’ inspirations

gained from analysing a sample of reviews.

3.4.11 Length of the Review

This factor reflects the number of words and sentences in a review. Findings from

different studies reveal that longer reviews contain more useful information for

developers [60, 61, 149, 150, 161, 162]. Salehan et al. [152] applied binomial

regression with logit transformation to examine the effectiveness of the features in

predicting usefulness of product reviews. They collected and analysed 2616 online

reviews of 20 different products from Amazon.com to evaluate their model. Their

results revealed that review length and review sentiment are significant predictors

of helpfulness.

78

Validation of the importance of this factor in [152] was their insights gained

during the analysis of reviews, while the authors in [149], relied on their studies of

forum guidelines and interviewing software engineers. Authors’ experiences were

the source of definition of this factor in [150].

3.4.12 Readability

Readability of a review depends on number of grammar and spelling mistakes found

in the review. Related studies have argued that reviews with less grammar and

mistakes are more useful for software development purposes [138, 141, 150].

Lee and Choeh [150] used number of spelling mistakes as one of the

classification attributes in their neural network model to detect useful product

reviews believing that reviews written with more selling mistakes contain less

useful information for product designers. Number of spell and grammar errors was

one of the factors chosen by developers surveyed by Bettenburg et al. [138, 141]

while they were reflecting their problems and issues in the process of reading bug

reports and fixing the bugs.

3.5 Discussion

As it could be observed in previous section, variety of approaches are proposed so

far to extract useful information from user feedback to develop and improve

software products. However, in majority of these studies, metrics and factors to

measure the usefulness are defined based on variety of considerations such as

authors’ interpretation of the usefulness, consulting a limited number of experts,

and etc. Each of the studies has their own arguments for relying on a factor which

might be reasonable. This could be a probable reason for using different

combinations of factors and metrics for measuring usefulness in different studies

and reporting the accurate ones for extracting useful reviews.

Another noteworthy point in the literature review section is that all of the

references mentioned in Table 3.3 for an attribute might not be reported in the sub-

section discussing the attribute for the following reasons: (1) the study is reported

in another sub-section as its main focus was on another factor, yet has used this

79

factor as well, (2) the study has just reasoned about the importance of the factor

without experimenting with it. Studies of the latter group are cited as readers might

want to refer to these studies to better rationalise and justify their usage of a factor.

Apart from above-mentioned discussion, as the extraction of user

requirements from user feedback has gotten considerable research attention, the

rest of our discussion section will discuss the usability of the outcome of the

research reported in this chapter as well as challenges that the community should

still attempt to address. This section becomes to an end with discussing threats to

validity.

3.5.1 Usability of the Research Output

Our observation and analysis on the related works revealed that although variety of

approaches has been proposed to extract useful information from user reviews for

software application development, limited research attention is given to

appropriately measuring the usefulness from developers’ viewpoint. Yet, the

availability of reliable sets of factors for properly measuring the usefulness is

necessary not only to limit the efforts in subsequent works but also to encourage

true progress beyond the state-of-the-art.

3.5.2 Open Issues and Challenges

According to the lessons learnt from this study, various challenges facing the future

research in this domain and future research directions are suggested in this section.

3.5.2.1 Comprehensiveness of the Factors

The factors we came up with in this chapter are defined to facilitate and enable

measuring the usefulness of user reviews. However, more important factors might

be undiscovered yet. A systematic in-depth research examining real world data (i.e.,

user reviews) employing the expertise of RE experts and app developers might

result in discovering more important factors.

Besides, analysing other areas of research might help in identifying other

important factors. For example, Heydari et al. [149] has studied the quality metrics

in identifying quality enhanced answers to the given queries from software forum

80

discussions. The impact of such quality metrics could be examined in the scope of

this study as well.

3.5.2.2 Validation of the Factors

As we explained earlier, many of the factors discussed in this study are defined

based on the authors’ interpretation of the usefulness which might be far from what

real developers and requirement engineers believe. Therefore, similar to the

previous challenge, a future research direction could be studying developers’ and

requirement engineers’ behaviour in dealing with user incoming reviews to

approve how effective the existing factors are in identification of useful reviews.

3.5.2.3 Purification of the Reviews

Although identification and use of proper factors leads to more accurately filtering

reviews for requirements engineering purposes, the destructive role of spamming

activities in online opinion sharing platforms should not be neglected. Spam reviews

could significantly mislead not only automatic extraction tools, but also human

annotators [23, 163]. Variety of approaches are proposed so far to detect spam

reviews [16]. However, this area of research still needs lots of attention [63].

Therefore, another future research direction could be assessing the impact of

spamming activities and spam reviews in utilization of user reviews for software

evolution and application development purposes.

3.5.2.4 Automatically extracting factors

Although variety of approaches are proposed to extract some of the factors

discussed in this study, such as Application Aspect, Rating, and Readability of a

review, there are important factors, such as User Action and System Action, that

have not been analysed for automatic extraction yet. Configuring, manipulating, and

adjusting current NLP and ML techniques in a way to be able to capture such factors

from the context of a review will be extremely helpful for further developments and

evaluation purposes.

81

3.5.2.5 Robust tools for identifying useful reviews

Obviously, when each of the current approaches has focused on a limited set of

unapproved or partially approved factors, existing automated systems not only do

not cover all available factors, but also are based on a set of factors which might not

convey the viewpoint of developers. Thus, another open challenge is developing

robust tools integrating existing techniques and developing new techniques for

extracting each factor and calculate, accordingly, the usefulness of a given review

based on developers’ viewpoint.

3.5.3 Validity Threats

The first and foremost threat to validity of the research reported in this chapter is

about the search process. The main risks in the search process are using an

incomplete keywords list and limitations of utilised search engines. The risk of using

incomplete keywords list was mitigated by performing the “quasi-gold standard”

task (Section II.B). To minimize the risk implied by using a search engine with

specific limitations, we used three different search engines (Section 3.2.2).

Another threat to the validity of this study is the validity of discovered factors.

In this chapter, the factors defined and used in the related work are summarised in

a list. However, the impact of these factors in identification of useful reviews from

developers’ viewpoint is still under question. To mitigate this issue, I tried to explain

arguments and justifications of the selected studies about each factor to give a better

understanding regarding the impact of the factor to the reader.

3.6 Conclusion

The main objective of this survey study was to summarize and synthesize the

existing studies related to analysis of user feedback in order to identify which factors

have been used so far for measuring the usefulness of user generated text from the

viewpoint of a developer, designer, service provider, or requirements engineer. To

fulfil this objective and answer the defined research questions, a survey of related

works was conducted. After defining a series of systematic steps for selecting and

82

assessing the quality of the related papers, we comprehensively analysed them to

answer the research questions.

Apart from outcomes explained in previous sections, findings from this study

reveals that a set of factors is identified to be used for measuring the usefulness of

user reviews from developers’ viewpoint. However, validity of these factors is not

yet approved for the following reasons: (1) The validation methods used in related

papers were based on authors’ interpretation of usefulness rather that developers’

one, (2) The related work has just introduced the factor without validating it, (3)

The factor is obtained from studies focusing on other fields of research than mobile

application development. Therefore, using them for implementing detection tools is

subject to a rigorous validation process.

83

 Validation of the Usefulness

Factors

4.1 Introduction

The aim of this chapter is to use the skills and experiences of real developers dealing

with huge volume of user feedback daily to validate and qualify the role of each

factor discovered in previous chapter. Coming up with a set of qualified and

confirmed factors results in implementation of extraction tools reflecting

developers’ viewpoint in detection of useful reviews for software evolution

purposes.

To evaluate the effectiveness of each factor and to obtain the correct viewpoint

of application developers, A focus group discussion (FGD) with senior mobile

application developers were conducted asking them to quantify the impact of each

factor and to propose new factors. Details on conducting the focus group and

obtained results from analysing the outcomes of the FGD are discussed in this

chapter.

4.2 Focus Groups

Focus groups research techniques are originated from social science for exploring

and better understanding how people think about a specific topic [164, 165]. Focus

group discussion involves assembling a group of peers and free-flowingly discussing

the topic. Depending on the topic, the participants should be selected based on their

specific characteristics. For example, they might be experts and engineers to be

selected for a technical topic, patients suffering from a particular illness to be

selected for a medical topic, or teachers, teaching assistants, and mentors to be

selected for an educational topic. Asking several questions, participants will be able

to give their opinions and views. Then, any raised issues will be discussed in the

group. A researcher controls the discussion and asks the main questions. The

84

process of designing, conducting and reporting the FGD in this project is illustrated

in Figure 4.1.

4.2.1 Selecting Focus Group Discussion

In this research, Focus Group Discussion (FGD) was chosen as an evaluation method

to validate the identified factors. The key means of generating data in a FGD is

interaction of participants [166] which results in gathering valuable insights and

data [167, 168]. Views and experiences of different participants will be purified

during the discussion and will contribute to build various aspects of a quality

amplified idea. The aim of my task was not only to explore common customs among

the community of mobile application developers about usefulness of application

reviews, but also to synthesize and discuss various views of different developers

Figure 4.1. The process of conducting the FGD

85

about each factor to have a comprehensive assessment and quantitation of the

effectiveness of each factor in identification of useful reviews for software evolution

purposes. Therefore, the FGD technique was selected among other methods.

Alternative approaches would have been to use interview or questionnaire.

Interview was not chosen as the preferred approach because the aim of this study

was not to probing developers’ individual experiences, but on a more collective view

of what developers’ considerations are in identifying useful reviews. Thus, to judge

a factor or propose a new one, active discussion and interaction of experts was

required.

Another alternative method would have been conducting a survey among

developers, but this was not chosen as well. Apart from the reasons mentioned

above for not conducting interviews, not many developers filled the designed online

questionnaire1 to generate a reasonably sized sample that would give the study

enough power to yield useful results. Moreover, to fully understand each factor and

being able to correctly score them, target developers should have been exposed to

examples, interactive discussion, and extra explanation.

4.2.2 Aim and Research Questions for the FGD

The aim of conducting FGD was to validate the discovered factors and to investigate

the importance of each factor on identification of useful reviews as well as probing

for emerging factors not covered in my literature survey. To achieve this aim, the

following research questions were defined to design the FGD accordingly.

RQ1. To what extent developers pay attention to app reviews as a source of user

requirements?

1

https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_Vc

cWLhmUOb5w/viewform?usp=sf_link

https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_VccWLhmUOb5w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_VccWLhmUOb5w/viewform?usp=sf_link

86

This research question is defined to discover the importance of user reviews

for developers in terms of extracting user requirements. Particularly, the aim of this

research question is to understand to what extent the developers consider user

reviews as a source of user requirement to improve and update their existing

applications or to get insights and ideas for developing new applications.

RQ2. What factors are critical for identifying useful app reviews from developers’

viewpoint?

Answering this research question, a list of factors for a mobile application review to

be considered as useful for software evolution will be generated. Although

performing the literature review, a list of factors was already generated, considering

this research question in the FGD will result in obtaining probable emerging new

factors.

4.2.3 Sampling Strategy and Characteristics of Participants

The target group is defined as a sufficient number of mobile application developers

with at least five years of relevant experience. To recruit the participants, the

following constraints are defined based on the aim and situation of the project. To

be considered as a candidate for taking place in the focus group, each of the

developers needs to (1) have, individually or as a member of a team, more than ten

mobile applications successfully developed, (2) have received more than 1000

reviews via local or international online mobile application sharing platforms, (3)

have more than 4 years of mobile application development experience. No gender

balance or age was considered in recruiting the participants as the issue to be

discussed was only based on technical experiences of developers. So, representative

(i.e., random) method was not considered as the sampling strategy, rather,

purposive sampling was used to cover important group experiences about mobile

application review analysis. Purposive sampling refers to designing the sample in a

way that includes important segments of the population, or experiences and

expertise required by the research [169, 170].

As attending the FGD sessions in two different locations (i.e., Iran and the UK)

was possible for the moderator, the focus of searching process for finding

87

developers was logistically limited to these two countries. Searching websites

serving as platforms for hiring expert freelancers, online Android and iOS

communities, and online mobile application sharing platforms such as Google play

store and App store, a list of 500 developers in the UK and 200 developers in Tehran

meeting the above-mentioned criteria as candidates was generated to design the

sample.

The developers were then contacted by e-mail to check their availability and

willingness for participation in a focus group. The email was briefly explaining the

research project and outlining the focus group content. From the UK list, only one

developer was willing to attend. However, 15 individuals and companies replied

from Tehran asking for introductory meetings to discuss the project and the need

for FGD, explain their constraints, and assess the sampling requirements. Finally, 6

developers were selected as the target group for the FGD in Tehran.

The guidelines designed to be followed in the FGD, the type of questions, and

expertise level of participants

4.2.4 Composition of Focus Group

The information of participants is given in Table 4.1. In this thesis, each participant

will be referred to using an ID represented in Table 4.1. Among the developers

shortlisted to take place in the FGD, there were two head of companies with

thousands successful developed applications worldwide. D1 is the owner of

MTeam.co developing mobile applications for variety of businesses and end users in

Persian, Arabic, and English languages. Besides developing applications, her

company provides consulting services for founding businesses based on mobile

applications.

D2 is the founder of Saffaran.co, an international mobile application

developing company. After analysing application developers’ requirements for

several years, his company has proposed a mobile application development SDK.

Software Development Kit (SDK) is a tool facilitating the process of developing a

software or mobile application.

88

D3 is the head of mobile application development department in Delta.ir and

is the founder of TaMart start up, an online local grocery with rapid deliveries. D4 to

D6 are mobile application developers working in various companies and doing

freelance mobile application projects.

4.2.5 Number and Size of Focus Group

Different factors such as scale and aim of the project, circumstances and

characteristics of participants mediates the number and size of groups required for

a project [165].

Table 4.1: Information of Participants

ID Skills
Year of

Experience
Role Organization

Size of
the Org.

D1 Android/iOS de-
velopment, RE,
Project manage-
ment

12 Head of Company MTeam.co 89

D2 Android/iOS de-
velopment, RE,
Project manage-
ment

10 Head of Company Saffran.co 83

D3 Android/iOS de-
velopment, RE,
Project manage-
ment

9 Head of App devel-
opment Dept

Delta.ir 103

D4 Android/iOS de-
velopment, RE,

7 Head of App devel-
opment Dept

Farzan.co 75

D5 Android/iOS de-
velopment, RE,

8 Mobile app devel-
oper

Freelancer NA

D6 Android/iOS de-
velopment, RE,

7 Mobile app devel-
oper

Freelancer NA

89

Pertaining to the size of the group, the number of participants in this project,

six developers, is reasonable. This is because the type of questions is straight

forward, technical, and generally quantitative. So, unlike FGDs discussing human

behaviours, personal opinions and people thoughts, several individuals with

different beliefs are not required. Moreover, based on the requirements of the

candidates in this study, and considering the top management level of their

positions, finding more well-skilled developers who accept to collaborate in

research projects was almost impossible.

The initial plan was to do only one FGD because the aim of the research was

not too broad demanding various kinds of participants’ opinions and points of view

as a qualitative research project probing complex issues varying from one person to

another such as human behaviours. My aim was to discuss the usefulness factors

and validate them based on participants’ technical expertise.

Moreover, the participants of such a focus group should be well-skilled mobile

application developers with certain characteristics making them rare among the

society. They usually receive high salaries and are extremely busy making it

complicated to gather them in a focus group. Considering the circumstances of the

research, my initial focus was to conduct the FGD in one session.

However, the circumstances of D1 and D2 forced me to conduct the second

session of the FGD. They are working at top management level and had very tight

timetable. On the other hand, they had an incredible level of experience in dealing

with user feedback of various types urging me to include them in the FGD. So, I

managed to conduct the FGD in two sessions. D1 and D2 had to meet regularly as

they have been cooperating on several projects. Therefore, gathering them in one of

their companies was not a big problem. Number of participants attended in the first

session was two, while four developers took place in the second.

4.2.6 Planning the Focus Group

The instruction provided by Krueger and Casey [171] was followed for development

of discussion guide. I drafted an initial list of questions for the focus group and

circulated it to my supervisory team. Their comments were further applied in the

90

revised version of the questions and the guide was developed to be followed in the

focus group.

After getting informed by participants about their interest in taking part in

FGD, the time and venue of each session was fixed. I agreed on the time of the first

session with D1 and D2 on a phone conversation, while for the second, several time

slots were proposed by participants (D3 to D6) and all agreed on one in an email

conversation. To set the venue for the first session, suggestion of D1 and D2 was to

use their companies. Thus, the session took place in a room at the Saffran.co

normally used for executive meetings. The second session took place in one of the

discussion rooms allocated for business meetings in a café. A café at the centre of

the city was suggested by me and agreed by participants to facilitate their

commuting and access to refreshments.

Participants were contacted by email a week before conducting the focus

group to get remind and to discuss any requirements and services they may need

during the meeting. A day before the focus group, I called each participant to remind

him/her and to get his/her confirmation for attending the focus group. Both of the

sessions were conducted in August 2019. The first one lasted approximately 110

minutes with two participants, while the second lasted 140 minutes with four.

4.2.7 Content and Conduct of Focus Group Discussion

Following the relevant steps for conducting the FGD (Recording, Introduction,

Pausing and probing, Managing discussants, Concluding) [172], I started the

discussion with welcoming the participants followed by asking each of them to

introduce him/her self and to give a brief summary of his/her background and

experience in mobile application development and involvement with user feedback

in form of reviews. Next, a brief summary of the operation of focus groups were

explained as some of the participants were not familiar with FGD techniques.

Then, I had a short presentation on my project, particularly, explaining the role

of the FGD in my research. Focus of the presentation was on the impact of mobile

application reviews on software evolution and formulating the usefulness of them.

A sample of the usefulness factors and examples of real user reviews were given to

91

clarify to the participants how the approach aims to formulate the usefulness. As the

facilitator and moderator of the focus group, I posed the questions designed in the

guide to discussants and managed the discussion.

4.2.8 Data Analysis

The analysis discussed in this section is a synthesis of the two conducted sessions.

The first phase of analysis begins during the FGD [173]. Participants’ responses and

contributions should be clearly understood, and any ambiguity should be addressed

as they might convey important information for further analysis phases. At this

phase, I tried to listen carefully to the discussions and asked for more explanation

for any unclear statement. Pausing and probing techniques were used to gather

more in-depth information about the interesting topics.

 I audio recorded the focus group discussions. Following Jenny Cameron’s

guidelines [174] on FGDs, the recordings were translated into English and

abridgedly transcribed (i.e. only key points and section of the discussion were

transcribed).

The strategy used next to proceed was inspired from Brown and Ward [175]

as the responses did not diverge widely from the questions. Their suggested

methodology for analysing and reporting the data gathered in focus groups is to

draw a table, one column for each question or theme and listing key points and

quotes for each question. The themes and important quotes will then be used in

reporting the results.

Analysis of the responds to the first research question: ‘How important user

reviews are for you to improve and update your applications?’ reveals that user

reviews are viewed by respondents as an important source of user needs, though

they are too noisy consisting irrelevant contents. All the participants agreed on a

fact stating that although a large percentage of user reviews are irrelevant, there are

important useful reviews persuading us to analyse the whole bunch to discover

them.

As the following responses suggest, there was a strong feeling amongst the

participants that user reviews are very important for software evolution. D1

92

mentioned that “when we develop apps for a business (BtoBtoC) we do not care

about user reviews because the business ordering the app is responsible for its

quality, rather, we only make changes in the app based on either reasonable or

unreasonable requirements of the intermediate business. However, when we

produce an app for public (BtoC), we carefully track the reviews and apply useful

ones to keep our product user friendly and bug free.”

Moreover, D3 stated that “publishing a mobile app online, the best mean to get

feedback from actual users is analysing reviews. We hold designers’ and developers’

point of view, not end users of the application interacting it every day. So, when we

test the app instead of the end user, we cannot completely understand their issues

and comprehensively cover their requirements.” “there are plenty types of issue

emerging when the app goes under load of hundreds or thousands of clients. So, we

might miss some of these issues in application testing phase before releasing the

application. It is very likely to see these issues reported in user reviews.” D5 pointed

out to support D3’s argument about usefulness of user feedback.

What eventuates is the importance of user reviews for development teams and

the necessity of analysing them by requirements engineers to better understand

user requirements and to identify issues missed out during the testing step of mobile

application development lifecycle.

Research question 2 probes and discusses developers’ experiences in

investigation and analysis of user reviews. The aim of this research question is to

discuss any characteristics and factors developers take into account while

processing user reviews to filter out useful reviews.

After asking participants to manually classify five reviews to useful or useless

based on their experience and to address research question 2, participants were

confronted with this question “What characteristics and factors do you consider

when distinguishing between useful and useless reviews?”. The method for

analysing this part of the discussion was a standard content analysis approach

proposed by Elo and Helvi, [176] to identify and cluster factors proposed by the

participants.

93

Participants initially remarked that the skill of identifying useful reviews

demands years of experience for a developer or requirement engineer, whereby,

he/she can decide to filter out useful reviews for extraction of requirements.

D2 explained that “We always ask well-skilled developers or requirement

engineers to do this task. We do not ask them to filter out useful reviews according

to a given checklist, but we accompany them double checking their work few times

to see how well they can detect useful reviews.”

However, more in-dept discussion on this matter between participants

revealed that some of them have already defined some characteristics and factors

for useful reviews, while the others are involuntarily following some factors. All

participants jointly exposed that the most important reviews are the ones reporting

an issue.

D6 mentioned that “The most important types of information I look for in the

reviews is bug reports or technical issues that the user has encountered with. If I

find enough information to diagnose the problem in the application, I will consider

the review as useful.” D5 supported this argument saying “Yes, exactly, but the

reported problem needs to be clearly explained. I mean, reasons for dissatisfaction

of the user must be mentioned in the review. Otherwise, we cannot use the review.

For example, we receive many reviews mentioning that the app crashes and users

cannot use the app. However, we have tested the app on several devices successfully.

Moreover, it happens only for a few percent of our clients indicating that the rest are

using the application flawlessly. Thus, the cause of crashing might not be originating

from the application, but other factors such as user phone, storage limitation of user

device, version of the OS used, etc. when we do not have these details, we cannot

address the issue.”

These arguments reveal that one of the factors of a useful review is mentioning

an issue with a certain amount of complementary information helping developers

to diagnose the application.

Apart from problems reported in the reviews, requesting new components and

functionalities was interesting for developers. D4 stated that “not only bugs and

94

problems reported in the review are what we are looking for when analysing user

reviews, but also any information that gives us some idea to improve the application

are on demand.”

Supporting D4’s argument, D3 said “The application designer has a limited

knowledge and ability to cover all reasonable user requirements. This is because we

must guess most of the requirements for applications that we want them to be

publicly available on application sharing platforms. So, many times users ask for

some functionality or quality to make the application more attractive for them. In

these cases, we do not discard these reviews, but put them in backlogs with low

priority”.

It was discovered that prioritising the factors, developers are more concerned

about addressing users’ reported issues to preserve the user satisfaction,

application rank, and popularity. Then, they will take inspiring ideas and

suggestions into consideration.

A list of factors extracted from the literature was exposed to the participants

afterwards. The participants were asked to discuss the impact and necessity of each

factor in identification of useful reviews to answer the last research question. The

importance of issue report, feature request, user action and system action were

confirmed by all the participants after a short discussion as they all believed that

without these factors, a review cannot be useful at all.

However, they had a negative opinion about expected behaviour because it

reflects the normal behaviour of the application. D1 argued that “This factor reports

what I already know about my application. it does not bring any new information

for me. So, I do not care if it is mentioned in a review or not.” The only positive vote

was for D6 who stated that “when diagnosing a reported issue, this factor help us to,

at least, understand that the user knows what the normal performance of the faulty

aspect is. When the user has misunderstood the normal performance, reports an

issue, and explains the expected action of a process, for example, there might not be

an issue with the process, but a wrong expectation of the user is the issue.”

95

Application aspect was considered as a necessary factor as it helps developers

to find which part of the application is the subject of the review. D5 mentioned that

“if a review is an issue report, we must know which part of the application is

involved to diagnose and fix it. Similarly, if the review is a feature request, we must

know what aspect or feature is required to be added to what part of the application.”

Discussing the impact of device information eventuates that this factor helps

to figure out the cause of the reported issue only in very particular types of issue. D2

stated that “when we receive a review complaining about a problem, if there really

is a problem on the application side, we usually diagnose the application and

address the problem without requiring to know about user’s device, because our

audiences are public using variety of devices demanding our applications to be

responsively designed to support majority of available devices. However, if the

cause of the problem is on the user side (e.g., old user device, full memory, incorrect

usage, etc.), we usually ignore the review.”

D1 argued then that “in all of these years that we have been processing user

reviews, we rarely needed to know these details to know what the reported issue

technically caused by. As far as I can remember, in all of these cases, there was

nothing wrong with the application that we can fix, but the client’s side was the

cause of the issue.”

Beside these arguments, D5 mentioned that “When we develop an application,

we provide documentations and specifications for the customers mentioning the

versions of the operating system that are supported by the application. So, if the user

uses unsupported version, it is obvious that some of the features will not work

properly.”

Impact of the review length was discussed next in the focus group. The overall

opinion of the participants was that although longer reviews have the potential to

include more useful information, but lots of short reviews point out exactly what

developers need to know. Moreover, the experience of developers shows that when

they release applications in domains such as tourism, leisure, beauty and skin care,

etc., they will receive lots of lengthy reviews explaining users’ experiences and how

96

they enjoyed the application which reading them is nothing but waste of time for

developers.

Mentioning both pros and cons together in a review was known as an

ineffective factor. D6 highlighted that “lots of the useful reviews we receive daily are

completely negative without mentioning any pro about the application or vice versa.

So, why should we care about this factor?” D4 added “In case of negative reviews,

that are usually very important, the user is indignant with an aspect of the

application. Thus, that is meaningless to expect him/her to write about positive

points of the application.”

A similar decision was made for readability factor as well. According to the

participants’ discussions, carefully and correctly writing it does not guarantee the

quality of the review. D3 stated that “people are from different levels of education.

However, these differences do not affect their ability of reporting helpful feedback.”

Asking participants about the impact of the user expertise, D5 said “We do not

have access to reviewer’s profile on application sharing platforms. So, we cannot

properly judge his/her expertise.” Discussions revealed that relying merely on

number of reviews generated by a reviewer is irrelevant to the quality of review. D3

said “there are lots of spammers generating tens of crap reviews, while normally

regular users use the application and generate only one review explaining issues,

requirements, or their experience with the application.”

Impact of data type was considered as minimal. Developers believed that data

type helps, but only if the aspect of the application being criticized deals with

input/output or data. For example, complaining about the size of menu items does

not involve any data type”.

The last discussed factor in the list was user rating. Participants had variety of

opinions and analysis about this factor and its impact on identifying useful reviews.

Summarizing the discussion reveals that the polarity of sentiment in a review might

help in predicting what type of review it is. 5-star reviews are usually written for

appreciation and promoting the application. 3-4 stars generally show that the user

is happy with the application but needs some modifications or extra functionality.

97

1-2 stars reflect user complaints and issues with the application. However,

developers had been encountered with spam activities generating burst negative

reviews posted for reducing the application overall rank. These reviews, obviously,

consist of useless words.

After discussing each factor in the list, the participants were asked to score the

importance of each factor from 1 to 10. Averaging the scores for each factor, Figure

4.2 represents the level of importance of each factor. This scoring helped in defining

a threshold and focusing only on factors achieving more scores. Next section details

this process.

Inspired by discussing the list of factors elicited from the related studies,

participants came up with some ideas about new factors based on their experiences.

Therefore, apart from the factors discussed in answering research question 2, the

following factors were elicited from discussing existing factors.

One of the suggested factors was number of helpful feedbacks. When a

reviewer posts a review in an online application sharing platform, other users who

read this review can give it a positive or negative vote. Summation of these votes

form the number of helpful feedbacks for a review. However, discussing this factor

98

revealed that these votes are given by other reviewers. Thus, they do not cover

developers’ viewpoint for voting the review.

Another suggested factor is reviewer’s age. D3 believed that if a developer

knows the reviewer’s age, he/she can judge the usefulness of the review more

effectively. An example was given by him “When an application developed for

nursing purposes (e.g., monitoring patients after a heart surgery), is reviewed by a

14-year-old user, this review will not obviously be considered as useful.”

D6 suggested reviewer’s location as a helpful factor. He argued that “Usually,

people of each country, or district have a certain lifestyle, culture, and taste. People

in some countries use variety of warm colours in their cloths, while some others

prefer mono colour. Therefore, if we study these preferences and have the

reviewer’s location in hand, we can classify reviews more effectively.”

4.2.9 Conclusion

After analysing the outcomes of the focus groups, a proper decision on what

factors significantly affect the detection of useful reviews was made. The impact of

Figure 4.2: Ranking of the usefulness factors according to experts’ scorings

99

application aspect, feature request, issue report, user action, and system action were

justified and confirmed throughout the focus groups. Almost all of the participants

agreed that without these factors, it is impossible to detect useful reviews. Most of

these factors were suggested by participants before representing the list of the

factors elicited from the related studies which is another evidence of the great

impact of these factors.

Participants denied the impact of expected action, pros and cons, readability

on detection of useful reviews as they believed that these factors are irrelevant to

the usefulness concept. However, about the importance of data type, user rating, and

length of the review, they argued that these factors might be helpful in some cases,

but they cannot be considered as criteria for measuring the usefulness. Data type

was refuted because it might not make any sense in many situations. Furthermore,

it has been reported that user rating has not been matched with the sentiment of the

content in a review [16, 63, 177].

To refute the length of the reviews, example of short, but useful reviews were

given by participants. This is noteworthy that although the importance of some

factors is refused by participants, they have given scores to these factors. The scores

are not too high yet indicating the importance of the factors. Participants justified

this behaviour by explaining that these factors could be used as complementary

factors meaning that meeting them in a review will incentivise developers to find

useful information, but they are not useful themselves. It means that missing these

features, they still can find useful reviews.

Reviewer’s age and location were supposed as helpful factors in identification

of useful reviews by participants. However, accessing these types of information on

online mobile application sharing platforms is impossible due to data protection

policy restrictions. Similarly, number of helpful feedbacks was unsuccessful due to

not reflecting developers’ viewpoint.

100

 Modelling the Usefulness of

App Reviews

5.1 Introduction

With the analysis of the outputs achieved from the literature review and the focus

group discussion, this thesis proposes a novel approach for conceptualizing the

usefulness of mobile application reviews for software development purposes. To

provide a background for the proposed approach, this chapter describes review

components and conceptualises the reviewing process.

Section 5.2 introduces a mobile application review and its components. The

process of reviewing an application is conceptualised in Section 5.3 showing what a

user encounters while using the application and how reflects issues and feature

requests in his/her review. Finally, Section 5.4 summarises and concludes the

contents of this chapter.

5.2 Components of a Review

A mobile application review posted on one of the existing online mobile application

sharing platforms such as App Store and Google Play Store, consists of several

components. The most important part of a review attracting other reviewers,

potential customers, and developers is the review body, also called content or text

in different contexts. The message that the reviewer intends to deliver to the reader

is to be located in this part. A review also has a title briefly explaining what the

review is about.

Apart from its main components, a review comes with several metadata fields

that could be used for variety of review analysis purposes, subject to availability.

These metadata fields are as follow:

• Target application: The mobile application on application sharing websites

which the review is posted for

• Temporal information: Date and time of posting the review

101

• Reviewer: The Id, account name, or profile name of the reviewer shown on

his/her posted reviews

• Reviewer’s thumbnail: Profile picture of the reviewer

• Rating: Number of star-ratings given to the application by reviewer which

could be selected from 1 to 5 stars provided

• Helpful: Number of helpful positive or negative votes the review has received

from readers

An example of data and metadata items of a review posted for an application

provided on Apple App Store is presented in Figure 5.1. ‘Gholam Abbas’ is the

reviewer name. Reviewer’s thumbnail is not provided. 2 stars is given by him to the

application. The review is posted on 3 April 2018. 2 readers have found this review

helpful. These are the metadata fields that could be crawled along with the review

content to perform related analysis tasks.

The target application offered on online application sharing platforms also

conveys several metadata fields. These fields can also be used for processing

reviews for certain reasons. Depending on the design of the online application

sharing platform providing the reviewing facility, the availability of the following

metadata items varies from website to website;

• Application Rank: The average of given star-ratings

• Application description: a short statement introducing the application and its

main functionalities

• Developer: Name of the individual or company developing the application

• Developer contact: contact information of the developer (i.e., email, website,

and phone number)

• Price: Price of the application in the market

Figure 5.1: Available data and metadata for a review on Google Play Store

102

• Size: Size of the application on the phone memory

• Version: current version of the application

• Number of instals: number of persons downloaded and installed the

application

• iOS version: Version of the OS required for running the application

• Update: Date of the most recent update of the application

All of the abovementioned data and metadata items are publicly available on

the websites and could be used for business and research purposes with respect to

the GDPR and host countries data protection regulations. Figure 5.2 illustrates

available data and metadata of an application published on Apple App Store.

Another group of metadata are privately kept by the application sharing

websites and are typically not available for research purposes. These metadata

items are, but not limited to;

• Location of the reviewer

• Duration of writing and posting a review

• Click stream of reviewer

• Device of the reviewer

• Number of downloads by location

• Number of reviews posted by a reviewer

103

Availability of these metadata items is key to researchers’ ability to analyse

reviews for variety of purposes such as review spam detection, sales forecasting,

application localising and customising, and market demand analysis to name but a

few.

In this project, the focus is merely on the content of each review as the problem

identified to be addressed by the proposed approach is a proper interpretation of

usefulness of reviews for application development purposes. The main objective of

this study is to use the outputs and findings of the researchers studying application

review mining and developers extracting requirements from user reviews to define

a systematic process for accurately benchmarking and measuring the usefulness of

reviews. Therefore, this project focuses on review content as the only available data

item with the ability of conveying user requirements.

Figure 5.2: Available data and metadata for an application on App Store

104

5.3 Conceptualising the Application Reviewing Process

The ontological conceptual model of the application reviewing lifecycle illustrated

in Figure 5.3 helps to understand the significance of the usefulness factors in

appropriately distinguishing between useful and useless reviews with respect to the

developers’ viewpoint. The provided partial application reviewing lifecycle

demonstrates how a user encounters an issue while using the application and how

report it properly via the reviewing option provided in application sharing websites.

In this process, a user downloads and starts using the application which

includes several components and functionalities. The user takes some actions as

well to use the facilities and services provided by the application. When an issue is

observed by the user, an aspect of the application is involved. Reporting the system

action and user action along with the involving aspect in a review helps the

developers in straightforwardly diagnosing the application and addressing the

issue.

Figure 5.3: Ontological Conceptual Model of Application and Review (Partial)

105

Similarly, when the user of the application is requesting or suggesting a new

feature, reporting the target aspect of the application is crucial to help developers

understand user requirement properly. System action and user action related to the

requested feature are also important. Figure 5.4 shows a review reporting an issue

which is considered as useful according to the proposed approach as it explains

what the issue is, which aspect of the application is involved, what is the user

scenario encountering the issue, and what is the system action.

106

Figure 5.4: Top: A useful review containing issue, Aspect, User action, and System
action. Down: two examples of useless reviews

107

5.4 Conclusion

This chapter discusses app review components and reviewing process to provide an

overall understanding required for introducing the proposed approach in next

chapter. In this chapter, different review components and metadata available on

online opinion sharing platforms that can be used for research activities and the

ones used in this experiment are discussed. The process of using the discovered

usefulness factors for identifying useful mobile app reviews for software evolution

is modelled and conceptualised. Finally, an example of an app review identified as

useful applying the usefulness factors is provided.

108

 The Proposed Approach

6.1 Introduction

The proposed approach discussed in this chapter composed of an extraction

technique for each usefulness factor discussed in Chapters 3 and 4. These extraction

techniques are then integrated in a pipeline to form a framework taking user

reviews as input and identify to what extent the review is useful for app developers

to improve the application.

Section 6.2 depicts the architecture of the proposed approach. Parsing input

reviews is explained in Section 6.3. Section 6.4 details step by step of the process of

extracting usefulness factors. The section details techniques and approaches used

for extracting each factor in five subsections. Measuring the usefulness of the target

review by analysing extracted factors is described in Section 6.5. Finally, Section 6.6

summarises and concludes the contents of this chapter.

6.2 Architecture of the Proposed Approach

Assuming a user has posted a review for a target application, the process of

measuring its usefulness for software development, the proposed approach, is

briefly described in this section. The framework consists of three key components

(i.e., Review Parsing, Extracting Factors, and Measuring Usefulness) discussed in

following subsections.

The framework takes the review as input and labels it with the degree of

usefulness for software evolution after analysing its content across several modules

and checking the existence of the predefined usefulness factors.

In the first module, the approach applies a specialised parser to pre-process

the review. The pre-processed review is then fed into the Extracting module. The

function of the Extracting module is twofold. First, it transforms the text of the

review into vectors of real values and learns word embeddings. Second, it applies a

109

classification trained model for each usefulness factor to identify which factors are

observed in the review. Finally, based on observed usefulness factors, a decision tree

determines to what extent the given review is useful for software development

purposes in Measuring Usefulness module.

Figure 6.1 presents a high-level view of the architecture of the Proposed

Approach. It has three main modules discussed in the following sections.

6.3 Review Parser

A review in our dataset consists of several elements such as name of the application,

rating, date of posting the review, etc. explained in Section 5.2. However, these

elements might not be helpful with the task of measuring the usefulness of a review.

Moreover, the focus of this study is to identify usefulness using the content of a

review, a piece of user generated text (i.e., natural language) which needs to be

prepared properly before proceeding to the next module.

Figure 6.1: Architecture of the proposed approach

110

When the text of a review is fed into the system, several pre-processing tasks

are applied on the input review in this module to properly prepare the review

content based on the requirements of the NLP techniques and classification models

to be applied in Extracting module.

Language Detector discards non-English reviews as the scope of this study is

to focus on English reviews only. This task is performed using langdetect library in

python.

Short Review Remover removes any review with less than four words.

Annotators’ observations over the sample data reveal that reviews of 3 words or

fewer generally introduce little information and describes personal sentiment

rather than describing application related user requirements. “hate this update”,

“highly recommended”, and “must have app” are the examples of short useless

reviews in the dataset used in this study. This task is done by a simple algorithm

splitting the review content into tokens (words) using The Natural Language Toolkit

(NLTK) [178] word tokenizer tool and counting the output tokens.

Spell corrector checks the text for misspelled English words and corrects

them. This task is performed using A Python library named ‘pattern.en’.

Punctuation Remover removes all punctuations (i.e.!"#$%&'()*+,-

./:;<=>?@[\]^_`|~) used in the text of the given review. This task is performed using

a simple algorithm identifying and deleting each of the punctuations from the text.

Applying this technique removes emojis from the reviews too.

Stop-word remover strips stop-words (e.g., a, an, the, of, at, by, for, to, etc.)

from the text of the given review. This task is performed using NLTK stop-word

removal technique comparing each word with the list of stop-words provided by

NLTK and filtering out the stop-words.

Tokenizer splits the text of the given review into simple tokens such as

numbers and words of different types. Similar to the short review removal task,

NLTK word tokenizer is used to perform this task.

111

Lemmatizer alters each word in the text of the given review with its lemma

form. Preserving the readability of a word, this technique normalises gerund

endings (i.e. -ing), plural form of words and other grammatical details. This task is

performed using NLTK lemmatizer tool.

Performing all these pre-processing tasks on the input review text provides a

prepared piece of text to be used in the next modules. Each of the pre-processing

tasks described above are selected as a part of the approach through two steps. First,

the task was suggested by other researchers conducting experiments using similar

techniques. Second, different combinations of the suggested pre-processing and text

cleaning tasks are tested in this project and the one resulting in the highest accuracy

of the approach is selected.

6.4 Extracting Usefulness Factors

To analyse a review for investigating existence of each usefulness factor, several

Machine learning models are built, and NLP techniques are adopted in this study.

This module explains how the pre-processed review coming from previous module

is fed into a set of classifiers and NLP approaches to be labelled with the usefulness

factors it holds. The five usefulness factors discussed in previous chapters (i.e., Issue,

Feature Request, Aspect, System Action, and User Action) are considered in this step

as target labels to be associated with the review text.

The adopted technology for extracting Issues, Feature Requests, User Actions,

and System Actions is a CNN model built with input reviews represented as fixed

length vectors applying word embedding techniques.

There are several reasons why, among several existing methods, CNN classifier

is adopted to solve such a problem. First, as it is discussed in Chapter 2, related

works investigating performance of different machine learning techniques on

classifying user reviews have reported the privilege of neural networks [62, 64, 80,

179]. Second, studies comparing the performance of CNN on several natural

language processing (NLP) tasks, such as POS tagging, NER, and SRL, with the state-

of-the-art methods have reported the significant improvements in the results [180,

181]. Third, better generalization capabilities are available when using CNNs

112

integrated with pre-trained word embeddings [182]. Finally, unlike other classifiers,

CNNs detect ordering of words in the input text as proper classification attributes

[182, 183].

To identify reviews containing Aspects, however, several syntactic rules are

defined. As applying syntactic rules captures certain predefined patterns in the data,

its precision is higher than other approaches which is the key point in identifying

Aspects. Deep learning models are far less accurate than syntactic patterns for this

task as the input of the CNN should be single words, and the algorithm cannot extract

features from the context of the target word.

The following subsections describe proposed approaches for extracting each

of the usefulness factors in detail.

6.4.1 Convolutional Neural Network (CNN)

The convolution operation used in CNN involves cross-channel summation of the

element-by-element multiplication. This operation consists of a convolutional filter

(kernel) for each input channel which is randomly initialized and the CNN tunes and

adopts its parameters to achieve the classification task. The output of the feature

convolution is a feature map. The size of feature map would be same as the input

matrix by adding a certain number of zeros to each dimension of the input matrix.

This is because the computation of the summation in the convolution operation is

over a sliding window on the input tensor. The convolution operation transforms a

multi-dimensional input into a one-dimensional output matrix. Maximum pooling

layer is used in this process to reduce the dimensions of a matrix. Sliding the

convolutional filter over the input matrix, it captures the element with highest value

and discard the rest elements fallen in the filter to generate an output matrix of

reduced dimensions. Thus, convolutions in a convolutional model are passed

through several pooling layers to reduce the dimensions and then will be fully

connected together to finalize the classification or prediction task.

Reperesenting text as fixed length vectors applying word embedding

techniques is a proper input for the CNN in this module to perform the text

classification task. The word-level embeddings with fixed dimensional vectors are

113

fed into the convolution model. The outputs of the convolutional and pooling layers

are, then, flattened. Next, applying some fully connected layers, the classification

output will be generated. The example model of classifying a sentence using CNN

[129, 184] is represented in Figure 6.2.

Figure 6.2: CNN model for sentence classification [184]

6.4.2 Word Embedding

The concept of word embedding could be traced back to 1956 when Zelling Harris

[185] introduced the “distributional hypothesis”. This theory argued that there is a

relationship between the context of words and their meanings. In other words, two

words that are used in a similar context have similar meanings.

The aim of this distributed word representation is to map semantic meaning

of the words into their geometric spaces. It represents words as real-valued vectors

in a predefined vector space where words with similar semantic meanings also have

a similar representation. For example, in a well-trained word embedding set of

vectors the words “orange” and “apple” are very close to each other in the space

while they are far from “pencil”. Similarly, the words “pen”, “pencil”, and “paper”

might cluster in another corner.

In traditional one-hot vector representation, each word in a fixed size

dictionary is represented as a binary vector with values all set to zero except the

index of the word in the dictionary. For example, if a dictionary with 10,000 words

114

is transformed to one-hot vectors, it will have 10,000 binary vectors each has 10,000

values. In this dictionary, if the index of the word Apple is 350, the binary vector for

this word would be all zero values except for the 350th value which is marked with

a 1. However, in word embedding, each word is associated with a point in a vector

space and the technique learns from many different contexts of words how they are

semantically related to each other.

Representing words as dense and low-dimensional vectors significantly

improves the performance of majority of neural network tools as their accuracy

using high-dimensional, sparse vector representation is reported to be low [186].

Another outstanding advantage of word embedding comparing to one-hot vector

representation is that the number of features is much smaller than the size of the

vocabulary [187].

Word2vec is one of the effective techniques to learn word embeddings. It

transforms words in each text samples of the dataset into vectors applying a two-

layer neural network. Two main algorithms used by word2vec for training are skip-

gram and continuous bag of words (CBOW) [188]. The later uses context to predict

target word, while the former uses a word to predict the target context (Figure 6.3).

Although it can be understood from definition of the algorithms that the

performance of skip-gram is better as it can consider multiple meanings for a word

such as bank (e.g., riverbank, food bank, and financial bank), accuracy of each of

these training algorithms depends on the circumstances of the dataset and the

machine learning task.

115

6.4.3 Extraction of Issues

In this task, a pre-processed review text is fed into the model as input whereby it

will be labelled as issue if the text conveys any issue reported. The way for

distinguishing between reviews reporting an issue with other types of reviews in

this task is adopting a Convolutional Neural Network (CNN) classifier with input

words represented as word embeddings.

As both datasets include reviews manually tagged with Issue Report labels, a

combination of dataset one and dataset two are used for training and testing the

model built for this task. Each of the datasets were split into 80% training and 20%

testing parts.

6.4.3.1 Vocabulary Building

Creating a vocabulary of known words is of great importance when word

embedding model is to be used. Using all existing words in the dataset, very large

Figure 6.3: CBOW architecture (predicting word from context) and Skip-gram ar-
chitecture (predicting context from word) [188]

116

representation for documents will be generated. Thus, defining vocabulary of

known words is an effective way to optimise the performance of the system.

To create the vocabulary all reviews from training set are cleaned, tokenised

into words, and occurrences of each one in the dataset was computed. Then, words

with frequency less than two were filtered out to avoid negligible words. The final

vocabulary was saved into a text file to be used further for filtering input data prior

to encoding them for modelling. This task was performed designing a simple

algorithm in Python.

6.4.3.2 Training Embedding Layer vs. Using Pre-trained Embeddings

There are two techniques for creating embeddings to be used with the model. First,

training embeddings using existing train data. Second, using off the shelf

embeddings trained on huge volumes of human generated text. In this study, both

techniques are applied to compare their impact on the accuracy of the proposed

model.

In the first model configuration, the word embedding is designed to be trained

while the classifier is training. To this end, an embedding layer is added to the model

using the Keras deep learning library in Python. The embeddings can also be trained

in advance and saved into a file to be loaded and added to the model later. The

word2vec algorithm is used in such cases to train embeddings in a standalone

manner. Prior to adding the embedding layer, the created vocabulary is loaded to

filter out negligible words from reviews.

To meet the requirements of the Keras embedding layer, each review is

encoded as a sequence of integer values indicating a word each. The preliminary

values represented as vectors are random but becoming meaningful while training

the algorithm. Training the model using all training reviews from the truth set maps

all words from the vocabulary to unique integer values which are used for encoding

input reviews.

Alternatively, pre-trained embeddings on huge volume of text data are

available to be used with neural network models. It is reported in the literature that

using pre-trained embeddings for text processing tasks offers better performance

117

[179, 189]. Google has created a 300-dimension word2vec embeddings trained on

Google News using more than 100 billion words which is also used with the model

built in this task.

6.4.3.3 CNN Model Building

Continuing configuration of the model, Keras requires input documents of a same

length for optimising the efficiency of the model. Therefore, a maximum length size

for reviews was defined and used for zero-padding training reviews to the maximum

length size.

Class labels are required to be defined in the Keras to fit the supervised neural

network model to classifying reviews. As the class labels need to be defined as

integer values, reviews containing Issue Report are labelled by 1 and are otherwise

tagged by 0. The test dataset is also encoded and padded for validating the model.

An embedding layer is the first element added to the model. For training

embedding while training the model, the embedding layer was set to vocabulary

size, 300-dimensional word representation, and maximum length of the reviews.

For the Google News pre-trained embedding, the embedding layer was set to the

setting of the pre-trained embedding.

 Next layer, one-dimensional convolutional layer, was preliminarily

configured with a rectified linear (relu) activation function which is easy to adopt

and has greatly improved the performance of feedforward networks comparing to

sigmoid hidden units [190]. The kernel size was set to 5 and 200 filters were used

for processing words.

To consolidate the output of the convolutional layer, a max pooling layer with

pool size set to 3 was then added to the model. To reduce the dimensions of the

output of the max pooling layer, a flatten layer is also added to the model.

118

Finally, a sigmoid activation function is used in the output layer to generate 1

for reviews containing Issue Reports and 0 otherwise. A summary of the defined

neural network model is illustrated in Figure 6.4. The summary shows that the input

of the embedding layer is documents of 233 words length. Each word is encoded

into a vector with 300 elements.

To compile the model, which is a binary classifier, a binary cross entropy

function was selected along with adam optimiser. Training reviews were fitted then

on the model and number of epochs was set to 15 indicating that the model iterates

15 times over the training reviews. The optimal configuration defined is based on

successful empirical results on binary text classification problems [191, 192] and

several trial and errors.

After configuring and building the model, test reviews are fed into the model

for evaluation purposes. Accuracy measures used in this project are Precision, Recall

and F-measure. More detail on evaluation of the model is provided in Chapter 7.

Figure 6.4: Summary of the model configuration

119

6.4.4 Extraction of Feature Requests, User Actions, and System Actions

To classify reviews into reviews containing Feature Request and reviews with no Feature

Request, similar to Issue Reports, a CNN model using word embeddings is designed.

Same configuration and setup were applied. The only difference was in input data that

the reviews from dataset one and dataset two containing Feature Requests and Other re-

views were fed into the classifier for training and testing purposes.

Pertaining to User Action and System Action, to the best of our knowledge, this

is the first time these two factors are to be identified automatically. Thus, one of the

contributions of this project is proposing an approach for automatically identifying

them. Due to the novelty of the approach, no ground truth dataset was found for this

task resulting in using only dataset one that is specifically annotated for this project

to train and test two binary classifiers designed for this task.

Again, a binary CNN model with word embedding was designed for each of the

usefulness factors (i.e., User Action and System Action). Unlike classifiers identifying

Issue Reports and Feature Requests taking a whole review as a data sample, reviews

from dataset one were split into sentences and the model was designed to perform

the classification in sentence level which is due to the nature of these factors. As a

short text, a review is designed to have a topic and few sentences expounding the

topic. Issues and Feature Requests are also generic topics requiring to be explained

in several sentences. However, User Action and System Action are small parts of an

Issue or Feature Request with no more than one sentence to express.

6.4.5 Extraction of Aspects

Conducting a CNN model with word embedding is not efficient for identifying

Aspects. The effectiveness of this approach is due to inclusion of several words in

the input text. The neural network extracts several features from semantic

relationships between words in a sentence enabling the classifier to perform

accurately. However, the Aspects usually appear in a single word and using word

embeddings is less efficient for such situations. On the other hand, the existence of

an Aspect in a review is critical for identifying useful reviews for its key position in

120

the decision tree discussed in the following section. Therefore, an accurate approach

for identifying Aspects is required to be designed.

A group of proposed approaches detecting Aspects have focused on

opinionated sentences. These approaches use an opinion word in a sentence and

analyse its relationship with other words to find Aspect candidates. However, as it

is discussed in Chapter 2, many aspects are mentioned in reviews without any

opinion expressed. Moreover, many of the recent studies have used topic modelling

for detection of Aspects which is not an efficient approach for short texts [58,

87][41]. Other draw backs of topic modelling-based approaches are discussed in

Chapter 2. As the performance of syntactic rule-based approaches is reported

significantly optimal in capturing certain patterns from text [193-196], a set of

syntactic rules are defined in this project to identify Aspects.

NLP-based rules are usually defined over constituency and dependency

parsing, and POS tagging results. The extraction rules defined in this project

leverage dependency parsing and POS tagging to identify mentions of Aspect in a

review. It is noteworthy mentioning that the aim of this task is to identify reviews

mentioning an Aspect not specifically detecting which word or word phrase is the

Aspect.

6.4.5.1 Part of Speech (POS) Tagging

Part of Speech tagging refers to the task of reading a piece of text and labelling the

part of speech for each word. An example of POS tags is shown in Figure 6.5 where

a sample sentence is tagged with abbreviations of part of speeches. Each tag has a

certain meaning. PRP stands for preposition, VB is a verb, NN is noun, and so on. The

diagram is drawn using Stanford CoreNLP online text processing tool. A list of POS

tags is provided in Appendix IIII.

Figure 6.5: An example of POS tags

121

StanfordNLP, a toolkit for natural language processing tasks used in this

project, uses a Java implementation of the log-linear part-of-speech taggers

proposed in [197, 198]. Stanza [199], a Python NLP package offered by StanfordNLP

is used to perform the POS tagging task. An example of the output of Stanza POS

tagger is provided in Figure 6.6.

6.4.5.2 Dependency Parsing

Dependency parsing is the task of clarifying syntactic structure of a sentence using

words and grammatical relationships among them. A dependency tree consists of a

root node which is the head of other nodes (words) and labelled directed arcs from

head nodes to dependent ones. In a dependency relation 𝑛 → 𝑚, the head of the

relation is 𝑛 and the dependent is 𝑚. The labels show syntactic dependencies

between nodes, such as direct object, adjective modifier, and clausal subject, to name

a few. A complete list of universal dependencies [200] is provided in [201]. Figure

6.7 shows a dependency tree drawn for a sample sentence, “I would like to see a

Figure 6.6: An example of Stanza POS tagger output

122

download option.”, and its dependency relationships. The diagram is drawn using

Stanford CoreNLP online text processing tool.

Recent improvements in NLP has approved the significant enhancement of

novel NLP techniques such as dependency parsing [202] which is advanced enough

now to be used for defining extraction rules. For this task, Stanford parser is used

from Stanza package in Python as it had the best performance comparing to other

tools [203, 204].

6.4.5.3 Rules Extracting

The rules proposed in related approaches [94, 98, 99] have been investigated in terms of

capability in identifying application aspects. The investigation revealed that this thesis

cannot merely rely on them for identifying aspects for the following reasons:

Firstly, empirically evaluating several feature extraction approaches on real

world user reviews has revealed that these approaches achieve lower effectiveness

than reported originally [36].

Secondly, detection of aspect in related work is contingent upon identification

of opinion words. This is because most of these papers aimed at understanding

users’/customers’ opinion about an aspect. However, many aspects are mentioned

Figure 6.7: An example of dependency tree and its relationships

123

in reviews without any opinion word associated with. For example, in the following

review, ‘message’ is an aspect with no opinion word in the sentence.

“Every time that I open the app, a message pops up asking me to review the

app.”

Thirdly, there is negligence in definition of rules. Preliminary analysis of the

rules in this project revealed several contradictions among them. Some of the

examples are explained in the following sentences. Rule 1 and rule 2.1 in [98] are

same, but all sub-rules of rule 2 are applicable only if there is no auxiliary verb. Rule1

needs the modifier of the verb to be seen in an opinion lexicon, but rule 2.1 does not.

Rule 2.2 and 2.3 in [94] are same. However, rule 2.2 needs the noun to be out of

opinion lexicon, but rule 2.3 needs the noun to be in the lexicon. Rule 2.3 in the same

study comes with an auxiliary verb, while all the sub-rules of rule 2 are applicable

when there is no auxiliary verb in the sentence. Rule 3 in [98] considers a noun

which is in copula relation with an auxiliary verb as an aspect, but the noun is not in

relation with the verb in provided example (i.e. the camera is nice). These are just

few examples to show how unreliable are existing rules.

Finally, some types of sentences including important aspects are not detected

by the existing rules. For example, the following review contains an aspect which is

“edit section”, but the rules defined by Rana et al.,[99, 100] cannot capture this

aspect.

“It would add great value to have an edit section”

Accordingly, useful rules are taken from related works, improved, and adopted

for the aim of this project. More rules are also defined based on observations and

analysis performed in this project to identify Aspects effectively.

Investigating the appearance of aspects in product reviews, researchers have

argued that 98% of the aspects are noun phrases [93, 100, 205]. Results of several

studies show that aspects appear only in the form of nouns in reviews [206, 207].

Besides, manual analysis of reviews in a study conducted by Malik et al. [93] has

revealed that nouns, verbs, and adjectives are key part of speeches in identifying

application aspects. Therefore, to improve the precision, the focus of this thesis is

124

on noun phrases for identification of aspects. The following rules are defined and

applied in this project for identifying reviews containing an Aspect.

R1. If a word 𝑊1 has a noun POS tag and is dependent of the node 𝑊2 with a

subject relationship, and 𝑊2 has an adjective or adverb modifier which is in the

opinion lexicon, then 𝑊1 is an Aspect. The opinion lexicon2 is a collection of English

negative and positive opinion words and sentiments gathered by Hu and Liu, [208]

and then compiled over many years by the authors. Figure 6.8 illustrates this rule in

a logical formula where 𝑊 is a word, and 𝑁𝑁, 𝐽𝐽 and 𝐴𝐷𝑉 stand for noun, adjective,

and adverb, respectively.

The noun ‘background’ in the following review, for example, is subject for the

verb ‘drains’ which is modified by the adverb ‘quickly’. ‘quickly’ exists in the

opinion lexicon. So, ‘background’ is captured as an Aspect. Figure 6.9 illustrates the

dependency tree for the review used in this example.

“the white background of the app drains the battery quickly.”

2 https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

Figure 6.8: Logical representation for Rule1

Figure 6.9: Dependency tree for Rule1_example

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

125

R2. If a word 𝑊1 has a noun part of speech and is dependent of the node 𝑊2

with a direct object, oblique nominal, or open clausal complement (xcomp)

relationship, and 𝑊1 is not in the opinion lexicon, then 𝑊1 is an Aspect. The logical

formula for this rule is shown in Figure 6.10 where 𝑑𝑜𝑏𝑗, 𝑜𝑏𝑙 and 𝑥𝑐𝑜𝑚𝑝 stand for

direct object, oblique object, and open clausal complement relationships,

respectively.

The noun ‘option’ in the following review, for example, is in open clausal

complement relationship with the verb ‘needs’ and is not in the opinion lexicon. So,

‘option’ is an Aspect. Figure 6.11 illustrates the dependency tree for the review used

in this example.

“There needs to be a bulk download option.”

Figure 6.10: Logical representation for Rule2

Figure 6.11: Dependency tree for Rule2_example

126

R3. If a word 𝑊1 has a noun POS tag and is dependent of the node 𝑊2 with a noun subject

relationship, and 𝑊2 is in copular relationship with an auxiliary verb 𝑊3, then 𝑊1 is

an Aspect. Figure 6.12 illustrates this rule in a logical formula where 𝐴𝑈𝑋 is an auxiliary

verb.

The noun ‘option’ in the following review, for example, is subject for the word

‘nice’ which is in copula relationship with the auxiliary verb ‘is’. So, ‘option’ is an

Aspect. Figure 6.13 illustrates the dependency tree for the review used in this

example.

“The new search option is nice.”

R4. If a word 𝑊1 has a noun part of speech and is dependent of the node 𝑊2,

which is detected as an Aspect by other rules, with a compound relationship, then

𝑊2 is concatenated to 𝑊1 as a part of the Aspect. For example, the word ‘search’ in

Figure 6.12: Logical representation for Rule3

Figure 6.13: Dependency tree for Rule3_example

Figure 6.14: Logical representation for Rule4

127

Figure 6.13 is in compound relationship with ‘option’ which has been detected as

an Aspect by R3. So, ‘search’ will be concatenated to ‘option’ to form the new

Aspect, ‘search option’. Figure 6.14 illustrates this rule in a logical formula.

6.5 Measuring the Usefulness

applying a decision tree approach in this module, reviews labelled with usefulness

factors are assessed for measuring their degree of usefulness for software

development. This study does not investigate the usefulness as a binary concept. In

the proposed extraction model represented in Figure 6.15, four classes of usefulness

(i.e., Fully useful, Insufficiently useful, Less useful, Useless) are designed to classify

reviews toward usefulness. Assessing the given review using the proposed model,

we can decide to what extent the review is useful. A Fully useful review is what

developers are looking for and count as important, while Useless reviews are to be

discarded. Insufficiently useful and Less useful reviews are partially important for

developers.

This strategy facilitates developers and companies to focus on a certain degree

of usefulness in analysing their reviews. For example, a large company with huge

volume of reviews may only wish to filter Fully useful reviews, while in small scales,

a developer managing a few apps and only receiving tens of reviews daily may prefer

to get rid of Useless reviews and include Less useful reviews in his/her reading list

as well.

Moreover, the rationale behind this classification is that with a binary

classification (i.e., Useful and Useless), there is a probability of missing reviews

classified as Useless, but very close to the border of the Useful class. These reviews

usually contain partially useful information which is ignored in a binary

128

classification. Thus, defining intermediate classes helps to purifying the samples

fallen in each target class by defining the degree of membership.

The decision tree approach (Figure 6.15) is designed at this step to perform

the classification task in an organized manner. The very first branching point in the

tree is the Aspect, “Is there any application Aspect mentioned in the review?”,

because in terms of the purity, it gains the lowest possible Entropy which equals to

0. Entropy is a technique to measure the uncertainty of a class in a subset of

examples. It gives a number between 0 (i.e., 100% certain) and 1 (i.e., 100%

uncertain). It measures the purity of split in a decision tree as shown in the following

equation:

Figure 6.15: The customized Decision Tree for measuring the usefulness

129

 𝐻(𝑠) = 𝑃(+) 𝐿𝑜𝑔2(𝑃+) − 𝑃(−) 𝐿𝑜𝑔2(𝑃(−)) 6.1

Where, 𝐻(𝑠) is the Entropy of the 𝑠 which is a subset of the annotated reviews.

𝑃(+) is percentage of the true class and 𝑃(−) is percentage of the false class in 𝑠. In

this research, true class for each factor is number of useful reviews in the sample

including the target factor, while false class refers to number of useful reviews

missing the target factor.

The review will be classified as Useless if not referring to any aspect of the

target application (‘No’ answer at the root node). Otherwise, the type of the review

is assessed at the second level decision node where the outcomes are Issue, Feature

request, or Other. Falling in the Other category, the review will be classified as

Useless, while Issues and Feature requests are to be assessed for inclusion of User

action and System action. Observing both factors in the review makes it Fully useful,

but one of them causes the review to be classified as Insufficiently useful. For feature

requests, if the review is free from User Action and System Action, it will be fallen in

Less useful class. However, such a review will be classified as Useless in Issue report

type.

The decision tree implemented in this study, is a modified and customised

version which is optimised based on requirements of this project. Therefore,

calculation of the Entropy combined with the insights gained during the data

annotation and previous tasks were used to construct the tree based on the selected

factors.

130

6.6 Conclusion

This chapter presented an overview of the proposed approach in this project

to identify the usefulness of a given user review for software development purposes.

The approach has three main modules, which are Review Parsing, Factors

Extracting, and Usefulness Measuring. The modules are explained in this chapter

and their technical details are discussed in depth in the subsequent chapter.

131

 Results and Discussion

7.1 Introduction

In this chapter, results of the experiments conducted in this study are reported, and

performance of the proposed approach is evaluated. Another purpose of this

chapter is to interpret and discuss the results.

Section 7.2 describes the datasets used in this study for not only training and

testing the supervised approaches for extracting usefulness factors, but also

validating syntactic rule-based approaches. Performance results of the proposed

approach are discussed in section 7.3 wherein two levels of evaluation are

introduced. The section reports on the accuracy of each usefulness factor extraction

technique as a standalone model, and the integrated system composed of these

techniques. Finally, section 7.4 compares the results with baseline studies.

7.2 Data Collection

The first dataset used in this project, named dataset one, is a collection of mobile

application reviews posted by real users which is crawled by Guzman and Maalej

[58] in February 2014. The dataset includes thousands of reviews on 8 well known

mobile applications from App Store and Google Play. A subset of 1000 reviews on 4

applications was selected as the corpus of this study for the following reasons.

Firstly, the reviews were collected from various sources. So, some original meta data

coming with the context of the review were missing for some reviews. Second, initial

observations revealed that some applications might have been target of massive

spam attacks as there were lots of reviews not delivering a sensible meaning (e.g.,

“very good”, “love it”, “Excellent!”, etc.). Third, in some versions of some

applications, a critical issue was observed reflected in a huge number of reviews

causing bias in the data. Finally, circumstances and scope of this project demand

such a subset.

132

Each review in the dataset consists of 7 original meta-data items coming with

the context of the review (i.e., ID, App ID, App Version, Title, Reviewer, Star rate, and

Date), though the circumstances and objectives of this project demands to use

review content only. The data is publicly available by the researchers in the form of

SQL commands to create and populate relevant tables. Thus, SQL tables were

populated with data samples to obtain the complete dataset used in [58]. Running

simple SQL queries, the final subsample of the data was obtained which is called

dataset one in this thesis. Transforming the data into .xml files, they were fed into

the General Architecture for Text Engineering (GATE) [209] for further annotation

and analysis.

Considering that the main approach for extracting the usefulness factors is

deep learning, a set of manually annotated data samples are required. So, for

training and testing the proposed classifiers, a peer manual analysis of the 1,000

sampled reviews was conducted to create the truth set. The data annotation task

was to manually identify and label occurrences of each usefulness factor (i.e.,

Aspects, Feature Requests, Issues, System Actions, and User Actions). The author of

this thesis and a PhD candidate with more than six years of mobile application

development experience have performed this task. A coding guideline was provided

to gain a higher Inter Annotator Agreement (IAA) [210] and maximise the quality of

the output [211]. The guideline included explanations and clarifications on what

each usefulness factor is, how to deal with uncertainties, and review examples for

each factor.

To handle disagreement between annotators they were asked to separately

label 100 reviews in a preliminary annotation task. Then, in a meeting comparing

and justifying judgements, they gleaned insights from discussions and prepared to

start the main data annotation task. The coding guideline was updated accordingly

and provided to the annotators. After coding all the reviews in the dataset, in a

meeting discussing disagreements with coders, the unresolved ones were discarded

from dataset one and new reviews where replaced. Therefore, each of the reviews

in dataset one is jointly labelled by the two coders.

133

The second dataset used in this study, called dataset two, is collected by Maalej

and Nabil, [60] in 2014 which has reviews classified into four categories including

bug report, feature request, user experience, and rating. The crawled dataset

contains 1,246,057 reviews collected from App Store and Google Play Store. The

authors randomly sampled 4,400 reviews for manual analysis. They hired computer

science master students to perform the annotation. Each review was classified by

two coders into the categories. As identification of user experience and rating

classes are out of the scope of this project, the reviews fallen in these two classes are

discarded from dataset two. The final dataset contains 3,691 reviews classified into

feature request, bug report, and other.

The reason for using this dataset as the second dataset for this study is to

enrich the number of data samples for Issues and Feature Requests resulting in the

improvement of the proposed classifier for extracting these factors.

The original downloaded dataset was provided in JavaScript Object Notation

(JSON) format which was converted into Comma-Separated Values (CSV) to be

combined with dataset one for training and testing of feature request and issue

report classifiers.

7.3 Performance Results

Evaluation of the proposed approach is performed in two levels, component level

and system level. In component level, the process of extracting each usefulness

factor is validated as a standalone model, and the accuracy of that certain task is

measured. Putting these distinct models in a pipeline, an integrated system getting

reviews as input and labelling them with the pre-defined degree of usefulness is

achieved. System level evaluation measures the accuracy of the system. Before

discussing each of these validation levels in this section, the metrics used for

measuring the accuracy of the techniques are introduced.

7.3.1 Evaluation Metrics

The evaluation metrics used in this study are the precision, recall and F-Measure.

The procedure for calculating the precision and recall is to run each of the proposed

134

models to classify reviews to positive (i.e., when the review includes the target

usefulness factor) and negative (i.e., when the review does not include the target

usefulness factor). The outcome is then compared to the ground-truth dataset built

for this study implying the evaluation metrics subsequently described.

Calculating the recall, number of reviews captured as positive by the proposed

model which also are judged as positive by human experts is divided by the number

of all reviews judged as positive by human experts.

𝑅𝑒𝑐𝑎𝑙𝑙 =
|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡} ∩ {𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|

|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡}|
 7.1

Likewise, Precision is computed dividing the number of reviews identified as

positive by the algorithm which also are judged as positive by human experts by the

number of all detected reviews by the algorithm.

Precision =
|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡} ∩ {𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|

|{𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|
 7.2

Finally, F-Measure is used to combine the Precision and Recall. The F-Score

could be calculated using the subsequent formula.

F-Measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 7.3

7.3.2 Component Level Evaluation

Five usefulness factors are defined in this study to measure the usefulness of a given

user review (Chapters 3 and 4). To facilitate the task of extracting each of them from

review text, an NLP based approach is proposed. In this sub-section, proposed

approach for automatically identifying each usefulness factor is validated and the

corresponding results are reported.

7.3.2.1 Extraction of Issues

The proposed approach for identifying reviews containing an Issue (Chapter 6) is vali-

dated using a ground truth dataset (Section 7.2). Evaluating the automatic approach for

extracting this usefulness factor, both dataset one and dataset two were used to train and

135

test the model. Precision, Recall, and F-Measure were also expected from the classifier

validation setting.

The domain specific embeddings trained in this experiment and the pre-

trained embeddings from Google were used to represent the input words to the

neural network (Section 6.4.3.2) to compare the results obtained using each of the

embeddings with the neural network model. After successfully building the models,

the following results were obtained (Table 7.1).

As the results show, performance of the model is significantly better when the

input words are represented as embeddings using the pre-trained Google

embeddings comparing to the embeddings trained in this study.

Word embedding learns semantic relations between words in the given

training sentences to build the word vectors causing semantically relevant words to

be clustered in a same group or very close to each other on the vector space. Decision

of the utilised CNN model is contingent upon these features.

Thus, at the first glance, embeddings trained using application reviews are

expected to have more positive impact on the performance of the classifier rather

than Google embeddings trained with news data. This is a reasonable expectation as

the wording and writing style of all the data samples are for reviewing apps

resulting in more relevant relationships between words. However, the key for

Google embeddings success is for the huge volume of the input training data. Billions

Table 7.1: Accuracy of the neural network used for identifying Issues in reviews

 Precision Recall F-Measure

CNN + Training

embeddings

0.48 0.66 0.55

CNN + Google Pre-

Trained embeddings

0.60 0.76 0.67

136

of sentences written by human used to train the embedding covering variety of

individuals’ phrasing patterns and discovering too many relationships between

used words. In this experiment, few thousands of reviews are used to train the

domain specific embeddings.

7.3.2.2 Extraction of Feature Requests

Similar to Issue reports detection, dataset one and dataset two were jointly used for

training and testing the CNN model designed for identifying reviews requesting a

new feature for the application. This is because both datasets include reviews

manually tagged with the ‘Feature Request’ label. The model was configured to

compute Precision, Recall, and F-Measure as validation metrics. The two different

embeddings were also used to represent the input words to the neural network and

to compare the accuracy. Training and testing the models using each of the

embeddings, the following results obtained (Table 7.2).

Again, the results show that the accuracy of the model when is fed with Google

pre-trained embeddings is significantly better. The reason for such behaviour is

explained in previous section.

In general, comparing the results with the ones obtained from evaluating the

Issue detection model, one can see a more accurate model which is due to the nature

of the factors. Issues have a large application domain so that variety of problems,

bugs, shortcomings, and user complaints are all branched off from this concept.

Thus, many different expressions and wordings are used by individuals to write the

Table 7.2: Accuracy of the neural network used for identifying Feature Requests in
reviews

 Precision Recall F-Measure

CNN + Training

embeddings

0.55 0.72 0.62

CNN + Google Pre-

Trained embeddings

0.67 0.78 0.72

137

reviews to be identified as Issue reports by our neural network. On the other hand,

this variety is far less broad when users are requesting a feature causing the use of

not only more similar wordings and expressions, but also less dispersed grammatic,

semantic, and even syntactic relations in review text. This fact influences the

performance of the neural network models as word embeddings used in these

models capture similarities between words and their semantics. Therefore, more

similar wordings used in target class data samples leads to higher accuracy for the

model.

7.3.2.3 Extraction of User Action

Referring to the discussion in Chapter 5, no manually coded dataset was available to

be used as truth set for training and testing the model designed for this task as this

is the first research attempt for automatically identifying reviews reporting a User

Action. So, the only ground truth dataset used for this task is dataset one manually

coded as a part of this experiment. Results of evaluating the proposed model using

reviews from dataset one is shown in Table 7.3.

The results reveal that the model can more precisely extract User Action

sentences from reviews. It is worth noting to mention that this classification is

performed at sentence level. Particularly, the model identifies sentences explaining

User Action from the text of a review rather than labelling a whole review as User

Action or Other. This fact could considerably impact the accuracy of the proposed

model.

Table 7.3: Accuracy of the neural network used for identifying User Action in re-
views

 Precision Recall F-Measure

CNN + Training

embeddings

0.77 0.68 0.72

CNN + Google Pre-

Trained embeddings

0.81 0.67 0.73

138

7.3.2.4 Extraction of System Action

The model constructed for identifying System Actions has similar configurations

and specifications to the model discussed in previous section for extracting User

Actions. The proposed model for this task is also a novel approach. Thus, the only

available dataset for training and testing the classifier was dataset one manually

annotated in this research. Results of validating the proposed model is represented

in Table 7.4.

7.3.2.5 Extraction of Aspects

The proposed approach for extracting Aspects discussed in previous chapter is

validated using a ground truth dataset discussed in Section 7.2. dataset two does not

include any human judgment regarding this usefulness factor. So, dataset one is used

to validate the proposed approach for this task. Unlike other usefulness factors,

Aspects are identified defining a set of semantic rules. The accuracy of these rules is

presented in Table 7.5.

Table 7.4: Accuracy of the neural network used for identifying System Action in re-
views

 Precision Recall F-Measure

CNN + Training

embeddings

0.79 0.74 0.76

CNN + Google Pre-

Trained embeddings

0.82 0.80 0.81

Table 7.5: Accuracy of the semantic rules used for identifying Aspects in reviews
text

 Precision Recall F-Measure

Semantic rules 0.85 0.90 0.87

139

The results show that although the set of semantic rules is not completely

accurate in detecting Aspect mentions in reviews, employing it can reasonably

accurately perform the task.

Pattern-based approaches are known for their good accuracy in detecting true

positives. However, as they are designed to capture a certain pattern from the text,

these techniques always suffer from high volume of false negatives. To alleviate this

issue, the defined rules are supported with a taxonomy of marker words which are

the words frequently observed in a sentence containing an Aspect. So, if an Aspect

candidate is captured by the semantic rules, but there is no marker in the sentence,

the word will not be considered as an Aspect.

Another reason for such a good accuracy achieved is that the aim of this

approach is to label sentences including an Aspect mention rather than capturing

exact Aspect word/phrase. Thus, false positives fallen in a sentence that already has

a true positive will be effectless.

7.3.2.6 Further Discussion on Results of Factor Extractors

Comparing the results of the neural network models shows that the accuracy of the

classifiers in sentence level is significantly better than review level. This finding

could be justified and interpreted in two ways. First, as it has been discussed earlier,

the word embeddings are contingent upon the similarity of the words used in the

review. Observing the outcome of the classifier used for identifying Issues, a

considerable number of false positives (i.e., reviews predicted as Issue which are not

really an Issue) were feature Requests and vice versa. The reviews reporting an

issue, and the ones requesting a feature, both contain sentences explaining system

and user behaviour (i.e., System Action, and User Action) making the reviews more

similar in terms of utilization of words and semantic relations among them. This

could be one of the convincing reasons for such behaviour of the classifiers.

Although its impact should be minimal, the second possible reason for such

gap in the accuracy of the two groups of neural network models could be the use of

dataset two for training and testing the first group of classifiers with lower accuracy.

Dataset two is crawled and annotated by another group of researchers for distinct

140

aims and objectives. Thus, it is inevitable that slightly different interpretations had

been used for manually identifying Issues and Feature Requests among reviews.

Moreover, domain of the applications selected in their dataset, existence of outliers,

spam reviews, burst review patterns for a critical issue or for the lack of an essential

feature are other possible treats to the validity of dataset two.

7.3.3 System Level Evaluation

Accuracy of the approaches for identifying each usefulness factor is reported in

previous sections. As components of a final system for detecting the degree of

usefulness of a given review, these five approaches are integrated in a pipeline and

formed the final system. Testing on dataset one which contains reviews labelled

with all five usefulness factors, accuracy of the final system is measured and

reported in Table 7.6. According to the decision tree represented and discussed in

section 6.5, the final decision for any given reviews would be one of the four possible

degree of usefulness. The following conditions might happen when processing a

review.

1. A fully useful review contains Aspect AND (Issue OR Feature Request) AND

(User Action AND System Action).

2. An Insufficiently Useful review contains Aspect AND (Issue OR Feature

Request) AND (User Action OR System Action).

3. A Less Useful review contains (Aspect AND Feature Request) AND (User

Action OR System Action).

4. A Useless review does not match with any of the above conditions.

So, the accuracy of the integrated system to process the reviews according to the

decision tree for the possible outputs is represented in Table 7.6.

141

The accuracy achieved at this level shows that integrating the approaches for

extracting each usefulness factor to form the final system reduces the accuracy. This

accuracy reduction could be due to the stochastic nature of neural networks.

Stochastic is a mathematical term explaining the randomness and some uncertainty

the outcome of neural networks is involved with. This algorithmic behaviour is a

fundamental concept in machine learning assisting justification and analysis of

algorithms output. Training and testing the convolutional neural network models

several times in this study, slightly different results were obtained. To report

consistent results, each model was evaluated 10 times and the average of the

reported accuracy is computed and reported in this chapter. So, the model saved and

loaded to be used in the final system might have been of a lower accuracy than what

is reported in Sections 7.3.2.1 to 7.3.2.4.

Another reason for dropping accuracy when the models are used to predict a

large amount of data could be the limited variety of samples of the target class in

training phase. Individuals use to express their views using their own language [41,

212]. Their creative brains, therefore, generate diverse types of expression for a

same concept. Training the model with huge volume of data samples will obviously

help the algorithm to learn more variety of such expressions which alleviates the

accuracy problem.

Finally, putting individual predictive models in a pipeline results in reduction

of the accuracy as the error rate of the former models will be propagated into the

Table 7.6: Accuracy of the integrated system designed for identifying the degree of
usefulness of a given review

 Precision Recall F-Measure

Fully Useful Reviews 0.5 0.57 0.53

Insufficiently Useful Reviews 0.56 0.63 0.59

Less Useful Reviews 0.49 0.58 0.53

Useless Reviews 0.61 0.69 0.65

142

later ones. Measuring the degree of usefulness of a fully Useful review, for example,

if Aspect detection approach misses the aspect mention (i.e., false negative), the

review will be labelled as Useless, though other usefulness factor extractors, such as

Issue Report, User Action, and System Action, make correct decisions. This

propagation of error rate from initial processing steps to the higher is a common

problem in text mining, but it leads to reduction of the accuracy of the final system

[213].

This is worth mentioning that, observing the outputs, in some cases, the Issue

detection model detects Issues where there is no issue (i.e., false positive), but the

selected review is a FR which is yet in the category of Useful reviews. Similarly, in

some cases, the Issue detection model detects Issues when there is no issue (i.e.,

false positive), but the review does not contain any Aspect and will be discarded. For

example: “Please improve your photo viewing experience and provide full screen

option to see photos, videos and documents.” OR “Need to have an option to select

multiple documents (and/or folders) and forward them at the same time instead of

opening each one individually!” is labelled as an Issue by the Issue detector model,

but the review is a Feature Request in fact. So, there are wrong predictions in some

modules compensated by the others when classifiers are placed in a pipeline.

7.4 Comparison with Baseline Studies

In this section, the results obtained from the component level evaluation phase are

compared to the state-of-the-art to visualise how effective each proposed approach

is in detection of the corresponding usefulness factor. There is no comparison

against the system level results as, to the best of my knowledge, this is the first time

such a system is proposed.

Related studies extracting Issues from mobile application reviews, discussed

in Chapter 2, have also proposed supervised models for this task. In [80] (S52) and

Guzman, et al. [62] (S18), deep learning models are learnt to identify problem

reports. Maalej and Nabil, [60] (S21) have also trained a Naïve Bayes classifier to

perform a similar task. Comparing to these baseline studies, the model proposed in

this study achieves an acceptable accuracy but does not outperform them yet. Table

7.7 represents this comparison. Please see Appendix I to find the papers using study

143

IDs. It is noteworthy to mention that the accuracy reported for S21 in this section is

the highest accuracy achieved by the authors’ model focusing on the text of given

reviews.

Chapter 2 has also discussed studies investigated the task of extracting Feature

Requests employing machine learning techniques. Supervised approaches have

been used in (S21, S18) to extract this factor. Table 7.8 compares the accuracy

achieved by our proposed model to the baseline approaches.

Table 7.7: Accuracy of the neural network used for identifying Issues from review
text compared to the baseline studies

 Precision Recall F-Measure

S52 (NN + problem report) 0.46 0.60 0.52

S18 (NN + Bug report & Complaint) 0.64 0.42 0.51

S21 (NB + Bug report) 0.71 0.72 0.71

This approach (CNN + Issue Report) 0.60 0.76 0.67

Table 7.8: Accuracy of the neural network used for identifying Feature Requests
from review text compared to the baseline studies

 Precision Recall F-Measure

S18 (NN + User Requests) 0.71 0.39 0.50

S21 (NB + Feature Request) 0.76 0.68 0.72

This approach (CNN +

 Feature Request)

0.67 0.78 0.72

144

Aspect is the last usefulness factor that could be compared with baseline

studies in terms of accuracy. The accuracy of our proposed approach for extraction

of Aspects is compared with the baseline studies in Table 7.9. In the first baseline

study [180] (S54), deep learning models are combined with linguistic patterns to

extract Aspects from review text. Testing their approach, the authors used reviews

for two types of products (i.e., laptop and restaurant) the average of which is

reported on Table 7.9. Rana et al., [99] (S55) used sequential patterns and opinion

lexicon, taken from [101] (S56) wherein no validation is reported, to extract noun

phrases and opinion words. then, they measured frequency of Aspect candidates to

find Aspect mentions.

As the table shows, the accuracy achieved in S55 is slightly higher than the

proposed approach in this thesis. However, there are several drawbacks with the

approach proposed in S55.

Firstly, the approach is an opinion mining technique and aims to extract user

opinions on an Aspect of a product. The Aspects discussed technically without any

opinion associated, therefore, are ignored using such approaches. Analysing app

review datasets in this research, too many samples of Aspects used in neutral

sentences were observed. A simple example for demonstrating ineffectiveness of

Table 7.9: Accuracy of the semantic rules used for identifying Aspects from review
text compared to the baseline studies

 Precision Recall F-Measure

S54 (CNN +

Linguistic patterns)

0.82 0.87 0.84

S55

(sequential patterns)

0.87 0.92 0.89

This approach

(Semantic rules)

0.85 0.90 0.87

145

such approaches for analysing app reviews is the following review containing an

Aspect and having a neutral sentiment:

“I use the navigation feature to travel overseas”

Secondly, another clue for identifying Aspects in their study or for pruning

detected Aspects to increase the recall by minimizing false positives, they took the

frequency of Aspect candidates’ occurrences in the dataset to approve them as an

Aspect mention. It might be useful when processing product reviews to find

problematic components, for example, discussed in several reviews. Analysing ap

reviews, however, it causes missing rarely mentioned Aspects. Particularly,

investigating existence of Feature Requests, the proposed Aspect might be used only

once in the whole dataset.

Thirdly, the analysed reviews in their approach are product reviews, such as

DVD players, cameras, and MP3 players, rather than mobile app reviews. Obviously,

type of the aspects used in these two domains of reviews vary significantly effecting

the accuracy of the extraction technique.

Finally, as it has been discussed in Section 2.7.1.3, Dabrowski et al. [36]

discovered in an empirical study that such approaches achieve lower effectiveness

than reported originally. Therefore, in terms of processing app reviews, the

effectiveness of the approach proposed in S55 is far below the expectations.

7.5 Conclusion

Validation of the proposed final system for measuring the usefulness of app reviews

is reported in this chapter along with individually validating its components. The

results are interpreted and justified across several sections and are compared to the

baseline studies reported comparable approaches. As this is the first research

attempt on automatically identifying User Action and System Action, there is no

comparison with baseline approaches reported in this chapter.

As the most important finding of this chapter, the results demonstrate that the

process of automating the task of extracting each of the usefulness factors proposed

in this research and integrating them as a final system is practical and achievable.

146

 Research Limitations and

Challenges

8.1 Introduction

The research reported in this thesis addresses several challenges and exposes

several limitations that suggest future research. In this chapter, the limitations and

challenges this research project was encountered during different phases are

discussed.

This chapter consists of two sections. Section 8.2 discusses details on the

limitations of this research. This is followed by a statement of the challenges our

study was tackled with in Section 8.3.

8.2 Limitations of the Approach

Observations on various datasets show that domain dependency has an inevitable

impact on the performance of app review processing approaches. Although reviews

for six apps from different domains have composed the dataset used in this research,

several domains of the existing apps are yet unexplored for this research, such as

medical apps, games, and financial apps to name a few.

Each of the domains has their own terminology and jargons making factors

extraction complicated. In some cases, the explanation of users in their review is

very similar to one of the required factors, but they are just explaining their personal

life rather than referring to the app functionality. The proposed system might not be

able to capture all these cases due to the complexity of natural language and the

unstructured reviewing platforms. The following fabricated review is an example of

capturing User Action by the proposed approach while there is no User Action in the

review.

Ali: “When I started my travel, I realised that I had forgotten to pay for my

booking. So, I used the app and paid it easily.”

147

In the above example, the user is explaining his action, but it is not a User

Action as described in Section 3.4.4. However, the proposed approach captures this

as a User Action because it is explaining an action of the user, and several key terms

such as ‘pay’, ‘booking’, and ‘travel’ are in the review that are components of an

app in many domains such as travelling, booking, etc.

The aim of this study for proposing semantic rules for extracting Aspects is to

discover reviews including an Aspect mention. These rules are crafted in a way to

meet the project aim. Thus, such semantic rules might not perform appropriately

when used in opinion mining tasks for detecting exact Aspect word/phrase without

proper customisations and adaptation.

Another limitation of the proposed approach for detecting Aspects is dealing

with negations. Negations do not considerably impact the machine learning

techniques used for extracting other usefulness factors as the models trained using

the manually coded data samples, and the word embeddings used have already

considered such relationships between words. However, the semantic rule-based

approach needs to be equipped with a negation detection technology, though

observing data samples in the corpus reveals the minimal impact of negations on

the accuracy of aspect detection rules.

Cross document processing is out of the scope of this study. Although we had

no observation of interaction between reviewers causing distribution of usefulness

factors across several reviews in the dataset, the current approach is unable to find

such relations between different reviews in order to extract and link the factors

across several revies. The following reviews are fabricated to show how a useful

review will be considered useless using the proposed system for ignoring the

relationship between revies.

Ali: “When I open the app, it freezes at the login page, and I cannot even enter

my username and password”

Zeynab: “I have the same issue Ali, but mine accept username and password,

then freezes”

148

One of the required usefulness factors for each review to be considered as

useful is Aspect. In the reviews above the aspect mention ‘login page’ is in Ali’s

review, but it is referred to in Zeynab’s review as well. However, the proposed

approach is unable to capture Zeynab’s review as useful.

The F-Measure of the proposed approaches for detecting Feature Requests,

User Actions, and System Actions are currently state-of-the-art. Performance of the

Issue and Aspect detector approaches are also considered as good with the F-

Measures equal to 0.67 and 0.87, respectively. However, there is still between %10

to %33 wrong predictions with the approaches. Propagating these errors further

has caused lower accuracy for the integrated final system.

8.3 Research Challenges

The research presented in this thesis was posed to a number of unique challenges,

mainly related to the proposed approaches for extracting usefulness factors from

app reviews. These challenges are discussed in the following paragraphs.

Sensitivity and complexity of Neural Network hyperparameters. The main

technology used in this research is Neural Network which had better performance

comparing to other supervised machine learning techniques used for processing

natural language [179, 214]. However, in terms of variety of hyperparameters to be

tuned, the networks are significantly sensitive and complicated. Configuring a CNN

model for text processing, Zhang and Byron [191] analysed the sensitivity of Neural

Network hyperparameters. They argued that CNN-based approaches are very

sensitive to many free parameters causing difficulties in repeating experiments for

practitioners.

Using invented abbreviations for writing reviews. Observing the dataset, a

considerable percentage of reviews were found written in shortened word forms.

Some people use to shorten the words into ungrammatical abbreviations whenever

possible to type less characters. This trend initiated when there was text limitation

in some platforms. There are several words that can be abbreviated in English such

as That=’dat’, The = ‘d’, Please = ‘plz’, Friend = ‘frnd’, Your = ‘ur’, and Message =

‘msg’, to name a few. This type of writing defects the training and testing processes

149

in machine learning based approaches, causes pattern matching mistakes in rule-

based ones, and results in redundant outputs. Unfortunately, as these abbreviations

are invented by the reviewers, detecting them using existing NLP and text

processing tools is almost impossible. In this research, a word replacing heuristic

was developed to search for frequent abbreviations and correct them as many of

them are frequently repeated. However, as the human brain is creative, several odd

cases were not captured by the heuristic and manually corrected.

Conflicting app Aspects with real world objects. One of the challenges in

extracting app Aspects is detecting aspects having similar names to real world

things. For example, Pintrest has an Aspect called ‘pin’ which is expected to be

captured as an Aspect when it is occurred in Pinterest reviews and not captured

otherwise. Similarly, the word ‘chat’ is used as an Aspect in Whatsapp reviews but

as conversation in other app reviews. In the following review, as another challenging

example, although the word ‘note’ is one of the Evernote components, it is not an

Aspect.

“Instead of having multiple paper notebooks or little notes everywhere,

everything I need to remember or reference goes into Evernote. This will be my tool

for going paperless.”

As there are lots of these conflicting Aspects, detecting them is challenging

because several text processing techniques such as keywords become ineffective.

This problem was alleviated in this study defining semantic rules to use

relationships between different words in a sentence to decide on the role of a word.

However, the issue is yet challenging.

Error-prone nature of natural language. In this research, dependency

relations between words are combined with part of speeches of them to define

accurate rules for identifying Aspects. The reviews are written by human and might

not go through grammar and spell-checking systems or are corrected by the

automatic spell-checking systems inappropriately. This fact affects the accuracy of

the proposed approach. For example, ‘upload’ is tagged as a Verb in the following

review taken from our dataset because the word ‘an’ is used rather than the correct

150

word ‘and’. The POS tagger will tag ‘upload’ as a Noun if we correct the mistake and

change the word ‘and’ to ‘an’.

“…also and upload to Facebook would be as equally wonderful for the one

place stop to go to.”

Grammar mistakes. As the reviewing facility is provided by global platforms,

English is second language of many users posting English reviews for mobile apps.

Analysing the dataset used in this research, several sentences where found using

incorrect grammar that have not been captured by grammar exception detectors.

Our manual analysis reveals that the grammar used in the review is either taken

from individuals’ first language which is not English, or due to the reviewer’s

language barriers. The following review, for example, is not identified by automatic

grammar correction tools.

“But there is one suggestion is you that have include chat functionality.”

8.4 Conclusion

The research experiment reported in this thesis has encountered several limitation

and challenges. These limitations and challenges are discussed in this chapter to

provide future practitioners and researchers from the same domain with insights

and cautions while conducting experiments.

151

 Conclusion

9.1 Introduction

In this thesis, an approach for efficiently measuring usefulness of mobile application

reviews has been defined. Carefully applying the discretion of mobile application

developers and requirement engineers, five usefulness factors were defined to

quantify the task of measuring usefulness of application reviews. For reality

checking and investigating the feasibility of automating the process of detecting

usefulness reviews using these factors, an NLP approach was proposed for

extracting each factor and the results were checked against real world reviews and

human judgements. In Chapter 1, a set of research questions is defined. How this

research answered these research questions is discussed in Section 9.2. This is

followed by a number of future research directions discussed in Section 9.3.

9.2 Research Questions

RQ1. How to effectively measure the usefulness of app reviews? What usefulness factors

could be used?

In this research, the task of identifying usefulness factors was performed in

two phases to fulfil adjective one. First, conducting a systematic literature review,

related papers studying app review analysis for software development were

selected and investigated to understand how researchers have measured the

usefulness of an app review for software evolution. Besides, research outputs from

projects investigating the quality of software artifacts, such as user needs, bug

reports, app testing results, and requirement statements were analysed to identify

any possible metric to be used for measuring the usefulness of natural language

reviews from developers’ viewpoint. The output of this phase was a preliminary list

of 12 usefulness factors for measuring the usefulness of app reviews. Details of this

phase are reported and discussed in Chapter 3.

152

The second phase of this task was to seek advice and suggestions from

experienced developers and requirements engineers for any factors. This phase is

discussed in sections 428 and 4.2.9.

RQ2. How to validate the proposed factors for measuring the usefulness of app reviews?

To fulfil objective two which is designed to address this research question, six

well-skilled mobile app developers were invited to a focus group discussion. The list

of identified factors was discussed and validated in the FGD. The outcome of this

task was a set of five approved usefulness factors. Details of this phase are reported

and discussed in Chapter 4.

RQ3. How to automatically extract the usefulness factors from the text of app reviews?

To address this research question, the annotated dataset discussed in Section

7.2 was carefully analysed to investigate possibility of extracting the usefulness

factors automatically. Considering all specifics of each usefulness factor, proper

extraction technique was proposed. To extract Issues and Feature requests, CNN

models were applied with word embeddings as word representation. The similar

approach was used for extracting User Action and System Action, but the analysis

was at sentence level. Details of the extraction methods are explained in Sections

6.4.3 and 6.4.4. Finally, Abstracts were extracted using semantic rules discussed in

Section 6.4.5.

RQ4. How to automatically detect useful reviews using the usefulness factors?

Objective 4 was designed in this project to address this research question. To

fulfil objective 4, the individual approaches proposed for automatically extracting

each of the usefulness factors gathered in a pipeline to form an integrated system

for measuring the usefulness of given reviews. The measurement was done using

the decision tree discussed in Section 6.5.

RQ5. How to evaluate the proposed automatic approaches?

To evaluate the individual extraction approaches, a ground truth dataset was

created in Section 7.2. Each of the approaches were then tested against the ground

truth datasets using the evaluation metrics (i.e., Precision, Recall, and F-Measure)

153

defined in Section 7.3.1. Results of evaluating the approaches are discussed in detail

in Chapter 7. The results show that the approaches perform well.

The final system composed of these individual approaches for measuring the

usefulness of given reviews was also tested on the ground truth dataset. Similar

validation metrics were also used for the evaluation. Results show that the

integrated system has a reasonable accuracy with potential for further

improvement. An important finding at this point is that the automation task of

extracting the proposed usefulness factors is feasible as the implementation phase

of this research demonstrates.

9.3 Future work

9.3.1 Tool Extensions and Improvements

One direction of future work could be extending each individual approach

proposed for extracting each of the usefulness factors to improve the accuracy and

effectiveness. Integrating these individual approaches to form a system for

identifying useful reviews, such improvements will increase the overall accuracy of

the system.

The neural network-based models trained for extracting Issues, Feature

Requests, User Actions, and System Actions could be extended further by identifying

and engineering effective features from review text and using them as classification

attributes to improve the accuracy of the classifier. Name entities, semantic roles,

frequently repeated keywords, readability of reviews, and Bag of Words (BoW) are

few examples of such features. These supervised models can also be further

improved by employing other available types of information coming with a review.

For example, rating given to the target app is one of the useful clues in identifying

Issues as problematic apps usually receive low rates[18, 49]. Available data and

metadata fields attached to a review are discussed in Section 5.2.

Integrating these supervised models with related complementary approaches

to form a hybrid approach is another possibility of improvement. For example,

results obtained from the CNN models could be further investigated using syntactic

154

rules and heuristics. The complementary approaches can also be computed on

training data and fed into the model to enrich the training phase. The last suggested

improvement for such convolutional neural network models is designing much

deeper architectures for the networks. Comparing the performance of existing

architectures with limited layers to the ones suggested by Conneau et al, [215] with

more than 100 layers demonstrates the privilege of the deeper architectures

designed for processing natural language text.

In terms of extending the sematic rule-based approach proposed in this

research for identifying Aspects, one future improvement could be exploring more

in-dept relationships among words, sentences, and semantics in reviews not only to

refine existing rules accordingly, but also to define new rules. Similar to the

supervised approaches discussed above, combining with other approaches, such as

heuristics, statistical methods, and machine learning techniques, rule-based

approaches can also be part of a hybrid approach to improve the performance.

9.3.2 Expanding the Current Research

One of the future research directions in identification of constructive user

requirements for software development from user generated feedback is to explore

other sources of user feedback. Apart from mobile application reviews posted on

opinion sharing websites such as Google Play and App Store, other channels are

available to be mined for mobile application constructive user feedback. In recent

research efforts, relevant information for software companies is observed and

investigated in mobile application related tweets [148, 216, 217], and software

forums [149, 218]. The quality factors defined for extracting useful reviews,

approaches proposed for identifying each factor, and the proposed system for

extracting useful reviews could be adopted for mining and analysing such channels

to identify useful information for mobile application evolution.

The performance evaluation of the proposed approach is reported in two

levels (i.e., component level and system level) in Chapter 7. It is expected that either

the final system, or any of its individual components can be used for analysing

reviews in other languages. Although the grammar and semantic relationships used

in other languages varies considerably, available tools and Python libraries to elicit

155

such syntactic roles and semantic dependencies facilitate the customisation of the

system.

Facilitating the requirements engineering task, the next step after automating

the process of extracting user needs from app reviews would be transforming them

to requirements. Very similar to the requirements engineering phases, identified

user needs are to be processed further (i.e., removing redundant needs,

summarizing topics, and classifying them into further sub-categories). Finally, the

prepared requirements are to be automatically prioritised to be incorporated in the

next releases of the app versions. Effective automated approaches at this step is a

promising future work for transforming user needs to requirement statements and

prioritizing them with respect to developers’ viewpoint

9.4 Summary

This thesis aims to address the issue of ignoring developers’ perspective in

identification of useful app reviews for software evolution. To achieve this,

experienced mobile app developers were employed to identify five usefulness

factors for measuring the usefulness of app reviews with respect to developers’

viewpoint. To demonstrate how achievable is the automation of the usefulness

factors, an NLP based approach was proposed for extracting each of the factors.

Finally, the individual factor extractors were integrated to form a final system for

measuring the usefulness of app reviews. In its first section, this chapter answers

the research questions defined in Chapter 1. Several related chapters are cited for

more details. Several future research directions are also provided in this chapter.

156

References

[1] S. Wilson, M. Bekker, P. Johnson, and H. Johnson, "Helping and hindering user involvement—a tale of
everyday design," in Proceedings of the ACM SIGCHI Conference on Human factors in computing systems,

1997, pp. 178-185.

[2] S. Kujala, M. Kauppinen, L. Lehtola, and T. Kojo, "The role of user involvement in requirements quality and
project success," in 13th IEEE International Conference on Requirements Engineering (RE'05), 2005, pp.

75-84: IEEE.

[3] G. Ortega and A. Emitza, "Mining User Reviews from Mobile Applications for Software Evolution,"

Technische Universität München, 2015.

[4] J. Blomberg, M. Burrell, and G. Guest, "An ethnographic approach to design," Human-Computer Interaction,

pp. 71-94, 2009.

[5] J. Karat, "Evolving the scope of user-centered design," Communications of the ACM, vol. 40, no. 7, pp. 33-

38, 1997.

[6] E. Guzman and B. Bruegge, "Towards emotional awareness in software development teams," in Proceedings

of the 2013 9th joint meeting on foundations of software engineering, 2013, pp. 671-674.

[7] S. Kujala, "User involvement: a review of the benefits and challenges," Behaviour & information technology,

vol. 22, no. 1, pp. 1-16, 2003.

[8] L. Damodaran, "User involvement in the systems design process-a practical guide for users," Behaviour &

information technology, vol. 15, no. 6, pp. 363-377, 1996.

[9] K. El Emam and N. H. Madhavji, "A field study of requirements engineering practices in information systems

development," in Proceedings of 1995 IEEE International Symposium on Requirements Engineering (RE'95),
1995, pp. 68-80: IEEE.

[10] H. Lieberman, F. Paternò, M. Klann, and V. Wulf, "End-user development: An emerging paradigm," in End

user development: Springer, 2006, pp. 1-8.

[11] C. Jones, "End user programming," Computer, vol. 28, no. 9, pp. 68-70, 1995.

[12] K. El Emam, S. Quintin, and N. H. Madhavji, "User participation in the requirements engineering process:

An empirical study," Requirements engineering, vol. 1, no. 1, pp. 4-26, 1996.

[13] B. Bruegge and A. H. Dutoit, "Object-‐Oriented Software Engineering. Using UML, Patterns, and Java,"

Learning, vol. 5, no. 6, p. 7, 2009.

[14] W. Maalej and D. Pagano, "On the socialness of software," in 2011 IEEE Ninth International Conference on

Dependable, Autonomic and Secure Computing, 2011, pp. 864-871: IEEE.

[15] E. L. Wagner and G. Piccoli, "Moving beyond user participation to achieve successful IS design,"

Communications of the ACM, vol. 50, no. 12, pp. 51-55, 2007.

[16] A. Heydari, M. ali Tavakoli, N. Salim, and Z. Heydari, "Detection of review spam: A survey," Expert Systems

with Applications, vol. 42, no. 7, pp. 3634-3642, 2015.

[17] P. Mikalef, K. Sharma, I. O. Pappas, and M. Giannakos, "Seeking information on social commerce: An

examination of the impact of user-and marketer-generated content through an eye-tracking study,"
Information Systems Frontiers, pp. 1-14, 2020.

[18] H. Xia, X. Pan, W. An, and Z. Zhang, "Can Online Rating Reflect Authentic Customer Purchase Feelings?

Understanding How Customer Dissatisfaction Relates to Negative Reviews," Journal of Computer

Information Systems, pp. 1-14, 2019.

[19] A. Golmohammadi, A. S. Mattila, and D. K. Gauri, "Negative online reviews and consumers’ service

consumption," Journal of Business Research, vol. 116, pp. 27-36, 2020.

157

[20] F. Dalpiaz and M. Parente, "RE-SWOT: from user feedback to requirements via competitor analysis," in

International Working Conference on Requirements Engineering: Foundation for Software Quality, 2019,

pp. 55-70: Springer.

[21] F. Palomba et al., "Crowdsourcing user reviews to support the evolution of mobile apps," Journal of Systems
and Software, vol. 137, pp. 143-162, 2018.

[22] W. Martin, "Causal impact for app store analysis," in Proceedings of the 38th International Conference on

Software Engineering Companion, 2016, pp. 659-661.

[23] A. Heydari, M. Tavakoli, and N. Salim, "Detection of fake opinions using time series," Expert Systems with
Applications, vol. 58, pp. 83-92, 2016.

[24] Z. Ismail, A. Heydari, M. Tavakoli, and N. Salim, "Incorporating Author’s Activeness in Online Discussion

in Thread Retrieval Model," ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 2, pp. 473-479,

2016.

[25] A. Heydari, M. Tavakoli, Z. Ismail, and N. Salim, "Leveraging Quality Metrics in Voting Model Based

Thread Retrieval," World Academy of Science, Engineering and Technology, International Journal of

Computer, Electrical, Automation, Control and Information Engineering, vol. 10, no. 1, pp. 117-123, 2016.

[26] M. Fernández-Gavilanes, T. Álvarez-López, J. Juncal-Martínez, E. Costa-Montenegro, and F. J. González-
Castaño, "Unsupervised method for sentiment analysis in online texts," Expert Systems with Applications,

vol. 58, pp. 57-75, 2016.

[27] S. Venkatakrishnan, A. Kaushik, and J. K. Verma, "Sentiment analysis on google play store data using deep

learning," in Applications of Machine Learning: Springer, 2020, pp. 15-30.

[28] S. Ranjan and S. Mishra, "Comparative Sentiment Analysis of App Reviews," in 2020 11th International

Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020, pp. 1-7: IEEE.

[29] D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, "Detection of opinion spam based on anomalous rating

deviation," Expert Systems with Applications, vol. 42, no. 22, pp. 8650-8657, 2015.

[30] L. You, Q. Peng, Z. Xiong, D. He, M. Qiu, and X. Zhang, "Integrating aspect analysis and local outlier factor

for intelligent review spam detection," Future Generation Computer Systems, vol. 102, pp. 163-172, 2020.

[31] M. Z. Asghar, A. Ullah, S. Ahmad, and A. Khan, "Opinion spam detection framework using hybrid

classification scheme," Soft computing, vol. 24, no. 5, pp. 3475-3498, 2020.

[32] M. Castelli, L. Manzoni, L. Vanneschi, and A. Popovič, "An expert system for extracting knowledge from

customers’ reviews: The case of Amazon. com, Inc," Expert Systems with Applications, vol. 84, pp. 117-126,

2017.

[33] R. Collado-Borrell, V. Escudero-Vilaplana, C. Villanueva-Bueno, A. Herranz-Alonso, and M. Sanjurjo-Saez,
"Features and functionalities of smartphone apps related to COVID-19: systematic search in app stores and

content analysis," Journal of medical Internet research, vol. 22, no. 8, p. e20334, 2020.

[34] A. Al-Subaihin, F. Sarro, S. Black, and L. Capra, "Empirical comparison of text-based mobile apps similarity

measurement techniques," Empirical Software Engineering, vol. 24, no. 6, pp. 3290-3315, 2019.

[35] K. Srisopha, C. Phonsom, M. Li, D. Link, and B. Boehm, "On Building an Automatic Identification of

Country-Specific Feature Requests in Mobile App Reviews: Possibilities and Challenges," in Proceedings of

the IEEE/ACM 42nd International Conference on Software Engineering Workshops, 2020, pp. 494-498.

[36] J. Dąbrowski, E. Letier, A. Perini, and A. Susi, "Mining User Opinions to Support Requirement Engineering:
An Empirical Study," in International Conference on Advanced Information Systems Engineering, 2020, pp.

401-416: Springer.

[37] A. AlSubaihin, F. Sarro, S. Black, L. Capra, and M. Harman, "App store effects on software engineering

practices," IEEE Transactions on Software Engineering, 2019.

[38] A. A. Al-Subaihin and F. Sarro, "Exploring The Use of Genetic Algorithm Clustering for Mobile App

Categorisation," in International Symposium on Search Based Software Engineering, 2020, pp. 181-187:

Springer.

158

[39] M. Tavakoli, L. Zhao, A. Heydari, and G. Nenadić, "Extracting useful software development information

from mobile application reviews: A survey of intelligent mining techniques and tools," Expert Systems with

Applications, 2018.

[40] A. Di Sorbo, G. Grano, C. Aaron Visaggio, and S. Panichella, "Investigating the criticality of user‐reported
issues through their relations with app rating," Journal of Software: Evolution and Process, p. e2316, 2020.

[41] C. Wang, M. Daneva, M. van Sinderen, and P. Liang, "A systematic mapping study on crowdsourced

requirements engineering using user feedback," Journal of software: Evolution and Process, vol. 31, no. 10,

p. e2199, 2019.

[42] N. Genc-Nayebi and A. Abran, "A Systematic Literature Review: Opinion Mining Studies from Mobile App

Store User Reviews," Journal of Systems and Software, 16/11/2016 2016.

[43] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, "A survey of app store analysis for software

engineering," IEEE Transactions on Software Engineering, 2016.

[44] Barbara Kitchenham, Stuart Charters, David Budgen, Pearl Brereton, and M. Turner, "Guidelines for

performing systematic literature reviews in software engineering," in Technical report, Ver. 2.3 EBSE

Technical Report. EBSE, 2007.

[45] H. Boeije, "A purposeful approach to the constant comparative method in the analysis of qualitative
interviews," Quality & quantity, vol. 36, no. 4, pp. 391-409, 2002.

[46] E. Ha and D. Wagner, "Do android users write about electric sheep? examining consumer reviews in google

play," in Consumer Communications and Networking Conference (CCNC), 2013 IEEE, 2013, pp. 149-157:

IEEE.

[47] C. Iacob, V. Veerappa, and R. Harrison, "What are you complaining about?: a study of online reviews of

mobile applications," in Proceedings of the 27th International BCS Human Computer Interaction

Conference, 2013, p. 29: British Computer Society.

[48] D. Pagano and W. Maalej, "User feedback in the appstore: An empirical study," in 21st IEEE international
requirements engineering conference (RE), 2013 pp. 125-134: IEEE, 2013

[49] H. Khalid, "On identifying user complaints of iOS apps," in 2013 35th International Conference on Software

Engineering (ICSE), 2013, pp. 1474-1476: IEEE.

[50] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, "What do mobile app users complain about?," IEEE
Software, vol. 32, no. 3, pp. 70-77, 2014.

[51] M. Khalid, M. Asif, and U. Shehzaib, "Towards improving the quality of mobile app reviews," International

Journal of Information Technology and Computer Science (IJITCS), vol. 7, no. 10, p. 35, 2015.

[52] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, "Why people hate your app: Making sense of user
feedback in a mobile app store," in Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2013, pp. 1276-1284: ACM.

[53] A. Truelove, F. N. Chowdhury, O. Gnawali, and M. A. Alipour, "Topics of concern: identifying user issues

in reviews of IoT apps and devices," in 2019 IEEE/ACM 1st International Workshop on Software Engineering
Research & Practices for the Internet of Things (SERP4IoT), 2019, pp. 33-40: IEEE.

[54] L. V. Galvis Carreno and K. Winbladh, "Analysis of user comments: an approach for software requirements

evolution," in Proceedings of the International Conference on Software Engineering, 2013 pp. 582-591:

IEEE Press.

[55] E. Platzer, "Opportunities of automated motive-based user review analysis in the context of mobile app

acceptance," in CECIIS-2011, 2011.

[56] J. Oh, D. Kim, U. Lee, J.-G. Lee, and J. Song, "Facilitating developer-user interactions with mobile app

review digests," in CHI'13 Extended Abstracts on Human Factors in Computing Systems, 2013, pp. 1809-
1814: ACM.

[57] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, "AR-miner: mining informative reviews for developers

from mobile app marketplace," in Proceedings of the 36th International Conference on Software

Engineering, 2014, pp. 767-778: ACM.

159

[58] E. Guzman and W. Maalej, "How do users like this feature? a fine grained sentiment analysis of app reviews,"

in 2014 IEEE 22nd international requirements engineering conference (RE), 2014, pp. 153-162: IEEE.

[59] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan, "Analyzing and automatically labelling the types of user

issues that are raised in mobile app reviews," Empirical Software Engineering, vol. 21, no. 3, pp. 1067-1106,
2016.

[60] W. Maalej and H. Nabil, "Bug report, feature request, or simply praise? on automatically classifying app

reviews," in 2015 IEEE 23rd international requirements engineering conference (RE), 2015, pp. 116-125:

IEEE.

[61] W. Maalej, Z. KurtanoviÄ‡, H. Nabil, and C. Stanik, "On the automatic classification of app reviews,"

Requirements Engineering, vol. 21, no. 3, pp. 311-331, 2016.

[62] E. Guzman, M. El-Haliby, and B. Bruegge, "Ensemble methods for app review classification: An approach

for software evolution (N)," in Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on, 2015, pp. 771-776: IEEE.

[63] M. Tavakoli, A. Heydari, Z. Ismail, and N. Salim, "A Framework for Review Spam Detection Research,"

World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, vol. 10, no. 1, pp. 67-71, 2015.

[64] L. Wang, H. Nakagawa, and T. Tsuchiya, "Opinion Analysis and Organization of Mobile Application User

Reviews," in REFSQ Workshops, 2020.

[65] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, "How can i improve my

app? classifying user reviews for software maintenance and evolution," in Software Maintenance and
Evolution (ICSME), IEEE International Conference on, 2015 pp. 281-290: IEEE.

[66] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, "ARdoc: app reviews

development oriented classifier," in Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2016, pp. 1023-1027: ACM.

[67] J. Buchan, M. Bano, D. Zowghi, and P. Volabouth, "Semi-automated extraction of new requirements from

online reviews for software product evolution," in 2018 25th Australasian Software Engineering Conference

(ASWEC), 2018, pp. 31-40: IEEE.

[68] A. Di Sorbo et al., "What would users change in my app? summarizing app reviews for recommending
software changes," in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2016, pp. 499-510: ACM.

[69] N. Jha and A. Mahmoud, "Mining User Requirements from Application Store Reviews Using Frame

Semantics," in International Working Conference on Requirements Engineering: Foundation for Software
Quality, 2017, pp. 273-287: Springer.

[70] N. Jha and A. Mahmoud, "MARC: A Mobile Application Review Classifier," presented at the International

Working Conference on Requirements Engineering: Foundation for Software Quality, 2017.

[71] N. Jha and A. Mahmoud, "Using frame semantics for classifying and summarizing application store reviews,"
Empirical Software Engineering, vol. 23, no. 6, pp. 3734-3767, 2018.

[72] N. Jha and A. Mahmoud, "Mining non-functional requirements from App store reviews," Empirical Software

Engineering, vol. 24, no. 6, pp. 3659-3695, 2019.

[73] Z. Kurtanović and W. Maalej, "Mining user rationale from software reviews," in Requirements Engineering
Conference (RE), 2017 IEEE 25th International, 2017, pp. 61-70: IEEE.

[74] F. Palomba et al., "User reviews matter! tracking crowdsourced reviews to support evolution of successful

apps," in Software Maintenance and Evolution (ICSME), 2015 IEEE International Conference on, 2015, pp.

291-300: IEEE.

[75] A. Al-Hawari, H. Najadat, and R. Shatnawi, "Classification of application reviews into software maintenance

tasks using data mining techniques," Software Quality Journal, pp. 1-37, 2020.

[76] I. Triguero et al., "KEEL 3.0: an open source software for multi-stage analysis in data mining," 2017.

160

[77] J. Arunadevi, S. Ramya, and M. R. Raja, "A study of classification algorithms using Rapidminer,"

International Journal of Pure and Applied Mathematics, vol. 119, no. 12, pp. 15977-15988, 2018.

[78] R. Mans, W. M. van der Aalst, and H. Verbeek, "Supporting Process Mining Workflows with RapidProM,"

BPM (Demos), vol. 56, 2014.

[79] N. Al Kilani, R. Tailakh, and A. Hanani, "Automatic Classification of Apps Reviews for Requirement

Engineering: Exploring the Customers Need from Healthcare Applications," in 2019 Sixth International

Conference on Social Networks Analysis, Management and Security (SNAMS), 2019, pp. 541-548: IEEE.

[80] C. Stanik, M. Haering, and W. Maalej, "Classifying multilingual user feedback using traditional machine
learning and deep learning," in 2019 IEEE 27th International Requirements Engineering Conference

Workshops (REW), 2019, pp. 220-226: IEEE.

[81] C. Iacob and R. Harrison, "Retrieving and analyzing mobile apps feature requests from online reviews," in

Mining Software Repositories (MSR), 10th IEEE Working Conference on, 2013 pp. 41-44: IEEE.

[82] M. van Vliet, E. C. Groen, F. Dalpiaz, and S. Brinkkemper, "Identifying and Classifying User Requirements

in Online Feedback via Crowdsourcing," in International Working Conference on Requirements

Engineering: Foundation for Software Quality, 2020, pp. 143-159: Springer.

[83] M. Glinz, "On non-functional requirements," in 15th IEEE International Requirements Engineering
Conference (RE 2007), 2007, pp. 21-26: IEEE.

[84] C. W. Lee, S. Licorish, S. MacDonell, P. Patel, and T. Savarimuthu, "They'll Know It When They See It:

Analyzing Post-Release Feedback from the Android Community," InProc 21st Amer Conf. Info. Sys.-AMCIS.

Puerto Rico: AISeL. pp. 1 2015 (Vol. 11). 2015.

[85] S. Moghaddam, "Beyond sentiment analysis: mining defects and improvements from customer feedback," in

European Conference on Information Retrieval, 2015, pp. 400-410: Springer.

[86] H. Yang and P. Liang, "Identification and Classification of Requirements from App User Reviews," in ACM

International conference on Software engineering and knowledge engineering (SEKE), 2015, pp. 7-12.

[87] J. Zhang, Y. Wang, and T. Xie, "Software feature refinement prioritization based on online user review

mining," Information and Software Technology, vol. 108, pp. 30-34, 2019.

[88] M. Thelwall, K. Buckley, and G. Paltoglou, "Sentiment strength detection for the social web," Journal of the

Association for Information Science and Technology, vol. 63, no. 1, pp. 163-173, 2012.

[89] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of machine Learning research,

vol. 3, no. Jan, pp. 993-1022, 2003.

[90] S. S. Sohail, J. Siddiqui, and R. Ali, "Feature extraction and analysis of online reviews for the

recommendation of books using opinion mining technique," Perspectives in Science, vol. 8, pp. 754-756,
2016.

[91] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, "Mining User Opinions in Mobile App Reviews: A

Keyword-Based Approach (T)," in Automated Software Engineering (ASE), 2015 30th IEEE/ACM

International Conference on, 2015, pp. 749-759: IEEE.

[92] X. Gu and S. Kim, "" What Parts of Your Apps are Loved by Users?"(T)," in Automated Software

Engineering (ASE), 2015 30th IEEE/ACM International Conference on, 2015, pp. 760-770: IEEE.

[93] H. Malik, E. M. Shakshuki, and W.-S. Yoo, "Comparing mobile apps by identifying ‘Hot’features," Future

Generation Computer Systems, vol. 107, pp. 659-669, 2020.

[94] S. Poria, E. Cambria, L.-W. Ku, C. Gui, and A. Gelbukh, "A rule-based approach to aspect extraction from

product reviews," in Proceedings of the second workshop on natural language processing for social media

(SocialNLP), 2014, pp. 28-37.

[95] I. Cruz, A. F. Gelbukh, and G. Sidorov, "Implicit Aspect Indicator Extraction for Aspect based Opinion
Mining," Int. J. Comput. Linguistics Appl., vol. 5, no. 2, pp. 135-152, 2014.

[96] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

161

[97] E. Cambria, D. Olsher, and D. Rajagopal, "SenticNet 3: a common and common-sense knowledge base for

cognition-driven sentiment analysis," in Proceedings of the twenty-eighth AAAI conference on artificial

intelligence, 2014, pp. 1515-1521.

[98] S. Poria, E. Cambria, and A. Gelbukh, "Aspect extraction for opinion mining with a deep convolutional neural
network," Knowledge-Based Systems, vol. 108, pp. 42-49, 2016.

[99] T. A. Rana and Y.-N. Cheah, "A two-fold rule-based model for aspect extraction," Expert systems with

applications, vol. 89, pp. 273-285, 2017.

[100] T. Ahmad Rana, "A Sequential Pattern Rule-Based Approach For Explicit And Implicit Aspect Extraction
From Online Product Reviews," Universiti Sains Malaysia, 2017.

[101] T. A. Rana and Y.-N. Cheah, "Hybrid rule-based approach for aspect extraction and categorization from

customer reviews," in 2015 9th International Conference on IT in Asia (CITA), 2015, pp. 1-5: IEEE.

[102] T. Guo, B. Guo, Y. Ouyang, and Z. Yu, "Mining and Analyzing User Feedback from App Reviews: An
Econometric Approach," in SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, 2018, pp. 841-848.

[103] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M. Mitchell, "Coupled semi-supervised

learning for information extraction," in Proceedings of the third ACM international conference on Web

search and data mining, 2010, pp. 101-110.

[104] M. Harman, Y. Jia, and Y. Zhang, "App store mining and analysis: MSR for app stores," in Proceedings of

the 9th IEEE Working Conference on Mining Software Repositories, 2012, pp. 108-111: IEEE Press.

[105] L. Hoon, R. Vasa, J.-G. Schneider, and K. Mouzakis, "A preliminary analysis of vocabulary in mobile app

user reviews," in Proceedings of the 24th Australian Computer-Human Interaction Conference, 2012, pp.
245-248: ACM.

[106] R. Vasa, L. Hoon, K. Mouzakis, and A. Noguchi, "A preliminary analysis of mobile app user reviews," in

Proceedings of the 24th Australian Computer-Human Interaction Conference, 2012, pp. 241-244: ACM.

[107] E. Noei, F. Zhang, and Y. Zou, "Too Many User-Reviews, What Should App Developers Look at First?,"
IEEE Transactions on Software Engineering, 2019.

[108] U. Grömping, "Relative importance for linear regression in R: the package relaimpo," Journal of statistical

software, vol. 17, no. 1, pp. 1-27, 2006.

[109] B. E. Feldman, "Relative importance and value," Available at SSRN 2255827, 2005.

[110] H. Guo and M. P. Singh, "Caspar: extracting and synthesizing user stories of problems from app reviews," in

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, 2020, pp. 628-640.

[111] D. Cer et al., "Universal sentence encoder," arXiv preprint arXiv:1803.11175, 2018.

[112] C. Gao, J. Zeng, M. R. Lyu, and I. King, "Online app review analysis for identifying emerging issues," in
Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 48-58.

[113] C. Gao et al., "Emerging app issue identification from user feedback: experience on wechat," in 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), 2019, pp. 279-288: IEEE.

[114] M. J. Zaki, "Scalable algorithms for association mining," IEEE transactions on knowledge and data

engineering, vol. 12, no. 3, pp. 372-390, 2000.

[115] C. Tao, H. Guo, and Z. Huang, "Identifying security issues for mobile applications based on user review

summarization," Information and Software Technology, vol. 122, p. 106290, 2020.

[116] Y. Zhou, Y. Su, T. Chen, Z. Huang, H. C. Gall, and S. Panichella, "User review-based change file localization

for mobile applications," IEEE Transactions on Software Engineering, 2020.

[117] R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a data set via the gap statistic,"

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411-423, 2001.

[118] A. Begel and T. Zimmermann, "Analyze this! 145 questions for data scientists in software engineering," in

Proceedings of the 36th International Conference on Software Engineering, 2014, pp. 12-23: ACM.

162

[119] Y. Liu, J. Jin, P. Ji, J. A. Harding, and R. Y. Fung, "Identifying helpful online reviews: a product designer’s

perspective," Computer-Aided Design, vol. 45, no. 2, pp. 180-194, 2013.

[120] J. Qi, Z. Zhang, S. Jeon, and Y. Zhou, "Mining customer requirements from online reviews: A product

improvement perspective," Information & Management, vol. 53, no. 8, pp. 951-963, 2016.

[121] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, "Lessons from applying the systematic

literature review process within the software engineering domain," Journal of systems and software, vol. 80,

no. 4, pp. 571-583, 2007.

[122] W. Claes, R. Per, H. Martin, C. Magnus, R. Björn, and A. Wesslén, "Experimentation in software
engineering: an introduction," Online Available: http://books. google. com/books, 2000.

[123] M. Gasparic and A. Janes, "What recommendation systems for software engineering recommend: A

systematic literature review," Journal of Systems and Software, vol. 113, pp. 101-113, 2016.

[124] S. Krishnamoorthy, "Linguistic features for review helpfulness prediction," Expert Systems with
Applications, vol. 42, no. 7, pp. 3751-3759, 2015.

[125] T. L. Ngo-Ye, A. P. Sinha, and A. Sen, "Predicting the helpfulness of online reviews using a scripts-enriched

text regression model," Expert Systems with Applications, vol. 71, pp. 98-110, 2017.

[126] H. Zhang and M. A. Babar, "On searching relevant studies in software engineering," in 14th International
Conference on Evaluation and Assessment in Software Engineering (EASE), 2010, pp. 1-10.

[127] L. Li et al., "Static analysis of android apps: A systematic literature review," Information and Software

Technology, vol. 88, pp. 67-95, 2017.

[128] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, "Automated testing of android apps: A systematic
literature review," IEEE Transactions on Reliability, vol. 68, no. 1, pp. 45-66, 2018.

[129] Y. Chen, "Convolutional neural network for sentence classification," University of Waterloo, 2015.

[130] J. Liu, Y. Cao, C.-Y. Lin, Y. Huang, and M. Zhou, "Low-quality product review detection in opinion

summarization," in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), 2007.

[131] J. Jin and Y. Liu, "How to interpret the helpfulness of online product reviews: bridging the needs between

customers and designers," in Proceedings of the 2nd international workshop on Search and mining user-

generated contents, 2010, pp. 87-94: ACM.

[132] D. Chen, D. Zhang, and A. Liu, "Intelligent Kano classification of product features based on customer

reviews," CIRP Annals, vol. 68, no. 1, pp. 149-152, 2019.

[133] A. J. Ko, B. A. Myers, and D. H. Chau, "A linguistic analysis of how people describe software problems," in

Visual Languages and Human-Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on, 2006, pp. 127-
134: IEEE.

[134] A. Reyes-Menendez, J. R. Saura, and J. G. Martinez-Navalon, "The impact of e-WOM on hotels management

reputation: exploring tripadvisor review credibility with the ELM model," IEEE Access, vol. 7, pp. 68868-

68877, 2019.

[135] Z. Zhang, J. Qi, and G. Zhu, "Mining Customer Requirement from Helpful Online Reviews," in Enterprise

Systems Conference (ES), 2014, 2014, pp. 249-254: IEEE.

[136] M. J. Muller, J. H. Haslwanter, and T. Dayton, "Participatory practices in the software lifecycle," in

Handbook of human-computer interaction: Elsevier, 1997, pp. 255-297.

[137] H. Barki and J. Hartwick, "Rethinking the concept of user involvement," MIS quarterly, pp. 53-63, 1989.

[138] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann, "What makes a good bug

report?," in Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software

engineering, 2008, pp. 308-318: ACM.

[139] J. Wen, G. Zhang, H. Zhang, W. Yin, and J. Ma, "Speculative text mining for document-level sentiment

classification," Neurocomputing, vol. 412, pp. 52-62, 2020.

http://books/

163

[140] B. Ives and M. H. Olson, "User involvement and MIS success: A review of research," Management science,

vol. 30, no. 5, pp. 586-603, 1984.

[141] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and C. Weiss, "What makes a good bug

report?," IEEE Transactions on Software Engineering, vol. 36, no. 5, pp. 618-643, 2010.

[142] D. Schuler and A. Namioka, Participatory design: Principles and practices. CRC Press, 1993.

[143] T. Hou, B. Yannou, Y. Leroy, and E. Poirson, "Mining customer product reviews for product development:

A summarization process," Expert Systems with Applications, vol. 132, pp. 141-150, 2019.

[144] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran, "A case study of post-deployment user feedback triage,"
in proceedings of the 4th International Workshop on Cooperative and Human Aspects of Software

Engineering, 2011, pp. 1-8.

[145] N. Seyff, F. Graf, and N. Maiden, "Using mobile re tools to give end-users their own voice," in 2010 18th

IEEE International Requirements Engineering Conference, 2010, pp. 37-46: IEEE.

[146] M. Bano and D. Zowghi, "User involvement in software development and system success: a systematic

literature review," in Proceedings of the 17th International Conference on Evaluation and Assessment in

Software Engineering, 2013, pp. 125-130.

[147] Z. Kurtanović and W. Maalej, "On user rationale in software engineering," Requirements Engineering, vol.
23, no. 3, pp. 357-379, 2018.

[148] G. Williams and A. Mahmoud, "Mining twitter feeds for software user requirements," in 2017 IEEE 25th

International Requirements Engineering Conference (RE), 2017, pp. 1-10: IEEE.

[149] A. Heydari, M. Tavakoli, Z. Ismail, and N. Salim, "Leveraging quality metrics in voting model based thread
retrieval," International Journal of Computer, Electrical, Automation, Control and Information Engineering,

vol. 10, no. 1, pp. 117-123, 2016.

[150] S. Lee and J. Y. Choeh, "Predicting the helpfulness of online reviews using multilayer perceptron neural

networks," Expert Systems with Applications, vol. 41, no. 6, pp. 3041-3046, 2014.

[151] Z. Ismail, A. Heydari, M. Tavakoli, and N. Salim, "Incorporating Author’s Activeness in Online Discussion

in Thread Retrieval Model," ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 2, pp. 473-479,

2015.

[152] M. Salehan and D. J. Kim, "Predicting the performance of online consumer reviews: A sentiment mining
approach to big data analytics," Decision Support Systems, vol. 81, pp. 30-40, 2016.

[153] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-oriented domain analysis

(FODA) feasibility study," Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst1990.

[154] A. Guzzi, A. Begel, J. K. Miller, and K. Nareddy, "Facilitating enterprise software developer communication
with CARES," in 2012 28th IEEE International Conference on Software Maintenance (ICSM), 2012, pp.

527-536: IEEE.

[155] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. Van Deursen, "Communication in open source software

development mailing lists," in 2013 10th Working Conference on Mining Software Repositories (MSR), 2013,
pp. 277-286: IEEE.

[156] E. Von Hippel, "Lead users: a source of novel product concepts," Management science, vol. 32, no. 7, pp.

791-805, 1986.

[157] D. Pagano and W. Maalej, "User feedback in the appstore: An empirical study," in 2013 21st IEEE
international requirements engineering conference (RE), 2013, pp. 125-134: IEEE.

[158] E. Goldberg, "Bug writing guidelines."

[159] S. Sen and D. Lerman, "Why are you telling me this? An examination into negative consumer reviews on the

web," Journal of interactive marketing, vol. 21, no. 4, pp. 76-94, 2007.

[160] X. Bai, "Predicting consumer sentiments from online text," Decision Support Systems, vol. 50, no. 4, pp. 732-

742, 2011.

164

[161] A. Ghose and P. G. Ipeirotis, "Estimating the helpfulness and economic impact of product reviews: Mining

text and reviewer characteristics," IEEE transactions on knowledge and data engineering, vol. 23, no. 10,

pp. 1498-1512, 2011.

[162] R. M. Schindler and B. Bickart, "Perceived helpfulness of online consumer reviews: The role of message
content and style," Journal of Consumer Behaviour, vol. 11, no. 3, pp. 234-243, 2012.

[163] R. Barbado, O. Araque, and C. A. Iglesias, "A framework for fake review detection in online consumer

electronics retailers," Information Processing & Management, vol. 56, no. 4, pp. 1234-1244, 2019.

[164] D. L. Morgan and M. T. Spanish, "Focus groups: A new tool for qualitative research," Qualitative sociology,
vol. 7, no. 3, pp. 253-270, 1984.

[165] D. L. Morgan, Focus groups as qualitative research. Sage publications, 1996.

[166] J. Kitzinger, "The methodology of focus groups: the importance of interaction between research participants,"

Sociology of health & illness, vol. 16, no. 1, pp. 103-121, 1994.

[167] M. Bloor, Focus groups in social research. Sage, 2001.

[168] J.-E. Asbury, "Overview of focus group research," Qualitative health research, vol. 5, no. 4, pp. 414-420,

1995.

[169] M. D. C. Tongco, "Purposive sampling as a tool for informant selection," Ethnobotany Research and
applications, vol. 5, pp. 147-158, 2007.

[170] M. Skovdal and F. Cornish, "Qualitative research for development," Rugby: Practical Action Publishing,

2015.

[171] R. A. Krueger, Focus groups: A practical guide for applied research. Sage publications, 1994.

[172] R. A. Krueger, Focus groups: A practical guide for applied research. Sage publications, 2014.

[173] D. L. Morgan and R. A. Krueger, "When to use focus groups and why," Successful focus groups: Advancing

the state of the art, vol. 1, pp. 3-19, 1993.

[174] J. Cameron, "Focusing on the focus group," Qualitative research methods in human geography, vol. 2, no.
8, pp. 116-132, 2005.

[175] J. T. Bertrand, J. E. Brown, and V. M. Ward, "Techniques for analyzing focus group data," Evaluation review,

vol. 16, no. 2, pp. 198-209, 1992.

[176] S. Elo and H. Kyngäs, "The qualitative content analysis process," Journal of advanced nursing, vol. 62, no.
1, pp. 107-115, 2008.

[177] Y. Zhang, "Incorporating phrase-level sentiment analysis on textual reviews for personalized

recommendation," in Proceedings of the eighth ACM international conference on web search and data

mining, 2015, pp. 435-440: ACM.

[178] E. Loper and S. Bird, "NLTK: the natural language toolkit," arXiv preprint cs/0205028, 2002.

[179] Y. Goldberg, "A primer on neural network models for natural language processing," Journal of Artificial

Intelligence Research, vol. 57, pp. 345-420, 2016.

[180] S. Poria, E. Cambria, and A. Gelbukh, "Deep convolutional neural network textual features and multiple
kernel learning for utterance-level multimodal sentiment analysis," in Proceedings of the 2015 conference on

empirical methods in natural language processing, 2015, pp. 2539-2544.

[181] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, "Natural language processing

(almost) from scratch," Journal of machine learning research, vol. 12, no. ARTICLE, p. 2493− 2537, 2011.

[182] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin, and K. Aberer, "Polisis: Automated analysis and

presentation of privacy policies using deep learning," in 27th {USENIX} Security Symposium ({USENIX}

Security 18), 2018, pp. 531-548.

[183] F. Liu, N. L. Fella, and K. Liao, "Modeling language vagueness in privacy policies using deep neural
networks," arXiv preprint arXiv:1805.10393, 2018.

165

[184] Y. Kim, "Convolutional neural networks for sentence classification," arXiv preprint arXiv:1408.5882, 2014.

[185] Z. S. Harris, "Distributional structure," Word, vol. 10, no. 2-3, pp. 146-162, 1954.

[186] Y. Goldberg, Neural network methods in natural language processing. Morgan & Claypool Publishers, 2017.

[187] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, "A neural probabilistic language model," Journal of
machine learning research, vol. 3, no. Feb, pp. 1137-1155, 2003.

[188] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space,"

arXiv preprint arXiv:1301.3781, 2013.

[189] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, "Very deep convolutional networks for text
classification," arXiv preprint arXiv:1606.01781, 2016.

[190] Y. Bengio, I. Goodfellow, and A. Courville, Deep learning. MIT press Massachusetts, USA:, 2017.

[191] Y. Zhang and B. Wallace, "A sensitivity analysis of (and practitioners' guide to) convolutional neural

networks for sentence classification," arXiv preprint arXiv:1510.03820, 2015.

[192] J. Brownlee, Deep Learning for Natural Language Processing: Develop Deep Learning Models for your

Natural Language Problems. Machine Learning Mastery, 2017.

[193] K. Dashtipour, M. Gogate, J. Li, F. Jiang, B. Kong, and A. Hussain, "A hybrid Persian sentiment analysis

framework: Integrating dependency grammar based rules and deep neural networks," Neurocomputing, vol.
380, pp. 1-10, 2020.

[194] S. Poria, E. Cambria, G. Winterstein, and G.-B. Huang, "Sentic patterns: Dependency-based rules for

concept-level sentiment analysis," Knowledge-Based Systems, vol. 69, pp. 45-63, 2014.

[195] A. Boujelben and I. Amous, "A New Method For Rules Dependency Extraction," Procedia Computer
Science, vol. 126, pp. 860-869, 2018.

[196] P. Gamallo and M. Garcia, "Dependency parsing with finite state transducers and compression rules,"

Information Processing & Management, vol. 54, no. 6, pp. 1244-1261, 2018.

[197] K. Toutanova and C. Manning, "Enriching the knowledge sources used in a maximum entropy part-of-speech
tagger," in Proceedings of the 2000 Joint SIGDAT Conference EMNLP/VLC, 63-71, 2000, 2000.

[198] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, "Feature-rich part-of-speech tagging with a cyclic

dependency network," in Proceedings of the 2003 conference of the North American chapter of the

association for computational linguistics on human language technology-volume 1, 2003, pp. 173-180:
Association for Computational Linguistics.

[199] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, "Stanza: A python natural language processing

toolkit for many human languages," arXiv preprint arXiv:2003.07082, 2020.

[200] M.-C. De Marneffe et al., "Universal Stanford dependencies: A cross-linguistic typology," in LREC, 2014,
vol. 14, pp. 4585-4592.

[201] M.-C. De Marneffe and C. D. Manning, "Stanford typed dependencies manual," Technical report, Stanford

University2008.

[202] J. Hirschberg and C. D. Manning, "Advances in natural language processing," Science, vol. 349, no. 6245,
pp. 261-266, 2015.

[203] J. Yu, J. Jiang, and R. Xia, "Global inference for aspect and opinion terms co-extraction based on multi-task

neural networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 1, pp.

168-177, 2018.

[204] K. Liu, L. Xu, and J. Zhao, "Co-extracting opinion targets and opinion words from online reviews based on

the word alignment model," IEEE Transactions on knowledge and data engineering, vol. 27, no. 3, pp. 636-

650, 2014.

[205] Y. Wu, Q. Zhang, X.-J. Huang, and L. Wu, "Phrase dependency parsing for opinion mining," in Proceedings
of the 2009 conference on empirical methods in natural language processing, 2009, pp. 1533-1541.

166

[206] M. Hu and B. Liu, "Mining opinion features in customer reviews," in AAAI, 2004, vol. 4, no. 4, pp. 755-760.

[207] N. Gupta and S. Chandra, "Product Feature Discovery and Ranking for Sentiment Analysis from Online

Reviews," 2013.

[208] M. Hu and B. Liu, "Mining and summarizing customer reviews," in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, 2004, pp. 168-177.

[209] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva, "Getting more out of biomedical documents with

GATE's full lifecycle open source text analytics," PLoS computational biology, vol. 9, no. 2, 2013.

[210] R. Artstein and M. Poesio, "Inter-coder agreement for computational linguistics," Computational Linguistics,
vol. 34, no. 4, pp. 555-596, 2008.

[211] C. B. Seaman, "Qualitative methods in empirical studies of software engineering," IEEE Transactions on

software engineering, vol. 25, no. 4, pp. 557-572, 1999.

[212] J. Dąbrowski, E. Letier, A. Perini, and A. Susi, "Finding and analyzing app reviews related to specific
features: A research preview," in International Working Conference on Requirements Engineering:

Foundation for Software Quality, 2019, pp. 183-189: Springer.

[213] N. Miloševic, "A multi-layered approach to information extraction from tables in biomedical documents,"

2018.

[214] X. Zhang, J. Zhao, and Y. LeCun, "Character-level convolutional networks for text classification," in

Advances in neural information processing systems, 2015, pp. 649-657.

[215] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, "Very deep convolutional networks for natural language

processing," arXiv preprint arXiv:1606.01781, vol. 2, 2016.

[216] E. Guzman, R. Alkadhi, and N. Seyff, "A Needle in a Haystack: What Do Twitter Users Say about

Software?," in Requirements Engineering Conference (RE), 2016 IEEE 24th International, 2016, pp. 96-105:

IEEE.

[217] M. Nayebi, H. Cho, and G. Ruhe, "App store mining is not enough for app improvement," Empirical Software
Engineering, vol. 23, no. 5, pp. 2764-2794, 2018.

[218] J. Tizard, H. Wang, L. Yohannes, and K. Blincoe, "Can a Conversation Paint a Picture? Mining Requirements

in Software Forums," in 2019 IEEE 27th International Requirements Engineering Conference (RE), 2019,

pp. 17-27: IEEE.

167

Appendix I

List of the selected papers for SLR

Study

ID
Citation Title Venue

S1 (Platzer et al.

2011)

Opportunities of automated mo-

tive-based user review analysis in

the context of mobile app ac-

ceptance

Central European Conference on Infor-

mation and Intelligent Systems

S2 (Harman et

al. 2012)

App store mining and analysis:

MSR for app stores

Proceedings of the 9th IEEE Working

Conference on Mining Software Reposi-

tories

S3 (Hoon et al.

2012)

A preliminary analysis of vocabu-

lary in mobile app user reviews

Proceedings of the 24th Australian Com-

puter-Human Interaction Conference

S4 (Vasa et al.

2012)

A preliminary analysis of mobile

app user reviews

Proceedings of the 24th Australian Com-

puter-Human Interaction Conference

S5 (Fu et al.

2013)

Why people hate your app: Making

sense of user feedback in a mobile

app store

Proceedings of the 19th ACM SIGKDD in-

ternational conference on Knowledge

discovery and data mining

S6 (Ha & Wag-

ner. 2013)

Do android users write about elec-

tric sheep? examining consumer

reviews in google play

Consumer Communications and Net-

working Conference

S7 (Iacob et al.

2013)

What are you complaining about?:

a study of online reviews of mobile

applications

Proceedings of the 27th International

BCS Human Computer Interaction Con-

ference

S8 (Khalid 2013) On identifying user complaints of

iOS apps

35th International Conference on Soft-

ware Engineering

S9 (Oh et al.

2013)

Facilitating developer-user interac-

tions with mobile app review di-

gests

CHI'13 Extended Abstracts on Human

Factors in Computing Systems

168

Study

ID
Citation Title Venue

S10 (Galvis &

Winbladh.

2013)

Analysis of user comments: an ap-

proach for software requirements

evolution

Proceedings of the International Confer-

ence on Software Engineering

S11 (Iacob & Har-

rison. 2013)

Retrieving and analyzing mobile

apps feature requests from online

reviews

10th IEEE Working Conference on Min-

ing Software Repositories

S12 (Pagano &

Maalej. 2013)

User feedback in the appstore: An

empirical study

21st IEEE international requirements en-

gineering conference

S13 (Chen et al.

2014)

 AR-miner: mining informative re-

views for developers from mobile

app marketplace

Proceedings of the 36th ACM Interna-

tional Conference on Software Engineer-

ing

S14 (Guzman &

Maalej. 2014)

How do users like this feature? a

fine grained sentiment analysis of

app reviews

 22nd IEEE international requirements

engineering conference

S15 (Khalid et al.

2014)

What do mobile app users com-

plain about?

IEEE Software

S16 (Gu & Kim et

al. 2015)

 What Parts of Your Apps are Loved

by Users?

 30th IEEE/ACM International Confer-

ence on Automated Software Engineer-

ing

S17 (Guzman et

al. 2015)

Retrieving diverse opinions from

app reviews.

Empirical Software Engineering and

Measurement (ESEM), 2015 ACM/IEEE

International Symposium on, IEEE.

S18 (Guzman et

al. 2015)

Ensemble methods for app review

classification: An approach for soft-

ware evolution

Automated Software Engineering

S19 (Khalid et al.

2015)

Towards improving the quality of

mobile app reviews

International Journal of Information

Technology and Computer Science

S20 (Lee et al.

2015)

They'll Know It When They See It:

Analyzing Post-Release Feedback

from the Android Community

 InProc 21st Amer Conf. Info. Sys.-AMCIS.

Puerto Rico

S21 (Maalej & Na-

bil. 2015)

Bug report, feature request, or

simply praise? on automatically

classifying app reviews

23rd IEEE international requirements

engineering conference

169

Study

ID
Citation Title Venue

S22 (Moghaddam

et al. 2015)

Beyond sentiment analysis: mining

defects and improvements from

customer feedback

European Conference on Information Re-

trieval, Springer.

S23 (Palomba et

al. 2015)

User reviews matter! tracking

crowdsourced reviews to support

evolution of successful apps

IEEE International Conference on Soft-

ware Maintenance and Evolution

S24 (Vu et al.

2015)

Mining User Opinions in Mobile

App Reviews: A Keyword-Based

Approach

30th IEEE/ACM International Conference

on Automated Software Engineering

S25 (Yang &

Liang. 2015)

 Identification and Classification of

Requirements from App User Re-

views

ACM International conference on Soft-

ware engineering and knowledge engi-

neering

S26 (Panichella et

al. 2015)

How can i improve my app? classi-

fying user reviews for software

maintenance and evolution

IEEE International Conference on Soft-

ware Maintenance and Evolution

S27 (Di Sorbo et

al. 2015)

What would users change in my

app? summarizing app reviews for

recommending software changes

Proceedings of the 24th ACM SIGSOFT In-

ternational Symposium on Foundations

of Software Engineering

S28 (Genc-Nayebi

& Abran .

2016)

A Systematic Literature Review:

Opinion Mining Studies from Mo-

bile App Store User Reviews

Journal of Systems and Software

S29 (Maalej et al.

2016)

On the automatic classification of

app reviews

Journal of Requirements Engineering

S30 (Martin et al.

2016)

A survey of app store analysis for

software engineering

IEEE Transactions on Software Engineer-

ing

S31 (McIlroy et al.

2016)

Analysing and automatically label-

ling the types of user issues that

are raised in mobile app reviews

Empirical Software Engineering

S32 (Panichella et

al. 2016)

ARdoc: app reviews

development-oriented

classifier.

Proceedings of 24th ACM SIGSOFT Inter-

national Symposium on Foundations of

Software Engineering

170

Study

ID
Citation Title Venue

S33 (Jha &

Mahmoud.

2017)

Mining User Requirements from

Application Store Reviews Using

Frame Semantics

International Working Conference on Re-

quirements Engineering: Foundation for

Software Quality

S34 (Jha &

Mahmoud.

2017)

MARC: A Mobile Application Re-

view Classifier

International Working Conference on Re-

quirements Engineering: Foundation for

Software Quality

S35 (Al-Hawari et

al. 2020)

Classification of application re-

views into software maintenance

tasks using data mining techniques

Software Quality Journal,

S36 (Al Kilani et

al. 2019)

Automatic Classification of Apps

Reviews for Requirement Engi-

neering: Exploring the Customers

Need from Healthcare Applications

Sixth International Conference on Social

Networks Analysis, Management and Se-

curity (SNAMS).

S37 (Guo, Hui and

Munindar P

Singh. 2020

Caspar: extracting and synthesizing

user stories of problems from app

reviews

Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engi-

neering

S38 (Haroon et al.

2020)

Comparing mobile apps by identi-

fying ‘Hot’ features

Future Generation Computer Systems

S39 (Gao et al.

2018)

Online app review analysis for

identifying emerging issues

Proceedings of the 40th International

Conference on Software Engineering

S40 (Gao et al.

2019)

Emerging app issue identification

from user feedback: experience on

wechat

IEEE/ACM 41st International Conference

on Software Engineering: Software Engi-

neering in Practice (ICSE-SEIP)

S41 (Martijn et al.

2020)

Identifying and Classifying User Re-

quirements in Online Feedback via

Crowdsourcing

International Working Conference on Re-

quirements Engineering: Foundation for

Software Quality

S42 (Tao et al.

2020)

Identifying security issues for mo-

bile applications based on user re-

view summarization

Information and Software Technology

S43 (Jha & Anas

2018)

Using frame semantics for classify-

ing and summarizing application

store reviews

Empirical Software Engineering

171

Study

ID
Citation Title Venue

S44 (Jha & Anas

2019)

Mining non-functional require-

ments from App store reviews

Empirical Software Engineering

S45 (Guo et al.

2018)

Mining and Analyzing User Feed-

back from App Reviews: An Econo-

metric Approach

SmartWorld/SCALCOM/UIC/ATC/CBD-

Com/IOP/SCI

S46 (Wang et al.

2020)

Opinion Analysis and Organization

of Mobile Application User Reviews

REFSQ Workshops

S47 (Buchan et al.

2018)

Semi-automated extraction of new

requirements from online reviews

for software product evolution

25th Australasian Software Engineering

Conference (ASWEC)

S48 (Noei et al.

2019)

Too Many User-Reviews, What

Should App Developers Look at

First?

IEEE Transactions on Software Engineer-

ing

S49 (Truelove et

al. 2019)

Topics of concern: identifying user

issues in reviews of IoT apps and

devices

IEEE/ACM 1st International Workshop

on Software Engineering Research &

Practices for the Internet of Things

(SERP4IoT)

S50 (Zhou et al.

2020)

User review-based change file lo-

calization for mobile applications

IEEE Transactions on Software Engineer-

ing

S51 (Zhang et al.

2019)

Software feature refinement priori-

tization based on online user re-

view mining

Information and Software Technology

S52 (Stanik et al.

2019)

Classifying multilingual user feed-

back using traditional machine

learning and deep learning

IEEE 27th International Requirements

Engineering Conference Workshops

(REW)

S53 (Poria et al.

2014)

A rule-based approach to aspect

extraction from product reviews

Proceedings of the second workshop on

natural language processing for social

media (SocialNLP)

172

Study

ID
Citation Title Venue

S54 (Poria et al.

2016)

Aspect extraction for opinion min-

ing with a deep convolutional neu-

ral network

Knowledge-Based Systems

S55 (Rana &

Cheah, 2017)

A two-fold rule-based model for as-

pect extraction

Expert systems with applications

S56 (Rana &

Cheah, 2015)

Hybrid rule-based approach for as-

pect extraction and categorization

from customer reviews

9th International Conference on IT in

Asia (CITA)

173

Appendix II

Number of the papers published in each channel

Publication Channel
Number

of papers
Study ID(s)

IEEE/ACM International Conference on Software Engineering (ICSE) 6 S8, S10, S13, S37,
S39, S40

IEEE international requirements engineering conference 4 S12, S14, S21, S52

International Working Conference on Requirements Engineering:
Foundation for Software Quality

4 S33, S34, S41, S46

 IEEE/ACM International Conference on Automated Software
Engineering (ASE)

3 S16, S18, S24

IEEE Transactions on Software Engineering 3 S30, S48, S50

Empirical Software Engineering 3 S31, S43, S44

IEEE Working Conference on Mining Software Repositories 2 S2, S11

Australian Computer-Human Interaction Conference 2 S3, S4

IEEE International Conference on Software Maintenance and Evolution 2 S23, S26

ACM SIGSOFT International Symposium on Foundations of Software
Engineering

2 S27, S32

Information and Software Technology 2 S42, S51

The Journal of Society for e-Business Studies 1 S1

ACM SIGKDD international conference on Knowledge discovery and
data mining

1 S5

Consumer Communications and Networking Conference 1 S6

International BCS Human Computer Interaction Conference 1 S7

CHI'13 Extended Abstracts on Human Factors in Computing Systems 1 S9

IEEE Software 1 S15

ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM)

1 S17

International Journal of Information Technology and Computer
Science

1 S19

Australasian Software Engineering Conference (ASWEC) 1 S47

 Amer Conf. Info. Sys.-AMCIS. Puerto Rico 1 S20

European Conference on Information Retrieval, Springer. 1 S22

International Conference on Social Networks Analysis, Management
and Security (SNAMS)

1 S36

ACM International conference on Software engineering and knowledge
engineering

1 S25

Journal of Systems and Software 1 S28

Journal of Requirements Engineering 1 S29

Knowledge-Based Systems 1 S54

Future Generation Computer Systems 1 S38

Software Quality Journal 1 S35

174

Publication Channel
Number

of papers
Study ID(s)

workshop on natural language processing for social media
(SocialNLP)

1 S53

IEEE/ACM International Workshop on Software Engineering Research
& Practices for the Internet of Things (SERP4IoT)

1 S49

International Conference on IT in Asia (CITA) 1 S56

SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 1 S45

Expert systems with applications 1 S55

175

APPENDIX III

Mobile app development topics discovered in the 56 selected studies.

Topic Category Specific Topic Study Id

General Comment Entirely reviewing the app, Works/Doesn’t work S6
Positive S7
Helpfulness, Praise S12
Rating S21
Feature strength, General Praise S18
Descriptions S13

Negative comment Works/Doesn’t work - Uninstalled S6
Negative S7
Shortcoming, Dispraise, Dissuasion S12
General complaint S13, S18
Compatibility, App Crashing, Network Problem,
Interface Design, Privacy and Ethical, Response
Time, Uninteresting Content, Resource Heavy

S8, S31

App Comparison Comparison with other apps S6
Comparative S7
Other app S12

Issue Report Feature/Functionality S6
Issue reporting S7
Content request, Feature, Bug report S12
Functional bug S9, S31
Performance flaw S13
Functional error, Feature Removal S8, S13
Bug report S18, S21,

S22, S33,
S34

Solution proposal S26, S32
Problem discovery S26, S27,

S32
Feature shortcoming S18

Feature Request Aesthetics S6
Request for requirements S7
Improvement request S12, S22
Promise better rate for improvement S12
Functional demand, Non-Functional request S9
Feature Request S8, S11, S12,

S21, S26,
S27, S32

User Request S18
User Requirements S33, S34

User Experiences Tips (installation/usage) S6
Usability S7
Question (How to use) S12, S13
User experiences S21
Information Seeking, Information Giving S26, S27,

S32

176

Opinion asking S26, S32
User scenario S18

Updates Updates (comparing to previous version) S6
Update issues S31
Versioning S7

Price Money (worth the money) S6
Price related S7
Hidden Cost S8
Additional Cost S31

Recommendation Recommending the app S6
Customer support S7
Recommendation S12

Other Additional Program needed, Number and con-
tent of ads, Company, Just downloaded, Not used
yet, Device model, Permissions, Preinstalled app,
Consumption of resources

S6

177

Appendix IIII

List of POS tags 3 used in this study

No. Tag Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

9 JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO to

26 UH Interjection

27 VB Verb, base form

28 VBD Verb, past tense

29 VBG Verb, gerund or present participle

30 VBN Verb, past participle

31 VBP Verb, non-3rd person singular present

3 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

178

No. Tag Description

32 VBZ Verb, 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$ Possessive wh-pronoun

36 WRB Wh-adverb

