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Abstract 

In recent years, mobile app reviews are known to provide a rich source of user  

feedback which is of great value for software evolution. However, the volume of such 

user reviews is huge, particularly for famous applications and large companies  

offering several applications. Addressing this issue, several automatic approaches 

are proposed recently for identifying useful reviews. The applied criteria for 

measuring the review usefulness in these approaches are originated from the few 

existing exploratory studies, wherein the usefulness of a review is interpreted as 

inclusion of requirement engineering related topics. Such interpretations of 

usefulness, however, is based on authors’ understanding of usefulness rather than 

developers’ requirements. Ignoring developers’ viewpoint, the authors defined 

some usefulness metrics based on their own observations, and developed extraction 

approaches accordingly. Thus, expecting interesting results from such approaches 

for developers dealing with thousands of reviews daily is awkward. To bridge this 

gap in this study, related studies across several domains analysing human generated 

feedback, such as reviews, tweets, requirement notes, bug reports, and application 

testing reports, were perused to define a set of factors for accurately measuring the 

usefulness of user reviews. The usefulness factors were, then, validated in a focus 

group discussion session by experienced mobile app developers. Next, the task of 

extracting each of the approved factors was automated applying Deep Learning and 

Natural Language Processing (NLP) techniques. Finally, the models designed for  

extracting each factor were integrated to form a final system for automatically  

extracting useful reviews. Testing on different review datasets, the novel system 

achieved high accuracy (i.e., Aspects: 87%, Feature Requests: 72%, Issues: 67%, 

User Actions: 73%, and System Actions: 81%) and outperformed state-of-the-art  

extraction techniques. Moreover, unlike the state-of-the-art, the proposed system is 

completely aligned with developers’ viewpoint as it emphasises on developers’  

approved factors for measuring the usefulness.  
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 Introduction 

1.1 Introduction 

Mobile application reviews reflect complaints, expectations, and requirements of 

users which is of great importance to developers. They can assist developers in  

diagnosing and updating the target app effectively. In this thesis, a novel system is 

proposed to automatically measure the usefulness of a given app review with 

respect to the developers’ viewpoint. To measure the usefulness, five novel 

usefulness factors are proposed to be extracted from review text. The system, then, 

labels the review into useful or useless based on the extracted factors. 

Section 1.2 discusses the problem background. The research problem to be 

addressed in this thesis is stated in Section 1.3. Section 1.4 explains the research  

methodology used in this study. Finally, Section 1.5 outlines and introduces chapters 

included in the thesis.   

1.2 Problem Background 

In order to develop effective and efficient software systems, incorporating users’ 

requirements and needs is significant [1-3]. User involvement in development of 

software systems leads to not only high-quality software, but also user satisfaction 

[4, 5], and maximising the amount of application sales [6]. 

Addressing user expectations in development process, software development 

teams frequently involve users in various development stages [7] by gathering early 

feedback and expectations for prototyping the system [8], and interfering users in 

design [9] and implementation [10, 11] phases. Therefore, early stages of software 
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development have been targeted by majority of previous research in extraction of 

user needs [12]. However, recent studies have pointed out that involvement of user 

feedback and requirements in post deployment phases is also crucial for 

maintaining a software system up to date [13], improving upcoming releases [14], 

and obtaining user satisfaction [15]. 

In recent years, mobile app reviews are known to provide a rich source of user 

feedback. Web-based software application distribution platforms have become 

increasingly popular among the Internet users. According to statista.com, the 

number of mobile app downloads from Google Play and App Store has increased 

from 17 billion in 2013 to 218 billion in 2020. These platforms also allow users to 

share their opinions on their downloaded apps. From the user perspective, such 

opinions can influence their decision on purchasing or choice of a particular app [16, 

17].  

From the app provider perspective, positive reviews can attract more 

customers and bring financial gains [17]. Similarly, negative reviews often cause 

sales loss [18, 19]. Instructive feedback written by app users usually contains 

valuable information, such as reporting bugs and seeking causes, offering solutions, 

complaining about cost or performance, requesting features to be added to the 

application, explaining their personal experiences with different parts of the 

application, and appreciating developers, to name a few. Application vendors and 

developers are enthusiastic about mining and analyzing such contents [20].  

Interviewing 73 developers, Palomba et al. [21] found that over 75% of developers 

carefully monitor user reviews to improve their applications. Addressing these 

requirements is also of paramount importance. Carefully responding to user needs 

discussed in reviews in a reasonable period of time is known as a key factor for any 

successful mobile application [22].  

However, there are several restrictions for developers effortlessly reaping 

benefits of user feedback. Firstly, the quality of reviews varies significantly which is 

due to the openness of online review sharing websites for everyone [23]. Many 

people generate reviews for asking question from or answering to other users, 

advertising other applications, or repeating their assigned star rating in words. 
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Besides, some of the applications require a certain level of expertise causing 

ordinary users encountering difficulties using them. Reviews generated by these 

users are not usually interesting for developers. Secondly, reliability of reviews 

could not be guaranteed. Stakeholders sometimes hire spammers to generate not 

only glamorized positive reviews on their applications, but also harmful negative 

reviews on competitors’ [24, 25]. Finally, huge amount of generated reviews and the 

unstructured nature of its textual content demand a lot of effort and cost to be 

manually analysed by development teams. 

1.3 Problem Statement 

In recent few years, researchers have developed several techniques, ranging from 

sentiment analysis [26-28] and spam detection [23, 29-31] to more general mining 

techniques [32-34] for automating the task of processing user reviews to reduce the 

developers’ effort spent in collecting and understanding informative user feedback 

from app reviews. The proposed review mining approaches automatically discern 

relevant reviews from irrelevant ones have been systematically analysed before 

setting out to address the research aim of this project.  

The main shortcoming of these studies is interpretation of the usefulness. 

Many of the authors applied their own opinion for defining usefulness metrics [35, 

36], while others hired improper persons, such as undergraduates studying 

software engineering, to annotate reviews, and defined usefulness metrics inspiring 

from the annotation output [37, 38]. Such behaviours have resulted in disregarding 

the viewpoint of developers in identifying useful reviews. Therefore, the output of 

such research projects might not be in line with what developers trying to achieve. 

After analysing the state-of-the-art, the lack of research on properly measuring 

usefulness of app reviews with respect to developers’ viewpoint became apparent. 

1.4 Aims and Objectives of the Research 

After conducting a systematic review of the existing literature to discover existing 

research efforts and proposed approaches in analysing mobile application reviews, 

research gaps and limitations were identified. Accordingly, the following aim was 

defined.  
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The aim of the research presented in this thesis is to bridge the 

abovementioned gap found in current approaches by conceptualising the usefulness 

and proposing Deep Learning and NLP based approaches for effectively measuring 

the usefulness of mobile app reviews for software development purposes. To 

achieve this, the key research questions are defined: 

RQ1. How to effectively measure the usefulness of app reviews? What usefulness 

factors could be used? 

RQ2. How to validate the proposed factors for measuring the usefulness of app 

reviews? 

RQ3. How to automatically extract the usefulness factors from the text of app 

reviews? 

RQ4. How to automatically detect useful reviews using the usefulness factors? 

RQ5. How to evaluate the proposed automatic approaches? 

With the aim of systematically addressing these research questions, the objectives 

of this project are defined as follow: 

Obj1. To conceptualise and formulate the usefulness attribute for app reviews. This 

is to quantifiably measure the usefulness of app reviews using a set of 

usefulness factors. 

To fulfil this objective, a list of candidates for usefulness factors for measuring 

the usefulness of app reviews was defined inspiring from in-depth analysis of 

related work on several domains and the dataset of app reviews. 

Obj2. To validate the effectiveness of usefulness factors using experienced mobile 

application developers. This validation will help not only to ensure the 

inclusion of developers’ viewpoint in measuring the usefulness, but also to 

approve the effectiveness of such factors in measuring the usefulness. 

To achieve this, the list of candidates of usefulness factors was evaluated in a 

Focus Group Discussion (FGD) composed of six experienced mobile app developers. 

The output of the FGD was a set of five usefulness factors. Proposing five effective 
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and approved factors for measuring the usefulness of app reviews is one of the 

contributions of this thesis. 

Obj3. To propose Deep Learning and NLP based approaches for extracting each 

usefulness factor from reviews. This is not only to check the applicability of the 

factors in real world, but also to facilitate development of the final system. 

Neural networks, NLP techniques, and combination of them was used to 

automatically extract each usefulness factor from the text of a given review. Another 

contribution of this thesis is proposing these extraction approaches that achieved 

higher accuracy compared to state-of-the-art. Besides, extraction of User Action and 

System Action are automated for the first time in this domain. 

Obj4. To integrate extraction approaches as a unique system for detecting useful 

reviews. 

Successfully proposing automatic extraction approaches for each of the usefulness 

factors, the models built for extracting the factors were placed in a pipeline to form 

the whole system. The system gets a review as input, extracts usefulness factors, and 

applying a decision tree-based approach estimates the usefulness of the review. 

Proposing a fully automated system for measuring the usefulness of app reviews 

completely aligned with developers’ viewpoint is another contribution of this thesis. 

Obj5. To evaluate the integrated system and individual extraction approaches. 

To measure the effectiveness of the usefulness factors individually and as a 

whole system, datasets of app reviews manually coded by app developers as a part 

of this project were used. The achieved Precision, Recall, and F-Score reported in 

Chapter 7 shows how the proposed approach outperforms the state-of-the-art in 

this domain. 

1.5 Thesis Context 

To provide a clear description of this study, a context diagram is illustrated in Figure 

1.1 representing the activities of this project. The diagram is designed based on 

Design Science Research Methodology [42] which consists of the following steps. 

 

1. Identifying the problem, 
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2. Providing evidence for the existence of this problem, 

3. Making a testable hypothesis about how to solve the problem and/or  

formulating research questions, 

4. Designing and developing a solution, 

5. Demonstrating and evaluating the solution, and 

6. Communicating the results to research community.  

The diagram consists of three main phases (i.e., Literature review, Proposing 

the Approach, and Validation) to properly fulfil the objectives defined in previous 

section and meet the aim of this PhD project.  

There are three tasks to be addressed in the Literature Review phase: First, to 

identify the research problem and provide evidence for the existence of this 

problem. The research problem stated in Section 1.3 was identified by identifying 

and perusing related work in the area of app review analysis and requirements 

engineering followed by a technical discussion with scholars and professionals in 

the domain. Providing evidence for existence of such problem, discussed in Chapter 

2, is another part of this task. This task was the cornerstone of this research forming 

the overall aim and initiating the research questions. 

Second, studies related to user feedback analysis are collected and reviewed 

for extracting any factor used to measure the usefulness of reviews. In a broader 

scale, studies reporting on analysing user requirements for software development 

are also analysed. This task is to fulfil the first objective for conceptualising the 

usefulness of app reviews.  

Finally, existing datasets are collected and assessed in this phase for the 

purpose of validating any further implemented approach. This task is designed to 

address the last objective about evaluating the approaches. 

The Approach phase contributes to objectives 1, 3, and 4.  In this phase, the 

usefulness of app reviews are to be measured (Obj1) defining a set of usefulness 

factors to be used as metrics for judging the usefulness. These factors are then 

discussed and validated in the FGD of well-skilled app developers and requirements 

engineers (Obj2) as a part of Validation phase.  
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Moreover, the task of automatically extracting the usefulness factors using 

machine learning and NLP techniques is one of the tasks defined in the Approach 

phase to fulfil Obj3. This is also a step designed, according to step 4 of the 

abovementioned methodology, to provide solution for the research problem. 

The last phase of this study, Validation, is responsible for validating any 

approach developed in the former phases. The tasks assigned in this phase are 

designed to address objectives 2 and 5.  

The first major task in this phase to address objective 2 is conducting a FGD 

with professional mobile application developers to validate significance of 

usefulness factors defined in phase 1. The output of this FGD is a set of professionally 

approved usefulness factors for measuring the usefulness of app reviews. 

The second task to fulfil objective 5 is manual coding of a set of real mobile 

application reviews to validate the accuracy of the proposed approaches from the 

previous phase. The approaches are designed to automatically extract the 

usefulness factors that are manually labelled in the ground truth dataset. Two 

datasets of app reviews obtained from related work were manually annotated with 

the usefulness factors by experienced app developers to form the ground truth 

datasets of this project. The datasets are then used to train and test the models. So, 

the accuracy of the approaches is measured by comparing their outputs against the 

ground truth dataset labels.  
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1.6 Thesis Outline 

This thesis is organised into six chapters as follow: 

• Chapter 2. Literature Review: A systematic literature review of current 

approaches analysing application reviews for software evolution is 

presented. The research gaps are identified and demonstrated to be 

alleviated with a novel approach. 

• Chapter 3. Identification of Factors Relevant to the Usefulness of App 

Reviews: To address the identified gap in Chapter 2, any possible metrics 

to be used for measuring the usefulness of application reviews from 

developers’ viewpoint were gathered from related approaches in variety 

of domains, analysed carefully, and reported in this chapter.  

• Chapter 4. Validation of the Usefulness Factors: The list of usefulness 

factors was discussed in a Focus Group Discussion (FGD) session with 

senior mobile application developers for validation and amendments. The 

results are reported in this chapter. 

 

Figure 1.1: The Activity diagram of this study 
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• Chapter 5. Modelling the Usefulness of Application Reviews: This chapter 

describes an app review and available data and metadata associated to it 

for analysis. The partial process of reviewing an application is also 

conceptualised in this chapter. 

•  Chapter 6. The Proposed Approach: This chapter discusses the proposed 

approaches for automatically extracting each usefulness factor and 

integrating them in a pipeline to form a final system. In this chapter, the 

architecture of the proposed approach is illustrated, data pre-processing 

steps are explained, and the strategy for measuring the usefulness is 

discussed. 

• Chapter 7. Results and Discussion: Apart from explaining the datasets used 

for this experiment, in this chapter, results obtained from testing each of 

the proposed approaches for extracting usefulness factors are discussed. 

The final system is also validated, and the results are presented in this 

chapter. The chapter also covers a detailed discussion on the obtained 

results. 

• Chapter 8. Research Limitations and Challenges: Challenges and 

limitations encountered in different phases of the project are reported in 

this chapter.  

• Chapter 9. Conclusion: This chapter provides a summary of the thesis 

emphasising on addressing research questions. It also discusses the future 

work and possible research directions. 

1.7 Conclusion 

To provide readers with a general understanding and an overview of the research 

reported in this thesis, the following key concepts and elements of the project are 

discussed in this chapter. 

After providing a general introduction to the field of research, the problem 

investigated in this project is discussed. Aim, research questions, and objectives are 

elaborated to reflect contributions and novelties of this project. Finally, the 

structure of the thesis is outlined after discussing the context of the research. 
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 Related Work 

This chapter is  based on a paper published in The Journal of Expert Systems With 

Application [39] in 2018. This survey highlights and compares the areas of research 

that have been explored thus far, drawing out new directions future research could 

take to address open problems and challenges. 

2.1 Introduction 

Extraction of useful information for software evolution from mobile app reviews is 

crucial because of the importance of user post-release feedback on the success of 

the application [40]. However, not all the user reviews are relevant and useful for 

app development [41]. In order to unleash the value of app reviews for app  

development, intelligent mining tools that can help discern relevant reviews from 

irrelevant ones are required. In recent years, a variety of such techniques have been 

proposed, ranging from sentiment analysis [26], spam detection [23, 29], to more 

general mining techniques [32]. Yet, there is a lack of systematic understanding of 

these techniques in the context of mining mobile app reviews and their support 

tools.  

One of the related survey studies assessing App Store mining techniques by 

Nayebi and Abran [42] provides an analysis of general data-mining techniques for 

spam detection, opinion mining, review evaluation, and feature extraction. The 

second survey by Martin et al. [43] is concerned with App Store analysis, such as API 

analysis, feature analysis, app review analysis, and so on. So, investigation of the 

utilised techniques and proposed tools for mining software development related 

information from app reviews was not covered in these survey studies.  

In this chapter, specific mining techniques and tools for processing app  

reviews are analysed and reported, their shortcomings and gaps are identified, and 

the future research directions are highlighted. There are several reasons why this 

literature review is conducted. First, it provides a background on processing 

techniques used for analysing app reviews. So, it represents research efforts in this 

area. Second, the research problem was formulated after analysing existing 
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approaches and identifying their gaps and shortcomings. Third, it provides a 

systematic support for the novelty and contribution of this project. Finally, it has 

several other advantages for readers, such as summarizing challenges, limitations, 

and future research direction in this area. 

A process of analysing related works is also reported in Chapter 3, but the aim 

of that analysis is to identify potential usefulness factors to be used for measuring 

app review usefulness.  

We found that the first related paper was published in 2011. So, the starting 

point of the study was set to 2011. The most recent selected study was published in 

2017 at the time of writing the systematic literature review paper. Recent papers 

are also analysed and added to the set of selected papers to set the end point of the 

review to 2020.  

Over 55 existing approaches dealing with analysing mobile application 

reviews have been investigated. Following an analysis of these approaches it was 

established that supervised machine learning-based approaches make up the 

majority of the current state-of-the-art. 

2.2 Survey Methodology 

The methodology for conducting our survey is systematic literature review 

proposed by Kitchenham et al. [44]. To avoid confusion, we have used the term 

“survey”, instead of “review”, to refer to this paper, as the subject matter of the 

paper is app reviews. Based on the systematic literature review (SLR) guidelines 

provided by Kichenham et al. (Barbara Kitchenham, et al. [44], in what follows, we 

describe the steps in our survey process. 

2.3 Research Questions 

As stated in Section 1, the main goal of this chapter is to survey the state of the art 

in the development of mobile app review mining techniques and tools. Specifically, 

the survey will cover the primary studies that report the development of mobile app 

review mining techniques and tools. In addition, this paper will also find out what 

specific app development topics the reported tools are used to discover, as this 
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finding will help us evaluate the maturity of the current mobile app mining tools. In 

line with these goals, we have formulated the following research questions and will 

use them to drive our survey: 

RQ1: What types of analysis on mobile app reviews and what techniques have 

been reported in the literature? 

RQ2: What software tools have been developed to support these techniques? 

2.4 Identifying Relevant Primary Studies 

The definition of a robust strategy for performing an SLR is essential as it enables 

researchers to efficiently retrieve the majority of relevant studies. In this section, we 

discuss our search strategy in detail. 

We developed our search string by selecting keywords from the studies that 

we had already reviewed in the domain. Then, we identified and applied alternatives 

and synonyms for each term and linked them all by the use of AND/OR Boolean 

expressions to cover more search results. In order to perform a widespread search, 

formulating a comprehensive query is indispensable. Thus, we optimized and 

refined our preliminary search string during multiple iterations as mulling over the 

revealed results and skimming retrieved relevant studies helped us to manipulate 

our search string effectively with more appropriate keywords. We excluded 

keywords whose inclusion was not advantageous or replaced them with more apt 

ones. Our search terms are presented in Table 2.1 and the finalized search term is 

as follow:  

‘(mobile OR android OR IOS) AND (app OR application) AND (feedback OR 

review OR opinion OR comment) AND (bug report OR feature request OR complain 

OR requirement OR issue OR expectation) AND (analysis OR process OR mining OR 

extract OR discover) AND (developer OR development team OR requirements team 

OR software vendor) OR (requirement engineering OR RE OR requirements 

elicitation OR requirements analysis)’  

After constructing the search string, we used it to search the following 

databases: ScienceDirect, IEEEXplore, ACM, GoogleScholar, Scopus, and 
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SpringerLink. The search returned a total of 59,066 results. We found that the first 

related paper was published in 2011 and the last one in 2020. Table 2.2 summarizes 

the search results. 

 

 

2.5 Selecting Relevant Primary Studies 

Based on the search results, we have used the following inclusion and exclusion 

criteria to select the relevant primary studies. The selection phases are shown in 

Figure 2.1. 

Table 2.2: Types and Components of The Search Strings 

Type Search Term 

Domain (mobile OR android OR IOS) 

Content (app OR application) 

Review (feedback OR review OR opinion OR comment) 

Review Type (bug report OR feature request OR complain OR 

requirement OR issue OR expectation) 

Development (developer OR development team OR require-

ments team OR software vendor) 

Requirement  

Engineering 

(requirement engineering OR RE OR require-

ments elicitation OR requirements analysis) 

Technique (analysis OR process OR mining OR extract OR 

discover) 

 

Table 2.1: Search Results (2011 – 2020) 

Database Search Results 

Scopus  10,135 
Science Direct 5,118 
ACM 4,128 
SpringerLink 23,069 
IEEEXplore 4,133 
Google Scholar 12,483 
Total 59,066 
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Inclusion criteria: 

 

Figure 2.1: Phases in the selection process. N denotes the number of papers. 
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I1. Studies reporting app reviews related to application development were 

included. 

I2. In addition to I1, studies reporting detailed empirical research methods, such 

as case studies, surveys, experiments, and ethnographical studies, were 

included. 

I3. If more than one paper reports the same study, only the latest or fullest paper 

was included. 

Exclusion criteria: 

E1. White and gray literature (i.e. research outputs that are not peer reviewed, 

such as reports, online documents, and working papers) was excluded. 

E2. Abstract papers with no full-text available were excluded. 

E3. Short papers with less than four pages were excluded. 

These inclusion and exclusion criteria were applied in the following three steps:  

1. E1, E2 and E3 were applied in turn to the search results to exclude irrelevant 

studies.    

2. I1 and I2 were applied to each remaining study to include the studies that 

met these criteria. 

3. I3 was applied to duplicate studies to include the fullest studies. 

At the end of Step 3, a total of 56 primary studies were selected as relevant to 

our survey, the full text of which was imported into an Endnote library for data 

extraction. The references of these studies are listed in Appendix I. 

Figure 2.2 shows the distribution of the selected 56 studies published from 

2011 to 2020. The maximum number of papers was published in 2015, whereas 

2011 only had one paper. It is worth mentioning that the small number of the papers 

found in 2020 is due to the search period.  Of the 56 selected papers, 39 of the 

selected papers are conference papers and 18 of them are journal articles. Appendix 

II summarizes the number of the papers published in each channel. 
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2.6 Extracting and Synthesizing Data 

In this step, the required data were extracted from each of the 56 primary studies. 

A predefined data extraction form (see Table 2.3) was used to record the data for 

each study. Two types of data were extracted: the data required for answering the 

research questions and the data required for displaying the bibliographic 

information of the study.  The extracted data were stored in an Excel file for further 

process and analysis. 

The extracted data were synthesized using the constant comparison method 

(CCM) [45]. The steps involved in data synthesis were: 

1. Comparison within a single paper: To summarize the core of the paper and 

to understand, any categories, difficulties, and highlights. 

2. Comparison between papers within the same category that is papers, which 

used same techniques or had same aims: To conceptualize the subject and to 

produce a category of studies. 

3. Comparison of papers from different groups: To identify the effectiveness 

and efficiency of each category of techniques in solving the overall issue. 

 

Figure 2.2: Distribution of the selected 56 primary studies from 2011 to 2020 
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2.7 Survey Results 

This section reports on the analysis of review results and answers our research 

questions.  

2.7.1 Mobile App Review Mining Approaches and Techniques (RQ1) 

RQ1: What types of analysis on mobile app reviews and what techniques have been 

reported in the literature?  

The aim of this research question is to identify different types of analysis 

performed on user reviews. The main goal of analysing and processing mobile 

application reviews is to help developers in identifying useful reviews for 

application improvements and evolution. There are several purposes researchers 

have analysed user reviews for, such as categorizing user reviews in different 

groups based on the content, discovering what topics are discussed in reviews, 

opinion mining, finding relations between different review component, and so on. 

They used several techniques to perform these tasks that are discussed in this 

section. Apart from finding gaps to be addressed in this project, answering this 

research question provides a comprehensive technical background for factors 

extraction components of the proposed approach. 

Table 2.3: Data Extraction Form 

Data Item Description 

Paper ID The unique ID assigned to each paper 

Year In which year was the study published? 

Author(s) The author(s) of the paper 

Title The title of the paper 

Venue Publication venue of the study 

Techniques Mining techniques used in the study 

Tools Support tools for extracting software development information 

Topics Software development topics discovered in the study 
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2.7.1.1 Discovering What Topics Are Discussed in Reviews 

To better understand the content of mobile application reviews, selected studies in 

this group have analysed them to discover what topics are discussed in the text of 

reviews. In this section, each of the studies are explained in detail.  

Ha and Wagner [46] (S6) manually analysed 556 reviews from 59 different 

applications of Google Play to find what users are talking about. They identified 18 

categories of topics discussed in the reviews after multiple irritations. To 

understanding what recurring issues users like to report in their reviews, Iacob, et 

al. [47] (S7) manually analysed 3279 Google play reviews. The authors defined a 

coding scheme to capture the recurring issues. Two coders annotated 125 randomly 

selected reviews resulting in identification of 9 classes of codes, namely positive, 

negative, comparative, price related, request for requirements, issue reporting, 

usability, customer support, and versioning. Then they divided each review into 

significant snippets of text to assign them an associate refined code. Their approach 

is vague, as they have not described how the whole 3279 reviews had been 

processed.  

In an exploratory study, to demonstrate how user reviews are useful for 

developers, Pagano and Maalej [48] (S12) investigated how and when users provide 

feedback, how to identify and classify topics in reviews, and how to integrate user 

feedback into requirements and software engineering infrastructures (more focus 

was on the impact of reviews on rating and on community of users). The authors 

applied a descriptive statistic to investigate usage of feedback. They, then, manually 

analysed a random sample of reviews (528 reviews) to explore and assign topics to 

each review. They grouped their 17 observed topics into four themes, namely 

community, rating, requirements, and user experience.  

Another group of studies focused on analysing negative reviews to extract 

topics related to application problems discussed in them. In preliminary 

contribution in the field, Khalid [49] (S8) manually analysed 6,390 one-star and two-

star reviews for 20 iOS apps in order to aid developers by listing the most frequent 

complaints. They discovered 12 types of issue and complaint about iOS apps in user 

feedback and repeated their approach in [50] (S15). In 2015, they extend their 
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approach by proposing a review system enabling users to see more visualized 

ratings, reply to comments, sort reviews by like/dislike, and categorize the reviews 

[51] (S19). Another study investigating topics related to application problems is 

conducted by Fu, et al. [52] (S5). As a part of their research, the authors applied topic 

modelling techniques, Latent Dirichlet Algorithm (LDA), to discover specific 

problems of each app behind the users’ complaints. To identifying global trends in 

the market, they analysed top complaints of each app and found similar complaints 

and the most critical aspects of apps. LDA was also used in [53] (S49) to discover 

topics discussed in reviews and to, consequently, identify issues mentioned in 

reviews. 

Galvis Carreno and Winbladh [54] (S10) used topic modelling and IE 

techniques to discover the topics from reviews that can be used to change and/or 

create new requirements for a future release of software. They used Aspect and 

Sentiment Unification Model (ASUM) for extraction of topics. The authors focused 

only on requirement changes, while other kinds of valuable information for 

developers are neglected in their approach. Moreover, the authors manually 

classified reviews to build their gold standard dataset and acknowledged that this 

way of procuring training data is error prone as the expertise of authors in the 

domain is under question. 

Apart from the studies discussed in this section, there are other topics 

discovered in pre-processing and data preparation phases of other experiments. As 

the main goal of them for analysing reviews was other than discovering discussed 

topics, selected papers reporting such experiments are discussed in further sections. 

However, topics discovered by any of the selected papers analysed in this chapter 

are grouped and listed in Appendix III. 

2.7.1.2 Categorization of User Reviews 

Selected papers fallen in this group have proposed methods and approaches for  

categorising mobile application reviews into two or more different groups mainly 

for assisting developers in more straightforwardly finding useful reviews for  

application development purposes. Although NLP techniques are scarcely used for 

this task, majority of the selected papers have applied machine learning techniques. 
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In the earliest selected paper analysing content of mobile application reviews 

found in this SLR, Platzer [55] (S1) used motivational models to find usage motives 

that are addressed in the text of user reviews. To classify reviews based on these 

motives, they applied Support Vector Machine (SVM) and Naïve Bayes (NB)  

algorithms. 

Oh, et al. [56] (S9) believed that uninformative reviews should be filtered out 

to help developers overcoming the overload of feedback. To achieve this, they  

defined three categories for reviews (i.e., functional bug, functional demand, and 

non-functional request) and manually classified 2800 reviews into the categories to 

train their filtering model. Identification of categories was done by app developers 

who analysed the review contents manually, though details of the process, such as 

number of experts, number of analysed reviews, and selection criteria is not  

provided. Then, they extracted keywords of each review using Latent Dirichlet 

Allocation (LDA) and heuristic methods and applied SVM algorithm to classify 

reviews into informative and uninformative. The authors argued that the 

performance of LDA in identifying keywords is weak due to shortness of reviews in 

length.  

Chen, et al. [57] (S13) developed a computational framework for App Review 

Mining, namely AR-Miner which filters useless reviews and uses topic modelling 

techniques to group informative reviews based on the topics discussed in them, and 

a review ranking scheme to prioritize them with respect to the developers’ needs. 

AR-Miner uses Expectation Maximization for Naive Bayes (EMNB), a semi-

supervised algorithm in machine learning to classify reviews to informative and 

uninformative. In next phase, it uses LDA for grouping, and creates a ranked group 

of reviews based on their rating, fluctuation in time of reviews, and volume of 

reviews reporting a similar issue/request. The authors compared the performance 

of two algorithms in topic modelling, i.e., Latent Dirichlet Allocation (LDA) and 

Aspect and Sentiment Unification Model (ASUM) for grouping informative reviews 

based on their contents.  

In classifying user feedback into informative and non-informative, they did not 

justify the superiority of Expectation Maximization for Naive Bayes (EMNB) to other 
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existing algorithms. Testing the performance of other classifiers and comparing the 

outcomes was a good way for justification of superiority of their approach. 

Moreover, there are several important aspects neglected in their approach. Firstly, 

sentiment of the review relates to its content and could be used to leverage the 

performance of the tool [58]. Secondly, although they employed time stamp, text, 

and rating of a review to do their task, important features such as title of review and 

meta-data features are neglected. Finally, they removed stop-words, stemmed, and 

applied other pre-processing techniques on raw crawled reviews. State-of-the-art 

approaches [59] show that these pre-processing tasks increase the chance of losing 

helpful content. Additionally, they discriminated informative and uninformative 

reviews based on their own understanding of “informative” and reviewing few 

numbers of online forums, while to identify what really is important for mobile app 

developers to extract from user reviews, their needs and requirements should be 

studied comprehensively.  

Maalej and Nabil [60] (S21) designed and applied different probabilistic 

techniques and heuristics to automatically classifying reviews into four basic types: 

Bug reports, feature requests, User experiences, and rating. They generated a list of 

keywords by string matching, bag of words, sentiment scores, NLP pre-processed 

text, review rating and length, to be used for classification task. Then, they applied 

Naive Bayes, Decision Trees, and MaxEnt to compare the performance of binary to 

multiclass classifiers in classification of user feedback into the predefined basic 

types. The authors extended their approach in [61] (S29) by adding bigram and its 

combinations to utilized classification techniques, and by improving pre-processing 

phases and classification scripts. They argued that by the use of meta-data combined 

with text classification and natural language pre-processing of the text, the 

classification precision rises significantly. 

Guzman, et al. [62] (S18) relied on categories found in [48] to form their 

taxonomy with 7 categories relevant for software evolution including bug report, 

feature strength, feature shortcoming, user request, praise, complaint, and usage. 

The authors then used the taxonomy to investigate the performance of various 

machine learning techniques (i.e., Naive Bayes, Support Vector Machines (SVMs), 

Logistic Regression and Neural Networks) in classification of reviews. The set of 
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features they used includes number of upper/lower case characters, length, 

positive/negative sentiment, and rating. However, many other features could be 

found in user feedback to be used for classification purposes in order to enhance the 

throughput of the model [63]. Similarly, NN was used in [64] (S46) to classify 

reviews into General opinion, Functional feature, and Out of domain. To help 

developers find useful reviews faster, they also identified review sentiments using 

NLTK and found key phrases using RAKE-NLTK which is a domain-independent 

keyword extraction algorithm. 

Panichella, et al. [65] (S26) argued that among the 17 topics identified by 

Pagano and Maalej [48], only 8 of them were relevant to software maintenance and 

evolution tasks . They proposed a method to identify constructive feedback for 

software maintenance and evolution tasks. The authors hypothesized that 

understanding the intention in a review has an important role in extracting useful 

information for developers. And to understand the intention of a review, they used 

sentences structure, sentiment of a review, and text features contained in a review. 

Thus, they formed a taxonomy (i.e., Information Giving, Information Seeking, 

Feature Request, and Problem Discovery) by manually reviewing a number of 

reviews. Then they extracted a set of features by the use of NLP, text analysis, and 

sentiment analysis techniques to train a classifier and finally classified reviews 

according to the taxonomy. They compared performance of different machine 

learning techniques, namely, the standard probabilistic naive Bayes classifier, 

Logistic Regression, Support Vector Machines, J48, and the alternating decision tree 

(ADTree) and reported that J48 performed well. The authors identified and grouped 

review sentences into 6 categories (i.e., feature request, opinion asking, problem 

discovery, solution proposal, information giving, and information seeking). They 

compared these categories with topics identified by Pagano and Maalej and found 

that all 17 topics match with 4 out of their 6 identified categories.  

Panichella, et al. [66] (S32) improved the approach in S26 by proposing ARdoc 

(App Reviews Development Oriented Classifier), a tool that automatically classifies 

useful sentences in user reviews according to a taxonomy designed in S26 to model 

developers' information needs when performing software maintenance and 

evolution tasks. After dividing the review into sentences, ARdoc extract lexicon, 
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grammatical structure, and sentiment of each sentence to be used by a machine-

learning algorithm (J48) for classification purposes.  

Buchan et al. [67] (S47) also used classification techniques (i.e. SVM, Naïve 

Bayes, and Logistic Regression) for classifying reviews into feature requests and 

non-feature requests. They used n-gram and review sentiment as classification 

attributes. Their results show that the performance of SVM in this task was superior 

comparing to other classifiers. 

The SURF (Summarizer of User Reviews Feedback) was proposed in [68] 

(S27), which is a tool for categorization and summarization of reviews. It splits a 

review into sentences and performs the summarization task in three phases. Firstly, 

it employs the approach proposed in their previous study S26 and their identified 

sentence categories to classify sentences into user intentions and assigns one of the 

intentions to each review sentence. Secondly, it employs sets of keywords to build 

an NLP classifier and automatically assign one or more concept (topic) to each 

sentence in a review. Specifically, the authors manually analysed each sentence in 

438 reviews selected as a training set to discover topics discussed by reviewers 

resulting in identification of 12 topics. They manually assigned keywords to each 

sentence and for each topic, created a finite set of keywords and enriched it with 

WordNet synonyms. Finally, for summarization purposes, they relied on their 

observations and assigned a score to each sentence for each observation. The tool 

categorizes sentences according to their topics and intention categories and 

generates summaries as structured HTML. However, their approach suffers from 

lack of a comprehensive research on what really is needed by app developers as 

these points are observed only by authors and a software developer. Moreover, they 

assigned different relevance scores to each category of intentions to score the first 

observation without studying the impact of each score. 

To overcome the problem of processing colloquial terminologies used by users 

in their informal language which causes complex classification models and 

overfitting problems, Jha and Anas [69] (S33) proposed a FrameNet tagging based 

approach to classify reviews based on the notion of semantic role labelling (SRL). 

The aim of using SRL is to obtain a higher level of abstraction from sentences. SLR 
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classifies the words used in a sentence into semantic classes describing an event 

along with its participants. In their classification task using Naive Bayes (NB) and 

Support Vector Machines (SVM), the authors used frames generated from each 

review, rather than each word. However, their target classes are limited to bug 

reports and feature requests indicating that other types of valuable information are 

ignored in their approach. The authors released their classifier as a tool in [70] (S34) 

and conducted a very similar experiment in [71] (S43). Further in 2019, they used a 

multi-label classifier to extract non-functional software requirements from user 

reviews [72] (S44). They compared the performance of Naïve Bayes and SVM in 

classifying reviews into the categories of non-functional requirements defined by 

Kurtanovic and Maalej [73] (i.e. dependability, reliability, performance, and 

supportability). As classification attributes, they used bag of word, category of the 

target application, and sentiment of the review. 

In another study targeting only one-star and two-star reviews, McIlroy, et al. 

[59] (S31) studied the extent of multi-labelled user reviews (reviews raising more 

than one issue type) and proposed an approach to automatically labelling multi-

labelled user reviews. They defined 13 types of issues and labelled a number of 

reviews manually to form their gold standard dataset. For labelling task, they 

transformed the problem of multi labelling into single labelling and used a classifier 

for each label and combined their results. They used several different classifiers e.g., 

support vector machines (SVM), decision tree (J48) and Naive Bayes (NB) as well as 

several different multi-labelling approaches e.g., Binary Relevance (BR) [it does not 

leverage the correlations between labels], Classifier Chains [74] [it does leverage the 

correlations between labels], and Pruned Sets with threshold extension (PSt). They 

defined a threshold to assign each label to a review. Finally, they used 10-fold cross-

validation to evaluate results.  

In pre-processing phase, they removed numbers and special characters, but 

not stop words, expanded abbreviations, filtered words occurring less than three 

times in dataset, stemmed words, and removed reviews consisting of three words 

or less. However, observations exhibit that reviews with less than three words 

report bugs and issues as well (e.g.: “poor camera”, “save button sucks”, and “can’t 

upload picture”). Moreover, they used (TF-IDF) as a mean to increase the weight of 
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words that occur frequently in a single user review and to decrease the weight of 

words that occur frequently in many user reviews. Although it helps to devalue 

ordinary words, this way of weighting words might demote issues repeated and 

discussed between several users. 

To compare the accuracy of various classifiers in categorization of user 

reviews into four software maintenance tasks (i.e. feature request, information 

giving, information seeking, and bug reports), Al-Hawari et al., [75] (S35) trained 

associative classification (AC) algorithms using the KEEL software [76] and the 

RapidMiner studio [77, 78]. The authors used two different datasets taken from [61] 

and [65] to test the accuracy and argued that AC algorithms have a better average 

performance than J48, KNN, RF, SVM, and NB. 

Classification algorithms have also been used in [79] (S36) to classify reviews 

of healthcare-domain applications into bug reports, feature requests, sentimental, 

security, application performance, and user interface. 7500 reviews from ten 

different health-related mobile applications were manually annotated and used for 

training and testing purposes. As the classification attributes, they extracted TF-IDF 

and n-gram features and used them with Naive Bayes, Multinomial Naive Bayes, 

Random Forest, and Support Vector Machines (SVM). They have reported that 

Multinominal NB has outperformed other classifiers. 

Performance of traditional machine learning techniques and deep learning 

techniques are compared in [80] (S52) where the authors employed both 

approaches to classify reviews into problem reports, inquiries, and irrelevant. Their 

obtained results show that the accuracy of neural networks used is more or less 

similar to the traditional classifiers using several text related extracted features. 

Manual analysis is one of the main techniques used in abovementioned 

approaches to train classifiers. These classification models, however, suffer from 

incomprehensiveness as they are classifying reviews into a limited number of 

classes. Moreover, these approaches are very domain specific. This is because of the 

fact that by changing the target application, aspects and features will be changed as 

well. So, major updates in the proposed model would be required.  
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Iacob and Harrison [81] (S11) studied identification of proportion of feature 

requests among users’ feedback. They developed a prototype to automatically mine 

online reviews of mobile apps and retrieve feature requests. It crawls reviews by the 

use of a data crawler, extract feature requests by 237 predefined linguistic rules, 

summarize extracted feature requests by ranking them based on their frequency 

and length, and visualize the results. The authors crawled 3279 reviews from Google 

play to manually read them and formulate the linguistic rules to identify feature 

requests. To identify common topics across the feature requests, they then applied 

the LDA model. 

To facilitate the use of crowdsourcing in manually classifying reviews for 

software improvements, Martijn et al. [82] (S41) proposed a list of micro-tasks and 

guidelines for crowd workers to categorise useful reviews into the taxonomy 

defined in [83]. The guideline has three steps. First, crowd workers need to identify 

useful reviews from useless ones. Second, they do the same thing for each sentence 

in a review and find if there is any content helpful for developers. Finally, they 

classify reviews into the predefined categories. the question here is that how a 

crowd worker with almost no experience of mobile application development should 

extinguish between useful and useless reviews at the first step? Several rules and 

constraints should have been defined for crowd workers to train them how to 

identify useful reviews. 

To study the enhancement requests of Android OS by users, Lee, et al. [84] 

(S20) applied NLP techniques (i.e. n-gram and PMI analyses) to identify the most 

pressing requests, though their focus was on android OS which reviews vary from 

the ones generated for applications. Their mere focus on text and ignoring the 

available meta-data of feedback is an obvious drawback of their approach. 

Moghaddam [85] (S22) defined some lexical-POS patterns (8 for 

improvements and 5 for defects) to classify implicit reviews containing 

improvement/defects. Then she used these reviews as positive cases to train her 

distance learning classifier. After using SVM to extract sentences containing 

defects/improvements, the author applied LDA to cluster similar sentences and 

score the importance of founded topics. However, her effort on finding patterns to 
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capture defects/improvements was not sufficient as in her approach, problem, 

issue, and bug report is defined as defects and improvements include modification, 

upgrade, enhancement request, but only 13 patterns are defined to extract them 

among user reviews. Thus, many forms of explanations used by users to report 

defects/improvements are most probably missed by her approach. These patterns 

are used to label reviews and it causes inaccuracy in the results. Moreover, the 

proposed approach provides developers with more categorized sets of reviews, but 

they still need to expend too much effort and sources to explore these sets for the 

definition of defects/improvements which is too general in terms of categories 

fallen in these two groups. 

Yang and Liang [86] (S25) proposed an approach to extract user reviews from 

AppStore, extract requirements information from them, and classify them into 

functional and non-functional (NFR) requirements. In their approach, requirement 

engineers manually identify and classify a certain number of user reviews as NFRs 

or FRs. Then, TF-IDF technique extracts keywords from these reviews to be used for 

automatic classification of reviews by the use of predefined regular expressions. 

However, human judgement is required to check and select the keywords which 

makes their approach labour-intensive. Their corpus consists of only 1000 reviews 

which is not appropriate to obtain a stable evaluation. Moreover, the authors 

annotated the data and extracted keywords by themselves. And they defined the 

regular expressions too which was, most probably, based on their observations over 

the data. Thus, performance of their approach severely depends on their 

preferences and evaluation accuracy is under question. Table 2.4 summarizes the 

categories and classification techniques used in the selected papers discussed in this 

section. 
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2.7.1.3 Opinion Mining 

In this section, selected papers focusing on extracting user opinions about 

application/product aspects are discussed. Although extracting user opinions, 

opinion mining, is not the target of this thesis, analysing these studies provides a 

wide technical background for the task of identifying aspects in this project. 

To help developers decide which feature needs to be refined in next 

application release, Zhang et al. [87] (S51) proposed an approach to extract 

application aspects and estimate rating of each aspect given by all reviewers of a 

Table 2.4: Categories and Techniques Used to Classify Reviews 

Categories Techniques  
Applied 

Used in 
Study 

Informative/ Non-Informative SVM, LDA S9 
NB S13 

Feature requests/ Non-Feature request SVM, NB, LR S47 
Linguistic rules S11 
PMI analysis  S20 

Information Giving/ Information Seeking/ 
Feature Request/ Problem Discovery 

NB, LR, SVM, J48, DT S26, S32, 
S27 

AC   S35 
Bug Reports/ Feature Requests SVM, NB  S33, S34, 

S43, S44 
Problem Reports/ Inquiries/ Irrelevant SVM, NB, RF, DT, NN  S52 

General Opinion/ Functional Feature/ Out of 
Domain 

NN  S46 

Issue Types SVM, NB, J48, BR, PSt S31 

Bug Reports/ Feature Requests/ User Experi-
ences/ Rating 

NB, DT, MaxEnt  S21, S29 

Bug Reports/ Feature Requests/ Senti-
mental/ Security/ Application Performance/ 
User Interface 

SVM, NB, RF  S36 

Bug Reports/ Feature Strength/ Feature 
Shortcoming/ User Request/ Prise/ Com-
plaint/ Other 

SVM, NB, NN, LR S18 

Functional and Non-Functional Requirements Regex  S25 

Feature/ Stability/ Quality/ Performance/ 
None 

Manual S41 

User’s Motivations Motivational Models  S1 

Improvements/ Defects POS Patterns  S22 
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certain application. They applied topic modelling techniques, LDA algorithm, to 

extract application aspects. Then they used a linear regression model to calculate 

the rating for each aspect. Finally, they prioritize aspect refinement tasks based on 

aggregated ratings obtained for each aspect. 

Guzman and Maalej [58] (S14) extracted features from the text of reviews by 

the use of collocation finding algorithm. The algorithm finds collection of words 

frequently occurring often (e.g., “battery life” and “screen resolution”). Then they 

applied SentiStrength, an automated sentiment analysis techniques [88] designed to 

tackle with short and low quality texts, to extract opinions and sentiments 

associated with each feature. SentiStrength divides the input text into sentences and 

assigns a positive value along with a negative value to each sentence. Finally, they 

grouped related features and aggregated their sentiments using topic modelling 

techniques [89]. Their aim was to automatically identify application features and 

their associated sentiments mentioned in user reviews. Guzman, et al. [62] (S18) 

extended their previous approach [58] and studied the identification of conflicting 

opinions. They developed DIVERSE, to identify diverse user opinions concerning 

different applications. The framework groups reviews by mentioned features and 

sentiment. Similar to their previous approach, the authors used collocation finding 

algorithm to extract features from user reviews and a lexical sentiment analysis tool 

to find opinions and experiences concerning the features. Then, they used a greedy 

algorithm to retrieve a set of diverse feature-sentiments.  

There are several issues affecting the accuracy of their method. Firstly, a 

feature in their approach is a collection of two words occurred in more than three 

reviews including different orders, synonyms, and misspells. Limiting the feature to 

be consisted of two keywords prevents the approach to comprehensively cover 

various types of features mentioned in user feedback. Secondly, according to 

definition of a feature, their approach ignores features appearing in less than three 

reviews. These features might be very important for development team. finally, the 

lexical sentiment analysis scores each sentence in the review. Then it assigns this 

score to the feature mentioned in the sentence. However, in many cases, the overall 

sentiment of a review is negative, but the user is admiring a feature in that sentence. 

In the other word, negative words may be used in the favour of a feature [90]. 
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Vu, et al. [91] (S24) developed MARK (Mining and Analysing Reviews by 

Keywords), a semi-automated framework assisting developers in searching reviews 

for certain features. It uses keyword-based approaches to search for relevant 

reviews. Several NLP techniques are used for keywords extraction, ranking 

keywords, and categorizing them based on their semantic similarity. MARK uses the 

standard Vector Space Model to query its review database and fetch results with 

respect to the keyword set. 

Gu and Kim [92] (S16) applied sentiment patterns to parse review sentences 

and elicit app features. Their proposed tool (SURMiner), firstly, splits each review 

into sentences and applies Max Entropy to classify reviews into five categories, 

namely aspect evaluation, bug reports, feature requests, praise and others. Then, it 

identifies aspects and their associated opinions from sentences fallen in the category 

of aspect evaluation by designing a pattern-based parsing method. To design the 

method, the authors manually analysed 2000 sentences from reviews labelled as 

aspect evaluation and identified 26 templates. The tool, then, analyses the sentiment 

of each sentence and assigns a rating to that. It, finally, mines frequent items for all 

aspect words and clusters aspect-opinion pairs with common frequent items to 

summarize the output. Their focus is merely on aspect evaluation sentences in 

reviews. Thus, majority of topics such as feature requests and bug reports are 

ignored in their study. The main aim of their study was to extract application aspects 

and their associated opinions by designing a pattern-based parsing method. 

However, definition of patterns for unclear aspects is error prone as there is 

uncertainty in the aspects discussed in the user reviews. Besides, from app to app, 

aspects differ significantly which demands dramatic updates in predefined patterns. 

In an opinion mining study, Haroon et al. [93] (S38) have also investigated the 

extraction of application features using syntactic patterns between nouns and 

sentiment words. In a pilot study, they manually extracted application features from 

real world reviews and observed that noun and noun phrases do contain 98% of 

application features. So, they defined some syntactic rules to capture certain 

relations between the nouns and sentiment words to identify application features. 

However, their approach misses all features appear in the form of verbs or implicit 

ones. Besides, one of the major issues with opinion mining-based feature extraction 
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techniques proposed so far is that they all miss lots of features mentioned in reviews 

without any sentiment or opinion mentioned for them. The following review, for 

example, does not contain any sentiment or opinion word, but includes ‘menu 

button’ which is an application feature. 

“When I press the menu button on the top left side of the screen, the app shows only 

3 items.” 

Syntactic rules was initially used in [94] (S53) to identify product features and 

facilitate aspect-based opinion mining task. To find aspect-opinion pairs, the 

authors used a lexicon of opinion words [95] and enriched it with WordNet [96] 

synonyms and acronyms and Semantics extracted from SenticNet [97]. Then, they 

defined five syntactic rules to extract aspects appearing in noun or noun phrase 

associating with the opinion words. They experimented employment of neural 

networks in identifying aspects, but applied same rules to the output of the 

algorithm as the accuracy was not sufficient [98] (S54). Further in 2017, Rana and 

Cheah [99, 100] (S55) defined an algorithm to apply syntactic rules and extract 

aspect-opinion  pairs. The algorithm which is a modified version of the one proposed 

in their previous study [101] (S56) finds noun and noun phrases which are 

associated with opinions in a sentence. However, aspects might not be associated 

with any opinion. Besides, detection of aspects is based on frequency of repeating 

aspect candidates in reviews, but observations show that there are aspects not 

repeated in several reviews.  

To identify useful reviews for software evolution, Guo et al. [102] (S45) 

extracted aspects from reviews using bootstrapping method [103] which is a semi-

supervised learning method taking a set of application aspects as seeds, searching 

for sentences containing the seeds in dataset of reviews, generating extraction 

patterns for seeds, and discovering new aspects mentioned in reviews using the 

patterns. In the second step, they applied semantic analysis tools (i.e., SnowNLP) to 

discover semantic of reviews and considered reviews containing neutral or negative 

semantics along with an aspect as effective reviews. A simple example for 

demonstrating ineffectiveness of their approach is the following useless review 

containing an aspect and having a neutral sentiment: 
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“I use the navigation feature to travel overseas” 

The main reason why most of these approaches are not fully applicable in the 

aspect extraction phase of this project is that detection of aspect in them is 

contingent upon identification of opinion words. This is because most of these 

papers have studied the feedback of users on certain aspects of the target product 

or application. The aim of conducting these experiments was to help product sellers, 

manufacturers, and developers in understanding satisfactory level of 

customers/users about different aspects of products or applications. However, this 

study focuses on identifying user requirements and discovering application aspects 

is one of the requisites of such a broad aim. Moreover, empirically evaluating several 

feature extraction approaches on real world user reviews, Dabrowski et al. [36] 

observed that these approaches achieve lower effectiveness than reported 

originally which puts a question mark on the accuracy of the reported approaches. 

Initial investigations performed in this study confirms this observation as well. 

Table 2.5 summarizes selected papers in this section with respect to the techniques 

used in them. 

 

2.7.1.4 Relation Extraction Between Review Components 

In this section, another group of selected papers that have been investigated the relation-

ships between different components of a review and the target application are discussed. 

Table 2.5: Selected Papers Extracting Opinion-Aspect Pairs 

Purpose Techniques Applied Used in 
Study 

Extracting Opinion- Aspect 
Pairs 

Collocation Finding Algorithm S14, S18 
Bootstrapping Method S45 
LDA S51 
Syntactic Patterns S38, S55, 

S56 
Sentiment Patterns S16 
Syntactic Patterns +NN S53, S54 

Searching reviews about a cer-
tain aspect 

Keywords, semantic similarity, 
VSM 

S24 
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The research attention in this group of studies is mainly on the impact of users’ given 

star-rating on number of downloads and amount of sale.  

In order to understand why users dislike apps, Fu, et al. [52] (S5) developed a 

system, named WisCom, analysing reviews in three different levels. Firstly, at the 

review level, they discovered reviews with inconsistent ratings by applying a 

regularized regression model. This was to understand individual reviews and the 

words used in them. Secondly, at the app level, they applied topic modelling (LDA) 

techniques to discover specific problems of each app behind the users’ complaints. 

Finally, in entire app market level, they analysed top 10 complaints of each app to 

find similar complaints and the most critical aspects of apps leading to identifying 

global trends in the market. Their focus was only on negative reviews as they 

hypothesized that those could be directly used to enhance the quality of 

applications. However, researchers observed that feature requests that are 

important feedback for developers mostly appeared in positive reviews [47, 81]. 

AR-MINER [34] was used further by Palomba, et al. [74] (S23) to investigate 

how addressing user feedback by developers influences the overall rank of the app. 

Their proposed tool, named CRISTAL (Crowdsourcing RevIews to SupporT App 

evoLution), collects reviews posted for previous release of a certain application and 

tracks its rating. Then it extracts informative reviews using the AR-MINER and 

checks whether the comments are applied in next release. Finally, it checks the effect 

of them on rating after the last release. 

Manually analysing reviews of BlackBerry apps, Harman, et al. [104] (S2) 

confirmed that the rating given by user has a significant impact on number of 

downloads. To better understand what users communicate in their reviews, Hoon, 

et al. [105] (S3) analysed 8.7 million reviews from 17,330 apps and categorized 

keywords appearing frequently in each star rating as they hypothesized that it can 

inform and focus development efforts. The authors determined the distribution of 

word and character counts per star rating respectively applying a regular 

expression to extract words from the review entities, and monitored which star 

rating the appearance of the extracted keywords pertains to. However, they did not 

apply appropriate pre-processing techniques (e.g., stemming, removing of stop 
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words, and spell checking) to normalize input reviews. Moreover, their focus was 

only on single words resulting in missing multi-word expressions.  

Their dataset was also used in another approach [106] (S4) to discover 

possible relations between rating of a review and its content. They argued that 

reviews with lower ratings include more useful feedback, and that the depth of 

feedback in certain categories is significantly higher than for other. In both of their 

approaches, the authors did not discuss details and settings of the analysis. 

Obviously, beside manual analysis and observations they have used some automatic 

processing techniques that are not mentioned in the studies. 

Noei et al. [107] (S48) have also manually analysed mobile application reviews 

to investigate the role of application categories and key topics in star-rating 

improvements. They discovered 10 categories for applications, such as business, 

health and fitness, media and video, travel and local, photography, etc. To assign 

topics to each user review they applied topic modelling technique, LDA [89] in 

particular, and discovered 23 topics such as comparing versions, bug reports, 

feature requests, laying audio and video, web browsing, etc. Finally, they applied 

PMVD approach [108, 109] to identify key topics in each category and to identify 

contribution of each topic in star-rating. Proportional Marginal Variance 

Decomposition (PMVD) applies weighted averages with data-dependent weights to 

average over orderings. 

Table 2.6 summarizes selected papers in this section with respect to the 

techniques used in them. 
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2.7.2 Support Tools for Mining Mobile App Reviews (RQ2) 

RQ2: What software tools have been developed to support these techniques? 

Thirteen support tools were found in this SLR. A summary of which is 

presented in Table 2.7. In what follows, we provide an overview of these tools. 

MARA. This tool analyses user feedback in several steps. First, web sources of 

reviews are crawled and parsed. Second, the tool uses 273 syntactical rules to mine 

the review content for feature requests expressed by users. An example of such a 

rule is ‘Adding <request> would be <POSITIVE-ADJECTIVE>’ (e.g., ‘Adding an exit 

button would be great’). Feature requests are then summarized according to a set 

of predefined rules that rank the extracted requests based on their frequency and 

length. To identify topics that can be associated with these requests, Latent Dirichlet 

Allocation (LDA) model is used. Finally, during the feature requests visualization 

phase, the results of the summarization are displayed to the user. 

WisCom. This tool analyses user feedback at three levels of detail, involving 

discovering inconsistencies in reviews, identifying reasons why users like or dislike 

a given app, and identifying general user preferences and concerns over different 

types of apps. Firstly, a regularized regression model is used for discovering 

inconsistencies and detect ratings that do not match the actual text of the feedback. 

Secondly, feedback comments of individual apps are aggregated and LDA algorithm 

is applied to discover why users dislike these apps. The algorithm was trained using 

Table 2.6: Selected Papers Studying Relations Between Review Components 

Purpose Techniques  
Applied 

Used 
in 
Study 

Identifying Relations Between Rating and Review Con-
tent 

Regression  
Models 

S5 

Manual S4 

Identifying Relations Between Rating and Number of 
downloads 

Manual S2 

Identifying Relations Between Rating and Distribution 
of Keywords 

Manual,  
Regex 

S3 

PMVD approach S48 
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words that receive negative weight in the regression model. Finally, to identify 

outstanding complaints in each category of apps, most common complaints from 

negative feedback comments of each app identified in the previous step are 

aggregated on categories, summarized and displayed to the user. 

AR-Miner. This tool analyses user feedback comments. It filters, aggregates, 

prioritizes, and visualizes informative (information that can directly help 

developers improve their apps) reviews. Non-informative (noises and irrelevant 

text) reviews are filtered out applying a pre-trained classifier (i.e., Expectation 

Maximization for Naive Bayes). The remaining informative reviews are then put into 

several groups using topic modelling techniques (i.e., LDA and Aspect and Sentiment 

Unification Model) and prioritized by application of a ranking model. Finally, the 

ranking results are visualized in a radar chart to help app developers spot the key 

feedback users have. 

CRISTAL. This tool is used for tracing informative (providing any insight into 

specific problems experienced or features demanded by users) reviews onto source 

code changes, and for monitoring how these changes impact user satisfaction as 

measured by follow-up ratings. AR-Miner is used first to discard non-informative 

reviews. A set of heuristics are used, then, extract issues and commits driven by each 

review. IR techniques are used then, to identify possible links between each review 

and the issues/commits. The set of links retrieved for each informative review is 

stored in a database grouping together all links related to a certain release. This 

information is exploited by the monitoring component, which creates reports for 

managers/developers and shows stats on the reviews that have been implemented. 

DIVERSE. This is a feature and sentiment centric retrieval tool for generating 

diverse samples of user reviews that are representative of the different opinions and 

experiences mentioned in the whole set of reviews. When a developer queries the 

reviews that mention a certain app feature, the tool will retrieve reviews, which 

represent the diverse user opinions concerning the app features. The tool applies 

the collocation finding algorithm to extract the app features mentioned in the 

reviews, uses lexical sentiment analysis in order to excerpt the sentiments 

associated to the extracted features, uses a greedy algorithm to retrieve a set of 
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diverse reviews in terms of the mentioned features, and group reviews whose 

content and sentiment are similar. 

SURMiner. This tool summarizes users’ sentiments and opinions on certain 

software aspects. By the use of Max Entropy algorithm, the tool classifies each 

sentence in user reviews into five categories (i.e., aspect evaluation, praises, feature 

requests, bug reports, and others) and filter only aspect evaluation sentences for 

extraction of aspects and corresponding opinions and sentiments. The tool uses a 

pattern-based parsing method to extract aspects and sentiments. The method 

analyses the syntax and semantics of review sentences. The resulting aspect-

opinion-sentiment triplets are then clustered by mining frequent opinionated words 

for all aspect and clustering aspect-opinion pairs with common frequent words. 

Finally, the results are visualized on graphs. 

MARK. This tool is a semi-automated review analysis framework that takes 

relevant keywords from developers as input and then retrieves a list of reviews that 

match the keywords for further analysis. The tool has a keyword extraction 

component which extracts a set of keywords from raw reviews. These keywords 

could be clustered based on Word2Vec and using K-mean algorithm or expanded 

based on based on the vector-based similarity of the keywords. Once the analyst 

specifies a set of keywords (via clustering or expanding), the tool will query its 

database and return relevant the most relevant results. MARK employs the popular 

tf-idf (term frequency - inverse document frequency), a standard term weighting 

scheme to compute the element values for those vectors, and the Vector Space Model 

for this task. 

SURF. This tool summarizes user reviews to assist developers in managing 

huge amount of user reviews. The tool relies on a conceptual model for capturing 

user needs useful for developers performing maintenance and evolution tasks. Then 

it uses summarisation techniques for summarizing thousands of reviews and 

generating an interactive agenda of recommended software changes. The tool is 

equipped with a dictionary of topics and uses the NLP classifier to automatically 

assign a sentence in a review to one or more topics. To suggest the specific kinds of 

maintenance tasks developers have to accomplish, it also classify intentions in a 



 

54 

 

review using intent classifier [65]. Based on a certain scoring mechanism, the tool 

then generates the summaries as structured HTML. 

ARDoc. This tool automatically classifies useful feedback contained in app 

reviews that are deemed to be important for performing software maintenance and 

evolution tasks. The tool divides review text into sentences and extracts from each 

of these sentences three kinds of features: Firstly, the lexicon (words) feature is 

extracted through the TA Classifier which exploits the functionalities provided by 

the Apache Lucene API to extract a set of meaningful terms that are weighted using 

the TF (term frequency). Second, the structure feature (i.e., grammatical frame of 

the sentence) is extracted through the NLP Classifier. Using NLP heuristics and 246 

predefined recurrent syntactical patterns, the NLP Classifier automatically detects 

the occurrences of specific keywords in precise grammatical roles and/or specific 

grammatical structures. Finally, the sentiment is extracted through the SA Classifier 

using the sentiment annotator provided by the Stanford CoreNLP. In the last step 

the ML Classifier uses the NLP, TA and SA information extracted in the previous 

phase of the approach to classify app reviews according to a predefined taxonomy 

by exploiting the J48 algorithm. 

Casper: is an automatic method for extracting events from user reviews on 

mobile applications proposed by Hui and Munidar, [110] (S37). The tool extracts 

events from reviews and classify them into user stories and problems. Then it 

represents pairs of user stories-problems to developers. Casper finds verbs in a 

sentence using POS-tagging technique and find the subtree rooted on this verb in 

the dependency-based parse tree as a candidate of an event. The output events are 

then classified into user story and problem. To build the model, the authors used 

Universal Sentence Encoder (USE) [111] to convert the event phrases into vectors 

of real numbers and adopted SVM to classify the sentence vectors. 

IDEA: In order to identify emerging app issues from user reviews, Gao et al. 

[112] (S39) proposed a framework named Identify Emerging App issues (IDEA) 

which takes reviews of various versions of the target application and applies AOLDA 

(Adaptively Online Latent Dirichlet Allocation) which is the LDA algorithm adopted 

to work online to identify topics distributions with respect to the application version 
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from reviews. Then it finds emerging topics using anomaly detection methods. Then 

it considers emerging topics as the identified application issues.  

A year after, the authors found that IDEA does not produce stable results even 

with same input data and has a long running time. So, they designed another tool 

called DIVER, (i.e. iDentifying emerging app Issues Via usER feedback) [113] (S40) 

to more efficiently identify emerging application issues. Similar to IDEA, the tool 

takes reviews as input and extracts word collocations using ECLAT (Equivalence 

Class Transformation) [114], a depth-first search algorithm for pattern mining. 

Then it identifies emerging word collocations to achieve emerging issues by 

extracting and comparing proportion of reviews containing the word collocations 

for each version at each time. 

SRR-Miner: is an automatic tool proposed by Tao et al. [115] (S42) to 

summarize security issues and users’ sentiments in the reviews. SRR-Miner applies 

a keyword-based approach to identify security related review sentences. Then it 

uses six very basic POS-based semantic patterns to capture misbehaviour-aspect-

opinion triples as candidates for security issue reports.   

RISING: Review Integration via claSsification, clusterIng, and linkiNG is an 

automated approach proposed by Zhou et al. [116] (S50) to categorise user reviews 

into fine-grained groups concerning similar user requirements via classification, 

clustering, and linking of user reviews. The approach uses ARDOC (explained as 

another tool in this section) to classify reviews into information giving, information 

seeking, bug reports, and feature requests. Then it focuses only on the two latest 

groups for further fine-grained clustering of feature requests and bug reports using 

a customised version of traditional K-mean algorithm [117]. 
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Table 2.7: Support tools for mining mobile app reviews 

Tool 
Name 

Description 
Underlying 
Technique 

Unit of  
Analysis 

Study 
ID 

MARA  Identifying and summarizing  
feature requests using syntactical 
rules  

Syntactical 
rules, LDA 

Sentence S11 

WisCom Identifying inconsistent feedback 
using a regression model and  
complaints using LDA 

Regression 
models, LDA 

Multi-
level 

S5 

AR-
miner  

Filtering out useless reviews using 
topic modelling, group and  
prioritizing informative reviews 

Naive Bayes, 
LDA 

Sentence S13 

CRISTAL  Detecting traceability links be-
tween reviews and source code 

AR-MINER 
IR 

Document S23 

DIVERSE  Detecting conflicting opinions 
based on aspects, answering devel-
oper's query by grouping reviews 
by their mentioned features and 
sentiment. 

Collocation 
finding, 
Lexical senti-
ment analysis, 
Greedy  
algorithm  

Document S17 

SUR-
Miner  

Classifying and summarizing re-
views using a pattern-based parser 

Sentiment pat-
terns, 
Max Entropy 

Sentence S16 

MARK  Assisting developers in searching 
opinions about aspects 

keywords, 
NLP, VSM 

Document S24 

SURF Classifying and summarizing re-
views using topics and intentions 
classifiers 

NLP classifier, 
WordNet 

Sentence S27 

ARdoc Classifying reviews using a taxon-
omy. 

NLP, J48 
Sentiment 
analysis 

Sentence S32 

Casper Extracting events and problems 
from reviews using POS patterns 

POS, SVM, USE Sentence S37 

IDEA Identifying emerging app issues by 
tracking topics distribution 

AOLDA Document S39 

DIVER Identifying emerging app issues by 
tracking word collocations 

ECALT Document S40 

SRR-
Miner 

Summarizing security issues and 
users’ sentiments using a keyword-
based approach 

Keywords, POS Sentence S42 

 

RISING Classifying and clustering reviews 
using ARDOC and K-mean 

ARDOC,  
K-mean 

Sentence S50 
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2.8 Open Issues 

This section reports the challenges and open problems in the area along with some 

future research directions for researchers. There are several issues making useful 

information extraction from user feedback a challenging task. Majority of these 

issues arise from the nature of the feedback to be mined, interpretations of 

researchers, and technical environments. While many of these problems have been 

identified and investigated, no single extraction technique is capable of addressing 

all of the challenges. The selected studies had focused on a subset of these issues to 

solve. Thus, a future direction for the research in this area could be to designing 

models capable to solve the following issues as much as possible. 

1) Huge Volume of User Feedback: The volume of user-generated feedback is 

huge. Extracting insights from massive number of reviews is a labour-intensive and 

challenging task for researchers. Quantity of reviews generated for an application 

usually exceeds a human capacity to manually analyse them and extract useful 

information. It makes difficulties in identifying recurring trends and issues across 

reviews. Moreover, processing such an amount of data is time consuming. In case of 

application updates and revealing new versions, the time commitment involved in 

extracting required changes for next release is crucial [54]. Thus, more novel 

approaches for effectively and efficiently processing massive amounts of feedback 

by taking relations between them into account are on demand. 

2) Unstructured Data: Unstructured nature of user feedback is one of the main 

challenges in automatically processing them. App users often write their reviews in 

unconventional manners making automate interpretation as difficult as possible 

[81]. They tend to express their reviews using informal language, which often 

includes colloquial terminologies. Moreover, they regularly neglect grammar and 

punctuation rules and use eccentric syntactic entities, and ironic and sarcasm 

sentences in their reviews [48]. One key challenge to app developers is dealing with 

such unstructured short pieces of text. To overcome these problems, technical text 

mining and NLP approaches should be integrated into proposed models and 

accompany them in order to deal with these types of user generated text. 
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3) Annotating Data: Data annotation is required in supervised approaches for 

training the machine and for evaluation purposes. It is a time and cost consuming 

task usually accompanied with mistakes and errors, though it is necessary to obtain 

better results in supervised and semi supervised approaches. As it is discussed in 

Section 3.1, in majority of cases, studies have provided different approaches 

demanding certain types of annotation resulting in impossibility of creation of a gold 

standard dataset to be used for evaluation of various approaches. Apart from 

difficulties of manual annotation of data, accuracy of the annotated data is under 

question as instead of domain experts, article authors or non-experts are employed 

to do it in majority of cases. Thus, more efforts and novel approaches are required 

to alleviate the problem of data annotation. 

4) Defective Use of Data Pre-processing: With the use of some certain pre-

processing tasks, researchers try to prepare the data to be used as the input of their 

method. Stop-word removal techniques are an example of these tasks. Various 

proposed methods include these tasks to perform more efficiently in terms of time 

and computation. However, a group of approaches have argued that using some of 

the pre-processing tasks causes missing valuable information in user feedback [69]. 

Therefore, more comprehensive, and analytical research is required to investigate 

the impact of applying each pre-processing task on performance and accuracy of the 

techniques.  

5) Data Interpretation: While various approaches and techniques for 

extraction of actionable information from user feedback have been proposed by 

researchers, their interpretation of actionable information is, to a certain extent, 

different from developers’. Previous research [118] has tried to discover what 

developers are highly interested in, and what the designers’ viewpoint is when 

mulling the reviews over [119, 120]. Although some of these factors (i.e. 

functionality, and app features) are used by Guzman, et al. [62], and informativity of 

reviews from developers’ perspective was investigated by reading some relevant 

forum discussions by Chen, et al. [57], many proposed approaches have made the 

data analysis from the authors’ point of view. Inconsistency between researchers’ 

and developers’ interpretation results in development of inefficient methods and 
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techniques. This argument is backed up by the discussions provided after analysing 

each selected paper in section 2.7.1.1 and 2.7.1.2. 

More precise study of what exactly needs to be extracted from user reviews is 

required to make proposed approaches more efficient. 

2.9 Validity Threats to This SLR 

The primary threats to validity of results from this SLR are concerned with 

comprehensiveness and coverage of the relevant studies. Firstly, the search only 

covers publications that were published before the end of October 2020. We 

conducted the review in 2020. We, therefore, used 2020 as an upper bound on the 

search term. Other relevant studies might have been published since November 

2020 that we have not included in this review. 

A further search-related limitation of the review is that we might have missed 

some papers in identification of relevant studies. The completeness of the search is 

dependent upon the search criteria used and the scope of the search, and is also 

influenced by the limitations of the search engines used [121]. We used a set of well-

known references to validate the search string and made necessary amendments 

before undertaking the review. However, four papers were identified by 

snowballing that were indexed by the digital libraries but were not found with the 

search terms used in the review. 

Aiming to cope with construct validity which is related to generalization of the 

result to the concept or theory behind the study execution [122], we defined and 

applied several synonyms for main constructs in this SLR: “requirements 

engineering”, “feedback analysis”, and “software evolution”. 

The other validity threat could be related to selection, analysis and synthesis 

of the extracted data being biased by the interpretation of the researcher. 

Inclusion/exclusion of studies has passed through accurate selection, on-going 

internal discussion and crosschecking between the authors of the SLR. We tried to 

mitigate the thread by conducting the selection process iteratively. Furthermore, 

collecting data by two extractors who are PhD candidates in the field was also 

helpful to minimize any risk of researchers’ own bias. 



 

60 

 

If the identified literature is not externally valid, neither is the synthesis of its 

content [123]. To alleviate this threat, we formed our search process after multiple 

trial searches and compromise of the authors. Unqualified papers were excluded as 

well by the application of our exclusion criteria. 

2.10 Conclusion 

This chapter reports our research effort aimed at systematically reviewing and 

analysing application feedback processing practices toward assisting developers 

with extraction of actionable information and insights. The review was conducted 

by the guidelines provided in [44]. In total, 56 relevant studies were identified and 

analysed. Firstly, this thesis categorized and discussed studies based on types of 

analysis and underlying techniques. Then, available supporting tools for feedback 

mining were investigated. Finally, challenges and open problems in feedback 

mining, which require further research were discussed. The findings from this 

review provide several implications for researchers, requirements engineers and 

tool developers to gain a better understanding of the available studies and tools and 

their suitability for different contexts resulting in significant improvements in 

development of intelligent app review mining techniques and tools.  
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 Identification of Factors Rel-

evant to the Usefulness of App Reviews 

 

3.1 Introduction 

According to the literature review reported in previous chapter, a set of effective 

metrics for identification of useful reviews based on developers’ viewpoints has not 

been proposed yet. In order to facilitate the process of overcoming such a large 

problem and to effectively measure the usefulness of user reviews, a comprehensive 

set of usefulness factors are required. This chapter discusses the process and 

strategy used to achieve these factors. Definition and examples are also provided for 

any discovered factor.  

3.2 Research Framework 

It was discussed in Chapter 1 that one of the objectives of this project is to conceptualise 

the usefulness of app reviews with respect to the developers’ viewpoint. To achieve this, 

a set of usefulness factors were required to effectively measure the usefulness of a review. 

Accordingly, the idea of performing the research reported in this chapter is to analyse 

related work for identifying any potential usefulness factor and for discovering any con-

cept helping in definition of a usefulness factor. 

To define a comprehensive set of usefulness factors, related studies are 

carefully analysed to discover what characteristics of the user generated content 

(e.g., forum post, review, comment, email, tweet, etc.) have been reported as helpful 

for facilitating the discovery of useful information for application developers, 

product designers, etc. Unlike the literature review reported in Chapter 2, the scope 

of this analysis covers several domains of research, such as RE reports mining, app 

testing reports analysis, customer services emails analysis, etc. 

Performing the analysis, a list of potential usefulness factors are identified as 

usefulness metrics enabling properly detecting useful reviews. In this chapter, the 
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systematic process of identifying them, definition of each factor, and examples are 

explained in detail. 

3.3 Survey Methodology 

This section introduces the methodology used to conduct this exploratory study. 

Figure 3.1 illustrates the process of the literature review. Research questions are 

defined at the first step. Then, a set of keywords is identified to narrow down the 

scope and limit the number of results to only related works. Using the keywords, 

search terms are formulated and applied on an online repository search process to 

harvest related publications. Irrelevant retrieved papers are then excluded from this 

study defining and applying some exclusion criteria. Finally, the selected primary 

publications are analysed in three phases (i.e., Title reading, Abstract reading, and 

Full-text reading) to achieve a fine-grained selection of closely related works and to 

perform the review process. 

3.3.1 Defining Research Questions 

The main objective of this literature survey is to find existing factors used in related 

studies for measuring the usefulness of user reviews for application development 

 
 

Figure 3.1.  The Conceptual Framework of this study 
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purposes. To achieve this objective, the following research questions are 

formulated. 

RQ.1 What are the factors for measuring usefulness of user reviews for software 

development? 

To answer this research question, we searched three different areas of 

research working on analysis of user feedback (i.e., analysing reviews on mobile 

applications, analysing customer opinions on online products, and analysing post-

deployment customer feedback, reports, logs on software systems). This search was 

to find and analyse related studies in order to understand how the researchers have 

measured usefulness and what factors they have identified to do so. It is noteworthy 

to point out that studying the usefulness of a review from other readers’ viewpoint 

has been reported in several papers as well [124, 125]. However, our aim is to assess 

it from developers and requirement engineers’ perspective. 

RQ.2 How the importance of each factor has been validated? 

To report how the importance of each factor is validated in a study, we 

analysed the study to see how the authors have justified the importance of the factor. 

At the end of each sub-section discussing a factor, we have reported the validation 

process of the studies fallen in the sub-section. 

3.3.2 Searching Online Repositories 

User reviews, usefulness, and requirement elicitation compose the main points of 

the focus of this study. Various terms and keywords might have been used in existing 

literature to refer to these concepts. Therefore, we defined an extended set of 

keywords for each concept represented in Table 3.1. To build the final search term, 

conjunction of the groups was used, while disjunction of keywords had built each 

group. 
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The search term was validated to fetch more relevant papers and minimise the 

remaining search results using a “quasi-gold standard” [126], whereby, five related 

works were manually identified. These papers were obtained during the analysis of 

selected studies in Chapter 2. The search term was then refined repeatedly to 

include these papers when fetching minimum possible number of papers.  

To collect related papers from online repositories, the search term was applied 

on three well-known online repositories (i.e., ScienceDirect, IEEE Xplorer, ACM 

Digital Library). Some of the inclusion and exclusion criteria (e.g., Language, year, 

venue) where applicable using the automatic search option provided by the 

repositories. So, we applied those criteria at the searching step. However, the 

advanced search options of these repositories are reported to reveal huge number 

of irrelevant papers [127, 128] impelling us to define and apply manual scripts, 

wherever possible, for searching the repository.  Finally, we achieved a collection of 

893 papers. 

Reading title, abstract, and conclusion of the collected papers along with the 

application of exclusion criteria explained in further section, we discarded 862 

reviews. Snowballing was the last step in the process of selecting relevant papers 

wherein references of the selected papers were searched to identify any possible 

appropriate publication related to this study. The criteria for analysing the papers 

for snowballing were similar to selecting papers in this chapter. Besides, during the 

process, more attention was given to identify related papers as, unlike search 

engines, human analysis skills were involved. 

Table 3.1: Groups and keywords in the search term 

Concepts Keywords 

User User, End user, Customer, Client 

Review Review, Opinion, Comment, Post, Feedback 

Usefulness Useful, Helpful 

Target product Mobile app, Mobile application, Application, Software, Product 

Requirement 
elicitation 

Requirement elicitation, Development, Evolution, Design, 
Preferences, improvement 

 

 



 

65 

 

Performing the snowballing, 2 papers were added to the collection of our 

selected studies. Hence, we started our analysis with 26 papers. A summary of our 

search process is provided in Table 3.2. 

3.3.3 Exclusion Criteria 

In order to focus on a consistent set of primary studies and reduce the eventual 

effort in further in-depth analysis, we decided to approve a paper for further 

analysis only if it does not satisfy any of the exclusion criteria. The following 

exclusion criteria are, therefore, defined and applied on the selected papers: 

• Papers written in languages other than English 

• Papers published before 2008 or after 2019. We used 2008 as starting date as 

the research on reviewing online products was started at this year. 

• Short papers and tutorials for lack of sufficient information for our study 

• Duplicated papers as some authors publish extended versions of their works. 

We have only considered the last version found as relevant. 

• Papers focusing on the helpfulness of reviews from customers’ point of view 

• Papers analysing reviews for identifying users’ behaviours 

 

Table 3.2: Number of selected papers during the search process 

Step Count 

Online repositories search 893 

After reading titles 112 

After reading abstracts and conclusion 31 

After skimming and scanning full text 24 

After snowballing 26 
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3.4 The Usefulness Factors 

To answer the main research question of this chapter, “What are the existing factors 

for measuring usefulness of user reviews for software development?”, selected 

Table 3.3: List of the Usefulness Factors 

No. Factors Explanation Reference 

1 Application  
aspect 

Where the issue/ requested feature 
is/supposed to happened in the applica-
tion? (e.g., function, quality, component, 
etc.)  

[68, 129] [65] 
[130] [58] [62] 
[120] [131] [119, 
132] [133, 134] 
[132, 135-137] 
[138-140] [141, 
142] [48] [143] 

2 Feature request What feature is needed to be added to the 
application? 

[65] [48] [37] [69, 
144] [70] [60, 145] 
[61] [57, 146] [54] 

3 Issue report What is the problem in the application? [37] [60] [61]  [49] 
[51] [73] [147, 
148]  

4 User action How the user has produced or faced the 
issue? / How the user will work with the 
desired requested feature. 

[133] [138] [141] 

5 System action What the system does when an issue oc-
curs? / What the system should do with 
adding the desired requested feature? 

[138, 141] 

6 Expected action What the system should do if no issue oc-
curs (i.e., normal situation)? 

[138, 141] 

7 Device  
information 

What user device and model are and what 
OS and OS version is installed on user de-
vice? 

[138, 141] 

8 Pros and cons Both pros and cons of the application is 
mentioned in a review 

[120] [131] [119] 

9 User expertise Number of reviews posted by a user [120] [149] [150] 
[151] 

 10 User rating Number of rating stars given by the user [49] [51] [59] 
[106] 

11 Length of the 
review 

Number of words and sentences in the re-
view 

[149] [150] [152]  

12 Readability Number of grammar and spelling mis-
takes in the review 

[138, 141] [150] 
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papers are analysed to figure out how the authors measure the usefulness. The 

analysis, then, results in a list of factors represented in Table 3.3. These factors are 

defined and explained with examples in the following sub-sections.  

According to the table, some of the factors might have received few research 

attentions making them sound insignificant at the first glance. However, as the 

objective at this step of the project was to perform a systematic method to discover 

any possible usefulness factor, this section discusses whatever is reported to form a 

comprehensive collection. Moreover, some of the factors receiving minor citations 

are proposed in important research projects involving many experts in the domain 

confirming the importance of the factor. Besides, at this step, this thesis does not 

argue the significance of these factors, but reporting available ones discovered 

through the literature review. Further sections report how these factors are to be 

validated and filtered with the use of the experts’ judgement. 

Research question 2 asks “How the importance of each factor has been 

validated?”. To answer this research question, after defining and explaining what 

each factor is in the following sub-sections, a summary of the approach is provided 

to show how this factor helps or is considered to be helpful in identifying useful 

requirements from user feedback in variety of domains. Each sub-section ends with 

a discussion on validation process of the selected papers in the sub-section. 

3.4.1 Application Aspect 

Application aspect is defined as “a prominent or distinctive user-visible aspect, 

quality or characteristic of a software system” [153]. This factor refers to the 

mentions of any aspect (e.g., component, function, process, etc.) of the application in 

a review. It can be any description of specific app functionality visible to the user 

(e.g., “viewing pdf”), a specific screen of the app (e.g., “log in screen”), a general 

quality of the app (e.g., “load time”, “size of storage”, or “price”), as well as specific 

technical characteristics (e.g., “encryption technology”) [58].  

Tianjun et al. [143] reviewed product design science literature to extract 

concepts related to product design and manually processed a sample of 265 review 

sentences to study whether reviewers expressed their requirements on these 
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concepts. Then, they defined some linguistic rules to capture these requirements 

from reviews to be used for analysing user preferences during the design phase. 

Although these concepts are defined as means of identifying user preferences, one 

of them is product feature (Application Aspect). 

During the development of SURF (Summarizer of User Reviews Feedback), an 

automatic tool for summarizing mobile application reviews, Di Sorbo et al. [68] 

manually analysed each sentence in 438 reviews selected as training set to discover 

topics in reviews. One of the observations they made through the annotation was 

that “developers need reasonably useful sentences discussing a specific aspect of an 

app with respect to other review sentences.”  

In an exploratory study, to demonstrate how user reviews are useful for 

developers, Pagano and Maalej [48] investigated how to identify and classify topics 

in reviews. They applied a descriptive statistic to investigate usage of feedback. 

They, then, manually analysed a random sample of 528 reviews to explore and 

assign topics to each review. Application Aspect was one of the 17 observed topics 

in the reviews. 

Panichella et al. [65] proposed a taxonomy to classify app reviews into 

categories relevant to software maintenance and evolution. To understand 

developers’ viewpoint in analysing user feedback, they extracted 300 emails from 

the development mailing lists of Qt and Ubuntu projects and tried to categorize 

sentences learning from previous studies on this domain [154, 155]. Among 

identified categories, the one matching categories identified in [48] was 

‘Information giving’ which is defined as follow: “sentences that inform or update 

users or developers about an aspect related to the app”. Their approach was 

improved in [66] proposing ARdoc (App Reviews Development Oriented Classifier), 

a tool that automatically classifies useful sentences in user reviews using the same 

taxonomy.  

To assess the quality of product reviews for summarization purposes, Liu et al. 

[130] defined a set of specifications for judging the quality. They proposed a 

classification-based approach to detect low-quality reviews. For training the 

classifier and evaluating the model, they collected 23,141 reviews on 946 digital 
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cameras from Amazon website. According to their inspirations from the data they 

defined four categories of reviews (i.e., best, good, fair, and bad). They defined best 

review as follow: 

“A best review must be a rather complete and detailed comment on a product. 

It presents several aspects of a product and provides convincing opinions with enough 

evidence.” 

Extending their previous approach [58], Guzman and Bruegge [62] developed 

DIVERSE, to identify diverse user opinions concerning different applications. The 

tool groups reviews by their mentioned aspects and sentiment. Collecting and 

manually analysing 2800 reviews, the authors argued that “app store reviews 

include information that is useful to analysts and app designers, such as user 

requirements, bug reports, and documentation of user experiences with specific app 

aspects.”  

Jin et al. [119, 131] extracted several categories of features from review 

content (i.e. linguistic features, product aspects, features based on information 

quality and features using information theory) to be used for automatically 

predicting usefulness of product reviews. The authors relied on the responds to 

their two questionnaires to consider product aspects as a feature. Some subjects 

replied to the question ‘Why you have chosen this review as useful?’ as “this review 

mentions many product aspects”, while some argued that “many reviews shared the 

aspects he\she likes and dislikes”. The impact of this specific feature is not reported 

in their examinations.  

Qi et al, [120] used similar features plus meta data of reviews and combined 

conjoint analysis with the traditional KANO method to measure the helpfulness of 

reviews for product designers. The authors confirmed that features proposed in 

[131] and [119] combined with features gained from meta data were effective on 

identifying helpful reviews. Effectiveness of these features in extracting customer 

requirements from mass online product reviews was assessed and confirmed by 

them in [135]. They applied SVM-based model to their conjoint analysis model and 

reported the impact of number of product aspects in a review as: (Estimate:0.15439, 

Std.error:0.01279). 
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Ko et al. [133] analysed the titles of problem reports from several online bug 

tracking systems to investigate what roles do the words with various parts of speech 

play in identifying software problems. They collected 187,851 reports title from 

Eclipse, Apache, Linux, and OpenOffice and manually classified the titles’ words and 

phrases, generating descriptive categories. On a sample of 1000 titles, they reported 

that App components, User action (steps to reproduce), and Data type are frequently 

repeated. 

A group of studies in this sub-section [48, 58, 62, 65, 68, 120, 130, 143] have 

selected the Application Aspect as an important factor for identifying useful reviews 

based on their observations over the collected data, inspirations gained from 

analysing the data, or relying on related work. The importance of this factor was 

validated in [119, 131] by hiring six product design students for annotating useful 

customer reviews for product design purposes and surveying them with two 

questionnaires about usefulness factors. Ko et al. [133] found that this factor is one 

of the frequently repeated phrases in bug tracking systems indicating the 

importance of this factor. The findings of analysing the results of a vast survey of 

developers, in [138, 141] revealed the importance of this factor from developers’ 

perspective (discussed in Section 3.3.4). 

3.4.2 Feature Request 

This factor indicates the request of any feature, component, or functionality to be 

added to the target application. For example, broadening the width of the display is 

a feature request in “Very annoying to not be able to see an entire file name.  Put 

some flexibility in the width of the display”.  

To address his/her requirements, sometimes a user suggests workarounds 

and ideas that occasionally deliver motivations and ideas for new features 

 [156, 157]. 

Feature request was another category identified in [65] and [48] and is defined 

as “sentences expressing ideas, suggestions or needs for improving or enhancing the 

app or its functionalities.” 
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Al-Subaihin et al. [37] studied the app store as a phenomenon from the 

developers’ perspective. They analysed records of interviewing 10 app 

development team members and 103 completed surveys of app developers, 

regarding their interactions with app stores. Analysing questionnaires, they found 

that 66% of participants have considered reviews containing feature request as 

important.  

Jha and Mahmoud, [69, 70] proposed a FrameNet tagging based approach to 

classify reviews based on the notion of semantic role labelling (SRL) into bug reports 

and feature requests. In their classification task using Naive Bayes (NB) and Support 

Vector Machines (SVM), the authors used frames generated from each review, rather 

than each word. “Our system MARC extracts and classifies user reviews into fine-

grained software maintenance requests, including bug reports and user 

requirements”, they said which indicates the importance of these two characteristics 

of app reviews. 

Galvis and Winbladh, [54] used topic modelling and IE techniques to discover 

the topics from reviews that can be used to change and/or create new requirements 

for a future release of software. The authors manually classified reviews to build 

their gold standard dataset and observed that Feature Request is one of the 

frequently repeated topics in reviews. 

Maalej et al. [60, 61] proposed a method for classifying reviews into four basic 

types: Bug reports, Feature requests, User experiences, and Rating. They defined these 

types according to previous studies [48, 54] and for the importance of these types 

of reviews for software evolution tasks.  

Studying some relevant online forums to identify what kinds of information do 

real app developers consider as constructive, Chen et al. [57] found that issue reports 

and feature requests contain important information that app developers are looking 

to identify. 

Validation of the importance of Feature Request as an important factor for 

identifying useful reviews was based on authors interpretation of usefulness in [69] 

[70] [54], while Al-Subaihin et al. [37] validated it by interviewing developers and 
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analysing questionnaires filled by them. Referring to forum discussions of experts 

was the reason of defining this factor in [57] and authors in [60, 61] relied on related 

work for proofing the importance of this factor.  

3.4.3 Issue Report 

This factor will be captured when a review is complaining about an issue. In this 

study, an issue consists of bug, crash, freeze, force close, error, lack of a feature, 

security issue, usability issue, and any other type of problem that might happen for 

a mobile application. For example, the following review is reporting an issue about 

uploading videos: “I can upload pics very quickly, but uploading videos is very slow”. 

The survey and interviews conducted by Al-Subaihin et al. [37] indicate that 

28% of participants receive bug reports from Google play store, 26% from Apple 

store, and 14% from other app stores. Moreover, 70% of them said that bug reports 

are a very important review type. Bug report was also one of the important types of 

reviews defined by Maalej et al. [60, 61].  

Khalid [49, 51] manually analysed 6390 one-star and two-star reviews for 20 

iOS apps in order to aid developers by listing the most frequent complaints. They 

discovered 12 types of issue and complaint about iOS apps in user feedback focusing 

on the user rating given to the app.  

To explore how accurately they can mine rationale concepts from the reviews, 

Kurtanović and Maalej [73, 147] applied classification algorithms Naive Bayes, 

Support Vector Machine, Logistic Regression, Decision Tree on a set of annotated 

data. Seven software developers analysed 32,414 reviews. Through a grounded 

theory approach and peer content analysis, they investigated how users argue and 

justify their decisions. In their content analysis task (open coding), codes related to 

software evolution were grouped into concepts. They assigned code for Issue 

concept to a sentence, if it reports a concrete issue or problem with the software. The 

code alternative feature was assigned when the user mentions a feature of another 

software, an improved version of a feature, and a missing or requested feature. 

According to the discussion in previous sub-section, the authors in [60, 61] 

relied on related work for justifying and validating the importance of Feature 
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Request in identification of useful reviews. Inspirations and ideas gained from 

manually analysing reviews was the justification for the importance of this factor in 

[49, 51], while interviewing developers was conducted for this aim in [37, 73, 147]. 

3.4.4 User Action 

User action refers to the action that the user has taken before encountering the issue. 

In particular, user should have taken one or several actions raising the issue. This 

factor helps developers to figure out the steps to reproduce the issue. The following 

reviews comprise examples of user action: “every time I open it, it forces to shut 

down”, and “current file view is lost when I multitask between windows.” 

Bettenburg et al. [138, 141] conducted a survey among 872 developers from 

APACHE, ECLIPSE, and MOZILLA projects to find out characteristics of a good bug 

report. They asked the developers to complete the survey on important information 

in bug reports and the problems they faced with them. There were two main 

questions for developers in the survey. For the first question; “Which items have 

developers previously used when fixing bugs?”, they provided 16 items selected 

based on Eli Goldberg’s bug writing guidelines [158] for developers to choose. For 

the second question: “Which problems have developers encountered when fixing 

bugs?”, they listed 21 problems for developers to choose. The authors analysed a 

total of 156 received responses and reported that: “the most widely used items 

across projects are steps to reproduce (user action), observed behaviour (system 

action) and expected behaviour (expected action)”. OS version, components 

(Application Aspects), and spell and grammar errors were considerably voted by 

developers as well.  

User action (steps to reproduce) was one of the frequently repeated title words in 

software problem reports analysed by Ko et al. [133]. 

As it is discussed in Section 3.3.1, Bettenburg et al. [138, 141] validated the 

importance of this factor by surveying developers, while Ko et al. [133] found that 

this factor is one of the frequently repeated phrases in bug tracking systems. 
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3.4.5 System Action 

This factor is captured when the review is reporting an issue and explaining what 

the system does when the issue occurs. Identification of this factors helps the 

developers to diagnose the issue easier. The following reviews comprise examples 

of system action: “After the last update, it crashes every time I open the manual 

upload”, and “after the last update the app has a constant and annoying sidebar that 

steals screen real estate.” Analysing the questionnaire results, Bettenburg et al. 

[138, 141] reported system action as a most widely used feature. Please refer to 

section 3.3.1 for validation of the importance of this factor. 

3.4.6 Expected Action 

This factor explains what action is expected from the system. Particularly, when an 

issue occurs, the system action will be to reflect to the issue (e.g., freezing, showing 

an error message, crashing, etc.). when the user reports what was expected from the 

app to do instead of performing the system action is named expected action. The 

review “Why is the option gone to hide the menu and dedicate that screen real estate 

to full screen viewing of content?” is an example of reporting app expected normal 

behaviour. Expected action is reported as an important factor in discovering useful 

application reviews [138, 141]. Please refer to sections 3.3.1 and 3.3.4 for validation 

of the importance of this factor. 

3.4.7 Device Information 

This factor stands for any information reported in the review helping developers to 

identify user device. To meet this factor, three types of information are expected to 

be seen in the review. First, what device the user owns (e.g., iPhone, iPod, tablet, 

etc.). Second, what model is the device (e.g., S5, 6S plus, Note II, etc.). Finally, what 

Operating System is installed on the device (e.g., iOS7, Android 11, etc.). These types 

of information are reported as important factors in discovering useful application 

reviews [138, 141]. Please refer to sections 3.3.1 and 3.3.4 for validation of the 

importance of this factor. 
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3.4.8 Pros and Cons 

This factor wants the review to mention both pros and cons of the target application 

together.  

Jin et al., argued that “A review tends to be regarded as a helpful one once this 

review mentions both the pros and cons of a product [131]. To build a model for 

extracting helpful reviews, Jin et al. [119, 131] randomly selected 1,000 reviews on 

eight mobile phone brands from Amazon and annotated them hiring six full-time 

final year undergraduate students as product designers who scored review 

helpfulness from -2 to 2. Interviewing the annotators in [119], two subjects 

explicitly stressed that the appearance of ‘‘both pros and cons’’ is an important 

factor for helpfulness evaluation. Building on results reported in [119, 131], Qi et al, 

[120] verified the helpfulness of combining pros and cons with meta-data factors for 

identification of useful reviews (Section 3.3.1).  

In [119, 131], the validation of the importance of this factor was interviewing 

product design students. This validation was cited in  [120].  

3.4.9 User Expertise 

Value of this factor shows how expert is the reviewer of a written review. The 

importance of this factor is based on this argument; the more expert user, will 

generate more useful review for software development purposes [149]. Considering 

limitations of publicly available datasets, user expertise is defined as total number 

of reviews generated by a reviewer [151]. 

Studying forum instructions and developers opinions, and surveying 

developers Heydari et al [149, 151] defined several quality metrics and developed a 

voting model based retrieval system to retrieve more relevant threads in technical 

forums for a given user query. They enhanced the retrieval process by leveraging 

the quality metrics. One of these quality metrics was user expertise defined as 

number of reviews posted by a reviewer. Their results show that using reviewer’s 

metrics, including user expertise enhances the quality of retrieved threads by about 

4%. The results of merely using this factor are not reported. However, the 

Normalised Discounted Cumulative Gain (NDCG) @30 improved from 0.318 to 
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0.345 using a combination of user related factors. NDCG is an evaluation tool to 

validate the effectiveness of search engines.   

For identifying useful reviews, reviewer’s expertise, one of the features 

obtained from review meta data, was considered as an important factor in [120] 

(section 3.3.1) in which two metrics are defined for this factor; Number of reviews 

by a reviewer which is the volume of reviews posted by a reviewer, and The grade 

of reviewer which indicates the reviewer’s activeness in the website. They applied 

SVM-based model to their conjoint analysis model and reported the impact of ‘The 

grade of reviewer in a review’ as: (Estimate:0.00091, Std.error:0.0002). 

With the aim of predicting the helpfulness of product reviews, Lee and Choeh 

[150] proposed a tool to predict the level of review usefulness using the 

determinants of product data, the review characteristics, and the textual 

characteristics of reviews. They collected and analysed 1834 product reviews from 

Amazon.com and adopted A neural network with a three-layer architecture 

consisting of input, hidden, and output layers for detection of usefulness. In a table, 

they listed the strengths of features as a result of running the experiment. Although 

product type (product name), number of spelling mistakes, and reviewer’s expertise 

was in the list, greater values were for product rating, review extremity and length of 

review. 

Heydari et al [149, 151] defined user expertise as an important factor based 

on their analysis of technical forum guidelines, interviewing reviewers and 

engineers using these forums. This factor was validated in [120] by citing related 

studies. In [150], the factors were defined based on authors’ discretion. 

3.4.10 User Rating 

Rating is the number of stars given to an application in a review. It has been argued 

that more negative reviews (i.e. receiving less than 3 stars) contain more useful 

information for application development  [58] [62] [133] [135]. Researchers have 

argued that negative comments should be considered more helpful than positive 

ones because they deviate from the accepted norm of staying positive [159, 160]. 
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Focusing on the rating of reviews, Khalid et al. [49, 51] manually analysed 6390 

one-star and two-star reviews to aid developers by listing the most frequent 

complaints. They discovered 12 types of issue and complaint about iOS apps in user 

feedback focusing on the user rating given to the applications.  

In another study targeting only one-star and two-star reviews which 

highlights the role of user rating, McIlroy et al. [59] studied the extent of reviews 

raising more than one issue type and proposed an approach to automatically 

labelling user reviews to help developers better understand users’ concerns. They 

defined 13 types of issues and labelled a number of reviews manually to form their 

gold standard dataset.  

User rating was also highlighted in [106]. To better understand the reason of 

leaving positive or negative review by a user, the authors analysed 8.7 million 

reviews from 17,330 apps and categorized keywords appearing frequently in each 

star rating as they hypothesized that it could inform and focus development efforts. 

The authors determined the distribution of word and character counts per star 

rating respectively applying a regular expression to extract words from the review 

entities, and monitored which star rating the appearance of the extracted keywords 

pertains to. 

Definition of this factor in [49, 51, 59, 106] was based on authors’ inspirations 

gained from analysing a sample of reviews. 

3.4.11 Length of the Review 

This factor reflects the number of words and sentences in a review. Findings from 

different studies reveal that longer reviews contain more useful information for 

developers [60, 61, 149, 150, 161, 162]. Salehan et al. [152] applied binomial 

regression with logit transformation to examine the effectiveness of the features in 

predicting usefulness of product reviews. They collected and analysed 2616 online 

reviews of 20 different products from Amazon.com to evaluate their model. Their 

results revealed that review length and review sentiment are significant predictors 

of helpfulness. 
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Validation of the importance of this factor in [152] was their insights gained 

during the analysis of reviews, while the authors in  [149], relied on their studies of 

forum guidelines and interviewing software engineers. Authors’ experiences were 

the source of definition of this factor in [150]. 

3.4.12 Readability 

Readability of a review depends on number of grammar and spelling mistakes found 

in the review. Related studies have argued that reviews with less grammar and 

mistakes are more useful for software development purposes [138, 141, 150].  

Lee and Choeh [150] used number of spelling mistakes as one of the 

classification attributes in their neural network model to detect useful product 

reviews believing that reviews written with more selling mistakes contain less 

useful information for product designers. Number of spell and grammar errors was 

one of the factors chosen by developers surveyed by Bettenburg et al. [138, 141] 

while they were reflecting their problems and issues in the process of reading bug 

reports and fixing the bugs.  

3.5 Discussion 

As it could be observed in previous section, variety of approaches are proposed so 

far to extract useful information from user feedback to develop and improve 

software products. However, in majority of these studies, metrics and factors to 

measure the usefulness are defined based on variety of considerations such as 

authors’ interpretation of the usefulness, consulting a limited number of experts, 

and etc. Each of the studies has their own arguments for relying on a factor which 

might be reasonable. This could be a probable reason for using different 

combinations of factors and metrics for measuring usefulness in different studies 

and reporting the accurate ones for extracting useful reviews.   

Another noteworthy point in the literature review section is that all of the 

references mentioned in Table 3.3 for an attribute might not be reported in the sub-

section discussing the attribute for the following reasons: (1) the study is reported 

in another sub-section as its main focus was on another factor, yet has used this 
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factor as well, (2) the study has just reasoned about the importance of the factor 

without experimenting with it. Studies of the latter group are cited as readers might 

want to refer to these studies to better rationalise and justify their usage of a factor. 

Apart from above-mentioned discussion, as the extraction of user 

requirements from user feedback has gotten considerable research attention, the 

rest of our discussion section will discuss the usability of the outcome of the 

research reported in this chapter as well as challenges that the community should 

still attempt to address. This section becomes to an end with discussing threats to 

validity.   

3.5.1 Usability of the Research Output 

Our observation and analysis on the related works revealed that although variety of 

approaches has been proposed to extract useful information from user reviews for 

software application development, limited research attention is given to 

appropriately measuring the usefulness from developers’ viewpoint. Yet, the 

availability of reliable sets of factors for properly measuring the usefulness is 

necessary not only to limit the efforts in subsequent works but also to encourage 

true progress beyond the state-of-the-art.   

3.5.2 Open Issues and Challenges 

According to the lessons learnt from this study, various challenges facing the future 

research in this domain and future research directions are suggested in this section. 

3.5.2.1 Comprehensiveness of the Factors 

The factors we came up with in this chapter are defined to facilitate and enable 

measuring the usefulness of user reviews. However, more important factors might 

be undiscovered yet. A systematic in-depth research examining real world data (i.e., 

user reviews) employing the expertise of RE experts and app developers might 

result in discovering more important factors.  

Besides, analysing other areas of research might help in identifying other 

important factors. For example, Heydari et al. [149] has studied the quality metrics 

in identifying quality enhanced answers to the given queries from software forum 
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discussions. The impact of such quality metrics could be examined in the scope of 

this study as well. 

3.5.2.2 Validation of the Factors 

As we explained earlier, many of the factors discussed in this study are defined 

based on the authors’ interpretation of the usefulness which might be far from what 

real developers and requirement engineers believe. Therefore, similar to the 

previous challenge, a future research direction could be studying developers’ and 

requirement engineers’ behaviour in dealing with user incoming reviews to 

approve how effective the existing factors are in identification of useful reviews. 

3.5.2.3 Purification of the Reviews 

Although identification and use of proper factors leads to more accurately filtering 

reviews for requirements engineering purposes, the destructive role of spamming 

activities in online opinion sharing platforms should not be neglected. Spam reviews 

could significantly mislead not only automatic extraction tools, but also human 

annotators [23, 163]. Variety of approaches are proposed so far to detect spam 

reviews [16]. However, this area of research still needs lots of attention [63]. 

Therefore, another future research direction could be assessing the impact of 

spamming activities and spam reviews in utilization of user reviews for software 

evolution and application development purposes.  

3.5.2.4 Automatically extracting factors 

Although variety of approaches are proposed to extract some of the factors 

discussed in this study, such as Application Aspect, Rating, and Readability of a 

review, there are important factors, such as User Action and System Action, that 

have not been analysed for automatic extraction yet. Configuring, manipulating, and 

adjusting current NLP and ML techniques in a way to be able to capture such factors 

from the context of a review will be extremely helpful for further developments and 

evaluation purposes. 



 

81 

 

3.5.2.5 Robust tools for identifying useful reviews 

Obviously, when each of the current approaches has focused on a limited set of 

unapproved or partially approved factors, existing automated systems not only do 

not cover all available factors, but also are based on a set of factors which might not 

convey the viewpoint of developers. Thus, another open challenge is developing 

robust tools integrating existing techniques and developing new techniques for 

extracting each factor and calculate, accordingly, the usefulness of a given review 

based on developers’ viewpoint. 

3.5.3 Validity Threats 

The first and foremost threat to validity of the research reported in this chapter is 

about the search process. The main risks in the search process are using an 

incomplete keywords list and limitations of utilised search engines. The risk of using 

incomplete keywords list was mitigated by performing the “quasi-gold standard” 

task (Section II.B). To minimize the risk implied by using a search engine with 

specific limitations, we used three different search engines (Section 3.2.2). 

Another threat to the validity of this study is the validity of discovered factors. 

In this chapter, the factors defined and used in the related work are summarised in 

a list. However, the impact of these factors in identification of useful reviews from 

developers’ viewpoint is still under question. To mitigate this issue, I tried to explain 

arguments and justifications of the selected studies about each factor to give a better 

understanding regarding the impact of the factor to the reader.  

3.6 Conclusion 

The main objective of this survey study was to summarize and synthesize the 

existing studies related to analysis of user feedback in order to identify which factors 

have been used so far for measuring the usefulness of user generated text from the 

viewpoint of a developer, designer, service provider, or requirements engineer. To 

fulfil this objective and answer the defined research questions, a survey of related 

works was conducted. After defining a series of systematic steps for selecting and 
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assessing the quality of the related papers, we comprehensively analysed them to 

answer the research questions. 

Apart from outcomes explained in previous sections, findings from this study 

reveals that a set of factors is identified to be used for measuring the usefulness of 

user reviews from developers’ viewpoint. However, validity of these factors is not 

yet approved for the following reasons: (1) The validation methods used in related 

papers were based on authors’ interpretation of usefulness rather that developers’ 

one, (2) The related work has just introduced the factor without validating it, (3) 

The factor is obtained from studies focusing on other fields of research than mobile 

application development. Therefore, using them for implementing detection tools is 

subject to a rigorous validation process. 
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 Validation of the Usefulness  

Factors 

 

4.1 Introduction 

The aim of this chapter is to use the skills and experiences of real developers dealing 

with huge volume of user feedback daily to validate and qualify the role of each 

factor discovered in previous chapter. Coming up with a set of qualified and 

confirmed factors results in implementation of extraction tools reflecting 

developers’ viewpoint in detection of useful reviews for software evolution 

purposes.  

To evaluate the effectiveness of each factor and to obtain the correct viewpoint 

of application developers, A focus group discussion (FGD) with senior mobile 

application developers were conducted asking them to quantify the impact of each 

factor and to propose new factors. Details on conducting the focus group and 

obtained results from analysing the outcomes of the FGD are discussed in this 

chapter. 

4.2 Focus Groups 

Focus groups research techniques are originated from social science for exploring 

and better understanding how people think about a specific topic [164, 165]. Focus 

group discussion involves assembling a group of peers and free-flowingly discussing 

the topic. Depending on the topic, the participants should be selected based on their 

specific characteristics. For example, they might be experts and engineers to be 

selected for a technical topic, patients suffering from a particular illness to be 

selected for a medical topic, or teachers, teaching assistants, and mentors to be 

selected for an educational topic. Asking several questions, participants will be able 

to give their opinions and views. Then, any raised issues will be discussed in the 

group. A researcher controls the discussion and asks the main questions. The 
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process of designing, conducting and reporting the FGD in this project is illustrated 

in Figure 4.1. 

 

4.2.1 Selecting Focus Group Discussion 

In this research, Focus Group Discussion (FGD) was chosen as an evaluation method 

to validate the identified factors. The key means of generating data in a FGD is 

interaction of participants [166] which results in gathering valuable insights and 

data [167, 168]. Views and experiences of different participants will be purified 

during the discussion and will contribute to build various aspects of a quality 

amplified idea. The aim of my task was not only to explore common customs among 

the community of mobile application developers about usefulness of application 

reviews, but also to synthesize and discuss various views of different developers 

 
 

Figure 4.1.  The process of conducting the FGD 
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about each factor to have a comprehensive assessment and quantitation of the 

effectiveness of each factor in identification of useful reviews for software evolution 

purposes. Therefore, the FGD technique was selected among other methods.  

Alternative approaches would have been to use interview or questionnaire. 

Interview was not chosen as the preferred approach because the aim of this study 

was not to probing developers’ individual experiences, but on a more collective view 

of what developers’ considerations are in identifying useful reviews. Thus, to judge 

a factor or propose a new one, active discussion and interaction of experts was 

required. 

Another alternative method would have been conducting a survey among 

developers, but this was not chosen as well. Apart from the reasons mentioned 

above for not conducting interviews, not many developers filled the designed online 

questionnaire1 to generate a reasonably sized sample that would give the study 

enough power to yield useful results. Moreover, to fully understand each factor and 

being able to correctly score them, target developers should have been exposed to 

examples, interactive discussion, and extra explanation. 

4.2.2 Aim and Research Questions for the FGD 

The aim of conducting FGD was to validate the discovered factors and to investigate 

the importance of each factor on identification of useful reviews as well as probing 

for emerging factors not covered in my literature survey. To achieve this aim, the 

following research questions were defined to design the FGD accordingly. 

RQ1. To what extent developers pay attention to app reviews as a source of user 

requirements? 

 

 

1 

https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_Vc

cWLhmUOb5w/viewform?usp=sf_link 

https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_VccWLhmUOb5w/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScvSU5VbjEkhM0I0Y_WGo6jXVK2nGrNeNl48_VccWLhmUOb5w/viewform?usp=sf_link
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This research question is defined to discover the importance of user reviews 

for developers in terms of extracting user requirements. Particularly, the aim of this 

research question is to understand to what extent the developers consider user 

reviews as a source of user requirement to improve and update their existing 

applications or to get insights and ideas for developing new applications.  

RQ2. What factors are critical for identifying useful app reviews from developers’ 

viewpoint? 

Answering this research question, a list of factors for a mobile application review to 

be considered as useful for software evolution will be generated. Although 

performing the literature review, a list of factors was already generated, considering 

this research question in the FGD will result in obtaining probable emerging new 

factors. 

4.2.3 Sampling Strategy and Characteristics of Participants 

The target group is defined as a sufficient number of mobile application developers 

with at least five years of relevant experience. To recruit the participants, the 

following constraints are defined based on the aim and situation of the project. To 

be considered as a candidate for taking place in the focus group, each of the 

developers needs to (1) have, individually or as a member of a team, more than ten 

mobile applications successfully developed, (2) have received more than 1000 

reviews via local or international online mobile application sharing platforms, (3) 

have more than 4 years of mobile application development experience. No gender 

balance or age was considered in recruiting the participants as the issue to be 

discussed was only based on technical experiences of developers. So, representative 

(i.e., random) method was not considered as the sampling strategy, rather, 

purposive sampling was used to cover important group experiences about mobile 

application review analysis. Purposive sampling refers to designing the sample in a 

way that includes important segments of the population, or experiences and 

expertise required by the research [169, 170]. 

As attending the FGD sessions in two different locations (i.e., Iran and the UK) 

was possible for the moderator, the focus of searching process for finding 
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developers was logistically limited to these two countries. Searching websites 

serving as platforms for hiring expert freelancers, online Android and iOS 

communities, and online mobile application sharing platforms such as Google play 

store and App store, a list of 500 developers in the UK and 200 developers in Tehran 

meeting the above-mentioned criteria as candidates was generated to design the 

sample.  

The developers were then contacted by e-mail to check their availability and 

willingness for participation in a focus group. The email was briefly explaining the 

research project and outlining the focus group content. From the UK list, only one 

developer was willing to attend. However, 15 individuals and companies replied 

from Tehran asking for introductory meetings to discuss the project and the need 

for FGD, explain their constraints, and assess the sampling requirements. Finally, 6 

developers were selected as the target group for the FGD in Tehran.  

The guidelines designed to be followed in the FGD, the type of questions, and 

expertise level of participants  

4.2.4 Composition of Focus Group 

The information of participants is given in Table 4.1. In this thesis, each participant 

will be referred to using an ID represented in Table 4.1. Among the developers 

shortlisted to take place in the FGD, there were two head of companies with 

thousands successful developed applications worldwide. D1 is the owner of 

MTeam.co developing mobile applications for variety of businesses and end users in 

Persian, Arabic, and English languages. Besides developing applications, her 

company provides consulting services for founding businesses based on mobile 

applications.  

D2 is the founder of Saffaran.co, an international mobile application 

developing company. After analysing application developers’ requirements for 

several years, his company has proposed a mobile application development SDK. 

Software Development Kit (SDK) is a tool facilitating the process of developing a 

software or mobile application.  
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D3 is the head of mobile application development department in Delta.ir and 

is the founder of TaMart start up, an online local grocery with rapid deliveries. D4 to 

D6 are mobile application developers working in various companies and doing 

freelance mobile application projects. 

 

4.2.5 Number and Size of Focus Group 

Different factors such as scale and aim of the project, circumstances and 

characteristics of participants mediates the number and size of groups required for 

a project [165].  

Table 4.1: Information of Participants 

ID Skills 
Year of  

Experience 
Role Organization 

Size of 
the Org.    

D1 Android/iOS de-
velopment, RE, 
Project manage-
ment 

12 Head of Company MTeam.co 89 

D2 Android/iOS de-
velopment, RE, 
Project manage-
ment 

10 Head of Company Saffran.co 83 

D3 Android/iOS de-
velopment, RE, 
Project manage-
ment 

9 Head of App devel-
opment Dept 

Delta.ir 103 

D4 Android/iOS de-
velopment, RE,  

7 Head of App devel-
opment Dept 

Farzan.co 75 

D5 Android/iOS de-
velopment, RE,  

8 Mobile app devel-
oper 

Freelancer NA 

D6 Android/iOS de-
velopment, RE,  

7 Mobile app devel-
oper 

Freelancer NA 
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Pertaining to the size of the group, the number of participants in this project, 

six developers, is reasonable. This is because the type of questions is straight 

forward, technical, and generally quantitative. So, unlike FGDs discussing human 

behaviours, personal opinions and people thoughts, several individuals with 

different beliefs are not required. Moreover, based on the requirements of the 

candidates in this study, and considering the top management level of their 

positions, finding more well-skilled developers who accept to collaborate in 

research projects was almost impossible.     

The initial plan was to do only one FGD because the aim of the research was 

not too broad demanding various kinds of participants’ opinions and points of view 

as a qualitative research project probing complex issues varying from one person to 

another such as human behaviours. My aim was to discuss the usefulness factors 

and validate them based on participants’ technical expertise.  

Moreover, the participants of such a focus group should be well-skilled mobile 

application developers with certain characteristics making them rare among the 

society. They usually receive high salaries and are extremely busy making it 

complicated to gather them in a focus group. Considering the circumstances of the 

research, my initial focus was to conduct the FGD in one session.  

However, the circumstances of D1 and D2 forced me to conduct the second 

session of the FGD. They are working at top management level and had very tight 

timetable. On the other hand, they had an incredible level of experience in dealing 

with user feedback of various types urging me to include them in the FGD. So, I 

managed to conduct the FGD in two sessions. D1 and D2 had to meet regularly as 

they have been cooperating on several projects. Therefore, gathering them in one of 

their companies was not a big problem. Number of participants attended in the first 

session was two, while four developers took place in the second.  

4.2.6 Planning the Focus Group 

The instruction provided by Krueger and Casey [171] was followed for development 

of discussion guide. I drafted an initial list of questions for the focus group and 

circulated it to my supervisory team. Their comments were further applied in the 
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revised version of the questions and the guide was developed to be followed in the 

focus group.  

After getting informed by participants about their interest in taking part in 

FGD, the time and venue of each session was fixed. I agreed on the time of the first 

session with D1 and D2 on a phone conversation, while for the second, several time 

slots were proposed by participants (D3 to D6) and all agreed on one in an email 

conversation. To set the venue for the first session, suggestion of D1 and D2 was to 

use their companies. Thus, the session took place in a room at the Saffran.co 

normally used for executive meetings. The second session took place in one of the 

discussion rooms allocated for business meetings in a café. A café at the centre of 

the city was suggested by me and agreed by participants to facilitate their 

commuting and access to refreshments.  

Participants were contacted by email a week before conducting the focus 

group to get remind and to discuss any requirements and services they may need 

during the meeting. A day before the focus group, I called each participant to remind 

him/her and to get his/her confirmation for attending the focus group. Both of the 

sessions were conducted in August 2019. The first one lasted approximately 110 

minutes with two participants, while the second lasted 140 minutes with four. 

4.2.7 Content and Conduct of Focus Group Discussion 

Following the relevant steps for conducting the FGD (Recording, Introduction, 

Pausing and probing, Managing discussants, Concluding) [172], I started the 

discussion with welcoming the participants followed by asking each of them to 

introduce him/her self and to give a brief summary of his/her background and 

experience in mobile application development and involvement with user feedback 

in form of reviews. Next, a brief summary of the operation of focus groups were 

explained as some of the participants were not familiar with FGD techniques.  

Then, I had a short presentation on my project, particularly, explaining the role 

of the FGD in my research. Focus of the presentation was on the impact of mobile 

application reviews on software evolution and formulating the usefulness of them. 

A sample of the usefulness factors and examples of real user reviews were given to 
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clarify to the participants how the approach aims to formulate the usefulness. As the 

facilitator and moderator of the focus group, I posed the questions designed in the 

guide to discussants and managed the discussion. 

4.2.8 Data Analysis 

The analysis discussed in this section is a synthesis of the two conducted sessions. 

The first phase of analysis begins during the FGD [173]. Participants’ responses and 

contributions should be clearly understood, and any ambiguity should be addressed 

as they might convey important information for further analysis phases. At this 

phase, I tried to listen carefully to the discussions and asked for more explanation 

for any unclear statement. Pausing and probing techniques were used to gather 

more in-depth information about the interesting topics. 

 I audio recorded the focus group discussions. Following Jenny Cameron’s 

guidelines [174] on FGDs,  the recordings were translated into English and 

abridgedly transcribed (i.e. only key points and section of the discussion were 

transcribed). 

The strategy used next to proceed was inspired from Brown and Ward [175] 

as the responses did not diverge widely from the questions. Their suggested 

methodology for analysing and reporting the data gathered in focus groups is to 

draw a table, one column for each question or theme and listing key points and 

quotes for each question. The themes and important quotes will then be used in 

reporting the results.  

Analysis of the responds to the first research question: ‘How important user 

reviews are for you to improve and update your applications?’ reveals that user 

reviews are viewed by respondents as an important source of user needs, though 

they are too noisy consisting irrelevant contents. All the participants agreed on a 

fact stating that although a large percentage of user reviews are irrelevant, there are 

important useful reviews persuading us to analyse the whole bunch to discover 

them. 

As the following responses suggest, there was a strong feeling amongst the 

participants that user reviews are very important for software evolution. D1 
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mentioned that “when we develop apps for a business (BtoBtoC) we do not care 

about user reviews because the business ordering the app is responsible for its 

quality, rather, we only make changes in the app based on either reasonable or 

unreasonable requirements of the intermediate business. However, when we 

produce an app for public (BtoC), we carefully track the reviews and apply useful 

ones to keep our product user friendly and bug free.”  

Moreover, D3 stated that “publishing a mobile app online, the best mean to get 

feedback from actual users is analysing reviews. We hold designers’ and developers’ 

point of view, not end users of the application interacting it every day. So, when we 

test the app instead of the end user, we cannot completely understand their issues 

and comprehensively cover their requirements.” “there are plenty types of issue 

emerging when the app goes under load of hundreds or thousands of clients. So, we 

might miss some of these issues in application testing phase before releasing the 

application. It is very likely to see these issues reported in user reviews.” D5 pointed 

out to support D3’s argument about usefulness of user feedback.  

What eventuates is the importance of user reviews for development teams and 

the necessity of analysing them by requirements engineers to better understand 

user requirements and to identify issues missed out during the testing step of mobile 

application development lifecycle.    

Research question 2 probes and discusses developers’ experiences in 

investigation and analysis of user reviews. The aim of this research question is to 

discuss any characteristics and factors developers take into account while 

processing user reviews to filter out useful reviews.  

After asking participants to manually classify five reviews to useful or useless 

based on their experience and to address research question 2, participants were 

confronted with this question “What characteristics and factors do you consider 

when distinguishing between useful and useless reviews?”. The method for 

analysing this part of the discussion was a standard content analysis approach 

proposed by Elo and Helvi, [176] to identify and cluster factors proposed by the 

participants.  
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Participants initially remarked that the skill of identifying useful reviews 

demands years of experience for a developer or requirement engineer, whereby, 

he/she can decide to filter out useful reviews for extraction of requirements.  

D2 explained that “We always ask well-skilled developers or requirement 

engineers to do this task. We do not ask them to filter out useful reviews according 

to a given checklist, but we accompany them double checking their work few times 

to see how well they can detect useful reviews.”  

However, more in-dept discussion on this matter between participants 

revealed that some of them have already defined some characteristics and factors 

for useful reviews, while the others are involuntarily following some factors. All 

participants jointly exposed that the most important reviews are the ones reporting 

an issue.  

D6 mentioned that “The most important types of information I look for in the 

reviews is bug reports or technical issues that the user has encountered with. If I 

find enough information to diagnose the problem in the application, I will consider 

the review as useful.” D5 supported this argument saying “Yes, exactly, but the 

reported problem needs to be clearly explained. I mean, reasons for dissatisfaction 

of the user must be mentioned in the review. Otherwise, we cannot use the review. 

For example, we receive many reviews mentioning that the app crashes and users 

cannot use the app. However, we have tested the app on several devices successfully. 

Moreover, it happens only for a few percent of our clients indicating that the rest are 

using the application flawlessly. Thus, the cause of crashing might not be originating 

from the application, but other factors such as user phone, storage limitation of user 

device, version of the OS used, etc. when we do not have these details, we cannot 

address the issue.”  

These arguments reveal that one of the factors of a useful review is mentioning 

an issue with a certain amount of complementary information helping developers 

to diagnose the application. 

Apart from problems reported in the reviews, requesting new components and 

functionalities was interesting for developers. D4 stated that “not only bugs and 
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problems reported in the review are what we are looking for when analysing user 

reviews, but also any information that gives us some idea to improve the application 

are on demand.”  

Supporting D4’s argument, D3 said “The application designer has a limited 

knowledge and ability to cover all reasonable user requirements. This is because we 

must guess most of the requirements for applications that we want them to be 

publicly available on application sharing platforms. So, many times users ask for 

some functionality or quality to make the application more attractive for them. In 

these cases, we do not discard these reviews, but put them in backlogs with low 

priority”. 

It was discovered that prioritising the factors, developers are more concerned 

about addressing users’ reported issues to preserve the user satisfaction, 

application rank, and popularity. Then, they will take inspiring ideas and 

suggestions into consideration.  

A list of factors extracted from the literature was exposed to the participants 

afterwards. The participants were asked to discuss the impact and necessity of each 

factor in identification of useful reviews to answer the last research question. The 

importance of issue report, feature request, user action and system action were 

confirmed by all the participants after a short discussion as they all believed that 

without these factors, a review cannot be useful at all.  

However, they had a negative opinion about expected behaviour because it 

reflects the normal behaviour of the application. D1 argued that “This factor reports 

what I already know about my application. it does not bring any new information 

for me. So, I do not care if it is mentioned in a review or not.” The only positive vote 

was for D6 who stated that “when diagnosing a reported issue, this factor help us to, 

at least, understand that the user knows what the normal performance of the faulty 

aspect is. When the user has misunderstood the normal performance, reports an 

issue, and explains the expected action of a process, for example, there might not be 

an issue with the process, but a wrong expectation of the user is the issue.”  
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Application aspect was considered as a necessary factor as it helps developers 

to find which part of the application is the subject of the review. D5 mentioned that 

“if a review is an issue report, we must know which part of the application is 

involved to diagnose and fix it. Similarly, if the review is a feature request, we must 

know what aspect or feature is required to be added to what part of the application.” 

Discussing the impact of device information eventuates that this factor helps 

to figure out the cause of the reported issue only in very particular types of issue. D2 

stated that “when we receive a review complaining about a problem, if there really 

is a problem on the application side, we usually diagnose the application and 

address the problem without requiring to know about user’s device, because our 

audiences are public using variety of devices demanding our applications to be 

responsively designed to support majority of available devices. However, if the 

cause of the problem is on the user side (e.g., old user device, full memory, incorrect 

usage, etc.), we usually ignore the review.”  

D1 argued then that “in all of these years that we have been processing user 

reviews, we rarely needed to know these details to know what the reported issue 

technically caused by. As far as I can remember, in all of these cases, there was 

nothing wrong with the application that we can fix, but the client’s side was the 

cause of the issue.”  

Beside these arguments, D5 mentioned that “When we develop an application, 

we provide documentations and specifications for the customers mentioning the 

versions of the operating system that are supported by the application. So, if the user 

uses unsupported version, it is obvious that some of the features will not work 

properly.” 

Impact of the review length was discussed next in the focus group. The overall 

opinion of the participants was that although longer reviews have the potential to 

include more useful information, but lots of short reviews point out exactly what 

developers need to know. Moreover, the experience of developers shows that when 

they release applications in domains such as tourism, leisure, beauty and skin care, 

etc., they will receive lots of lengthy reviews explaining users’ experiences and how 
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they enjoyed the application which reading them is nothing but waste of time for 

developers.  

Mentioning both pros and cons together in a review was known as an 

ineffective factor. D6 highlighted that “lots of the useful reviews we receive daily are 

completely negative without mentioning any pro about the application or vice versa. 

So, why should we care about this factor?” D4 added “In case of negative reviews, 

that are usually very important, the user is indignant with an aspect of the 

application. Thus, that is meaningless to expect him/her to write about positive 

points of the application.” 

A similar decision was made for readability factor as well. According to the 

participants’ discussions, carefully and correctly writing it does not guarantee the 

quality of the review. D3 stated that “people are from different levels of education. 

However, these differences do not affect their ability of reporting helpful feedback.” 

Asking participants about the impact of the user expertise, D5 said “We do not 

have access to reviewer’s profile on application sharing platforms. So, we cannot 

properly judge his/her expertise.” Discussions revealed that relying merely on 

number of reviews generated by a reviewer is irrelevant to the quality of review. D3 

said “there are lots of spammers generating tens of crap reviews, while normally 

regular users use the application and generate only one review explaining issues, 

requirements, or their experience with the application.” 

Impact of data type was considered as minimal. Developers believed that data 

type helps, but only if the aspect of the application being criticized deals with 

input/output or data. For example, complaining about the size of menu items does 

not involve any data type”. 

The last discussed factor in the list was user rating. Participants had variety of 

opinions and analysis about this factor and its impact on identifying useful reviews. 

Summarizing the discussion reveals that the polarity of sentiment in a review might 

help in predicting what type of review it is. 5-star reviews are usually written for 

appreciation and promoting the application. 3-4 stars generally show that the user 

is happy with the application but needs some modifications or extra functionality. 
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1-2 stars reflect user complaints and issues with the application. However, 

developers had been encountered with spam activities generating burst negative 

reviews posted for reducing the application overall rank. These reviews, obviously, 

consist of useless words.  

After discussing each factor in the list, the participants were asked to score the 

importance of each factor from 1 to 10. Averaging the scores for each factor, Figure 

4.2 represents the level of importance of each factor. This scoring helped in defining 

a threshold and focusing only on factors achieving more scores. Next section details 

this process. 

Inspired by discussing the list of factors elicited from the related studies, 

participants came up with some ideas about new factors based on their experiences. 

Therefore, apart from the factors discussed in answering research question 2, the 

following factors were elicited from discussing existing factors. 

One of the suggested factors was number of helpful feedbacks. When a 

reviewer posts a review in an online application sharing platform, other users who 

read this review can give it a positive or negative vote. Summation of these votes 

form the number of helpful feedbacks for a review. However, discussing this factor 
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revealed that these votes are given by other reviewers. Thus, they do not cover 

developers’ viewpoint for voting the review. 

Another suggested factor is reviewer’s age. D3 believed that if a developer 

knows the reviewer’s age, he/she can judge the usefulness of the review more 

effectively. An example was given by him “When an application developed for 

nursing purposes (e.g., monitoring patients after a heart surgery), is reviewed by a 

14-year-old user, this review will not obviously be considered as useful.” 

D6 suggested reviewer’s location as a helpful factor. He argued that “Usually, 

people of each country, or district have a certain lifestyle, culture, and taste. People 

in some countries use variety of warm colours in their cloths, while some others 

prefer mono colour. Therefore, if we study these preferences and have the 

reviewer’s location in hand, we can classify reviews more effectively.” 

4.2.9 Conclusion 

After analysing the outcomes of the focus groups, a proper decision on what 

factors significantly affect the detection of useful reviews was made.  The impact of 

 

Figure 4.2: Ranking of the usefulness factors according to experts’ scorings 
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application aspect, feature request, issue report, user action, and system action were 

justified and confirmed throughout the focus groups. Almost all of the participants 

agreed that without these factors, it is impossible to detect useful reviews. Most of 

these factors were suggested by participants before representing the list of the 

factors elicited from the related studies which is another evidence of the great 

impact of these factors. 

Participants denied the impact of expected action, pros and cons, readability 

on detection of useful reviews as they believed that these factors are irrelevant to 

the usefulness concept. However, about the importance of data type, user rating, and 

length of the review, they argued that these factors might be helpful in some cases, 

but they cannot be considered as criteria for measuring the usefulness. Data type 

was refuted because it might not make any sense in many situations. Furthermore, 

it has been reported that user rating has not been matched with the sentiment of the 

content in a review [16, 63, 177].  

To refute the length of the reviews, example of short, but useful reviews were 

given by participants. This is noteworthy that although the importance of some 

factors is refused by participants, they have given scores to these factors. The scores 

are not too high yet indicating the importance of the factors. Participants justified 

this behaviour by explaining that these factors could be used as complementary 

factors meaning that meeting them in a review will incentivise developers to find 

useful information, but they are not useful themselves. It means that missing these 

features, they still can find useful reviews. 

Reviewer’s age and location were supposed as helpful factors in identification 

of useful reviews by participants. However, accessing these types of information on 

online mobile application sharing platforms is impossible due to data protection 

policy restrictions. Similarly, number of helpful feedbacks was unsuccessful due to 

not reflecting developers’ viewpoint.  
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 Modelling the Usefulness of 

App Reviews  

5.1 Introduction 

With the analysis of the outputs achieved from the literature review and the focus 

group discussion, this thesis proposes a novel approach for conceptualizing the 

usefulness of mobile application reviews for software development purposes. To 

provide a background for the proposed approach, this chapter describes review 

components and conceptualises the reviewing process. 

Section 5.2 introduces a mobile application review and its components. The 

process of reviewing an application is conceptualised in Section 5.3 showing what a 

user encounters while using the application and how reflects issues and feature 

requests in his/her review. Finally, Section 5.4 summarises and concludes the 

contents of this chapter.  

5.2 Components of a Review 

A mobile application review posted on one of the existing online mobile application 

sharing platforms such as App Store and Google Play Store, consists of several 

components. The most important part of a review attracting other reviewers, 

potential customers, and developers is the review body, also called content or text 

in different contexts. The message that the reviewer intends to deliver to the reader 

is to be located in this part. A review also has a title briefly explaining what the 

review is about. 

Apart from its main components, a review comes with several metadata fields 

that could be used for variety of review analysis purposes, subject to availability. 

These metadata fields are as follow: 

• Target application: The mobile application on application sharing websites 

which the review is posted for 

• Temporal information: Date and time of posting the review 
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• Reviewer: The Id, account name, or profile name of the reviewer shown on 

his/her posted reviews 

• Reviewer’s thumbnail: Profile picture of the reviewer 

• Rating: Number of star-ratings given to the application by reviewer which 

could be selected from 1 to 5 stars provided 

• Helpful: Number of helpful positive or negative votes the review has received 

from readers 

An example of data and metadata items of a review posted for an application 

provided on Apple App Store is presented in Figure 5.1. ‘Gholam Abbas’ is the 

reviewer name. Reviewer’s thumbnail is not provided. 2 stars is given by him to the 

application. The review is posted on 3 April 2018. 2 readers have found this review 

helpful. These are the metadata fields that could be crawled along with the review 

content to perform related analysis tasks. 

The target application offered on online application sharing platforms also 

conveys several metadata fields. These fields can also be used for processing 

reviews for certain reasons. Depending on the design of the online application 

sharing platform providing the reviewing facility, the availability of the following 

metadata items varies from website to website; 

• Application Rank: The average of given star-ratings 

• Application description: a short statement introducing the application and its 

main functionalities 

• Developer: Name of the individual or company developing the application 

• Developer contact: contact information of the developer (i.e., email, website, 

and phone number) 

• Price: Price of the application in the market 

 

Figure 5.1: Available data and metadata for a review on Google Play Store 
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• Size: Size of the application on the phone memory 

• Version: current version of the application 

• Number of instals: number of persons downloaded and installed the 

application 

• iOS version: Version of the OS required for running the application 

• Update: Date of the most recent update of the application 

All of the abovementioned data and metadata items are publicly available on 

the websites and could be used for business and research purposes with respect to 

the GDPR and host countries data protection regulations. Figure 5.2 illustrates 

available data and metadata of an application published on Apple App Store. 

Another group of metadata are privately kept by the application sharing 

websites and are typically not available for research purposes. These metadata 

items are, but not limited to; 

• Location of the reviewer 

• Duration of writing and posting a review 

• Click stream of reviewer 

• Device of the reviewer 

• Number of downloads by location 

• Number of reviews posted by a reviewer 
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Availability of these metadata items is key to researchers’ ability to analyse 

reviews for variety of purposes such as review spam detection, sales forecasting, 

application localising and customising, and market demand analysis to name but a 

few.  

In this project, the focus is merely on the content of each review as the problem 

identified to be addressed by the proposed approach is a proper interpretation of 

usefulness of reviews for application development purposes. The main objective of 

this study is to use the outputs and findings of the researchers studying application 

review mining and developers extracting requirements from user reviews to define 

a systematic process for accurately benchmarking and measuring the usefulness of 

reviews. Therefore, this project focuses on review content as the only available data 

item with the ability of conveying user requirements. 

 

Figure 5.2: Available data and metadata for an application on App Store 
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5.3 Conceptualising the Application Reviewing Process 

The ontological conceptual model of the application reviewing lifecycle illustrated 

in Figure 5.3 helps to understand the significance of the usefulness factors in 

appropriately distinguishing between useful and useless reviews with respect to the 

developers’ viewpoint. The provided partial application reviewing lifecycle 

demonstrates how a user encounters an issue while using the application and how 

report it properly via the reviewing option provided in application sharing websites.  

In this process, a user downloads and starts using the application which 

includes several components and functionalities. The user takes some actions as 

well to use the facilities and services provided by the application. When an issue is 

observed by the user, an aspect of the application is involved. Reporting the system 

action and user action along with the involving aspect in a review helps the 

developers in straightforwardly diagnosing the application and addressing the 

issue.   

 

Figure 5.3: Ontological Conceptual Model of Application and Review (Partial) 
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Similarly, when the user of the application is requesting or suggesting a new 

feature, reporting the target aspect of the application is crucial to help developers 

understand user requirement properly. System action and user action related to the 

requested feature are also important. Figure 5.4 shows a review reporting an issue 

which is considered as useful according to the proposed approach as it explains 

what the issue is, which aspect of the application is involved, what is the user 

scenario encountering the issue, and what is the system action. 
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Figure 5.4: Top: A useful review containing issue, Aspect, User action, and System 
action. Down: two examples of useless reviews 
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5.4 Conclusion 

This chapter discusses app review components and reviewing process to provide an 

overall understanding required for introducing the proposed approach in next 

chapter. In this chapter, different review components and metadata available on 

online opinion sharing platforms that can be used for research activities and the 

ones used in this experiment are discussed. The process of using the discovered 

usefulness factors for identifying useful mobile app reviews for software evolution 

is modelled and conceptualised. Finally, an example of an app review identified as 

useful applying the usefulness factors is provided. 
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 The Proposed Approach  

 

6.1 Introduction 

The proposed approach discussed in this chapter composed of an extraction 

technique for each usefulness factor discussed in Chapters 3 and 4. These extraction 

techniques are then integrated in a pipeline to form a framework taking user 

reviews as input and identify to what extent the review is useful for app developers 

to improve the application.  

Section 6.2 depicts the architecture of the proposed approach. Parsing input 

reviews is explained in Section 6.3. Section 6.4 details step by step of the process of 

extracting usefulness factors. The section details techniques and approaches used 

for extracting each factor in five subsections. Measuring the usefulness of the target 

review by analysing extracted factors is described in Section 6.5. Finally, Section 6.6 

summarises and concludes the contents of this chapter. 

6.2 Architecture of the Proposed Approach  

Assuming a user has posted a review for a target application, the process of 

measuring its usefulness for software development, the proposed approach, is 

briefly described in this section. The framework consists of three key components 

(i.e., Review Parsing, Extracting Factors, and Measuring Usefulness) discussed in 

following subsections.  

The framework takes the review as input and labels it with the degree of 

usefulness for software evolution after analysing its content across several modules 

and checking the existence of the predefined usefulness factors.  

In the first module, the approach applies a specialised parser to pre-process 

the review. The pre-processed review is then fed into the Extracting module. The 

function of the Extracting module is twofold. First, it transforms the text of the 

review into vectors of real values and learns word embeddings. Second, it applies a 
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classification trained model for each usefulness factor to identify which factors are 

observed in the review. Finally, based on observed usefulness factors, a decision tree 

determines to what extent the given review is useful for software development 

purposes in Measuring Usefulness module. 

Figure 6.1 presents a high-level view of the architecture of the Proposed 

Approach. It has three main modules discussed in the following sections. 

6.3 Review Parser 

A review in our dataset consists of several elements such as name of the application, 

rating, date of posting the review, etc. explained in Section 5.2. However, these 

elements might not be helpful with the task of measuring the usefulness of a review. 

Moreover, the focus of this study is to identify usefulness using the content of a 

review, a piece of user generated text (i.e., natural language) which needs to be 

prepared properly before proceeding to the next module.  

 

Figure 6.1: Architecture of the proposed approach 
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When the text of a review is fed into the system, several pre-processing tasks 

are applied on the input review in this module to properly prepare the review 

content based on the requirements of the NLP techniques and classification models 

to be applied in Extracting module.  

Language Detector discards non-English reviews as the scope of this study is 

to focus on English reviews only. This task is performed using langdetect library in 

python. 

Short Review Remover removes any review with less than four words. 

Annotators’ observations over the sample data reveal that reviews of 3 words or 

fewer generally introduce little information and describes personal sentiment 

rather than describing application related user requirements. “hate this update”, 

“highly recommended”, and “must have app” are the examples of short useless 

reviews in the dataset used in this study. This task is done by a simple algorithm 

splitting the review content into tokens (words) using The Natural Language Toolkit 

(NLTK) [178] word tokenizer tool and counting the output tokens. 

Spell corrector checks the text for misspelled English words and corrects 

them. This task is performed using A Python library named ‘pattern.en’. 

Punctuation Remover removes all punctuations (i.e.!"#$%&'()*+,-

./:;<=>?@[\]^_`|~) used in the text of the given review. This task is performed using 

a simple algorithm identifying and deleting each of the punctuations from the text. 

Applying this technique removes emojis from the reviews too. 

Stop-word remover strips stop-words (e.g., a, an, the, of, at, by, for, to, etc.) 

from the text of the given review. This task is performed using NLTK stop-word 

removal technique comparing each word with the list of stop-words provided by 

NLTK and filtering out the stop-words. 

Tokenizer splits the text of the given review into simple tokens such as 

numbers and words of different types. Similar to the short review removal task, 

NLTK word tokenizer is used to perform this task. 
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Lemmatizer alters each word in the text of the given review with its lemma 

form. Preserving the readability of a word, this technique normalises gerund 

endings (i.e. -ing), plural form of words and other grammatical details. This task is 

performed using NLTK lemmatizer tool. 

Performing all these pre-processing tasks on the input review text provides a 

prepared piece of text to be used in the next modules. Each of the pre-processing 

tasks described above are selected as a part of the approach through two steps. First, 

the task was suggested by other researchers conducting experiments using similar 

techniques. Second, different combinations of the suggested pre-processing and text 

cleaning tasks are tested in this project and the one resulting in the highest accuracy 

of the approach is selected.  

6.4 Extracting Usefulness Factors 

To analyse a review for investigating existence of each usefulness factor, several 

Machine learning models are built, and NLP techniques are adopted in this study. 

This module explains how the pre-processed review coming from previous module 

is fed into a set of classifiers and NLP approaches to be labelled with the usefulness 

factors it holds. The five usefulness factors discussed in previous chapters (i.e., Issue, 

Feature Request, Aspect, System Action, and User Action) are considered in this step 

as target labels to be associated with the review text.  

The adopted technology for extracting Issues, Feature Requests, User Actions, 

and System Actions is a CNN model built with input reviews represented as fixed 

length vectors applying word embedding techniques. 

There are several reasons why, among several existing methods, CNN classifier 

is adopted to solve such a problem. First, as it is discussed in Chapter 2, related 

works investigating performance of different machine learning techniques on 

classifying user reviews have reported the privilege of neural networks [62, 64, 80, 

179]. Second, studies comparing the performance of CNN on several natural 

language processing (NLP) tasks, such as POS tagging, NER, and SRL, with the state-

of-the-art methods have reported the significant improvements in the results [180, 

181]. Third, better generalization capabilities are available when using CNNs 
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integrated with pre-trained word embeddings [182]. Finally, unlike other classifiers, 

CNNs detect ordering of words in the input text as proper classification attributes 

[182, 183]. 

To identify reviews containing Aspects, however, several syntactic rules are 

defined. As applying syntactic rules captures certain predefined patterns in the data, 

its precision is higher than other approaches which is the key point in identifying 

Aspects. Deep learning models are far less accurate than syntactic patterns for this 

task as the input of the CNN should be single words, and the algorithm cannot extract 

features from the context of the target word. 

The following subsections describe proposed approaches for extracting each 

of the usefulness factors in detail. 

6.4.1 Convolutional Neural Network (CNN) 

The convolution operation used in CNN involves cross-channel summation of the 

element-by-element multiplication. This operation consists of a convolutional filter 

(kernel) for each input channel which is randomly initialized and the CNN tunes and 

adopts its parameters to achieve the classification task. The output of the feature 

convolution is a feature map. The size of feature map would be same as the input 

matrix by adding a certain number of zeros to each dimension of the input matrix. 

This is because the computation of the summation in the convolution operation is 

over a sliding window on the input tensor. The convolution operation transforms a 

multi-dimensional input into a one-dimensional output matrix. Maximum pooling 

layer is used in this process to reduce the dimensions of a matrix. Sliding the 

convolutional filter over the input matrix, it captures the element with highest value 

and discard the rest elements fallen in the filter to generate an output matrix of 

reduced dimensions. Thus, convolutions in a convolutional model are passed 

through several pooling layers to reduce the dimensions and then will be fully 

connected together to finalize the classification or prediction task.  

Reperesenting text as fixed length vectors applying word embedding 

techniques is a proper input for the CNN in this module to perform the text 

classification task. The word-level embeddings with fixed dimensional vectors are 
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fed into the convolution model. The outputs of the convolutional and pooling layers 

are, then, flattened. Next, applying some fully connected layers, the classification 

output will be generated. The example model of classifying a sentence using CNN 

[129, 184] is represented in Figure 6.2. 

 

Figure 6.2: CNN model for sentence classification [184] 

 

6.4.2 Word Embedding 

The concept of word embedding could be traced back to 1956 when Zelling Harris 

[185] introduced the “distributional hypothesis”. This theory argued that there is a 

relationship between the context of words and their meanings. In other words, two 

words that are used in a similar context have similar meanings.   

The aim of this distributed word representation is to map semantic meaning 

of the words into their geometric spaces. It represents words as real-valued vectors 

in a predefined vector space where words with similar semantic meanings also have 

a similar representation. For example, in a well-trained word embedding set of 

vectors the words “orange” and “apple” are very close to each other in the space 

while they are far from “pencil”. Similarly, the words “pen”, “pencil”, and “paper” 

might cluster in another corner.  

In traditional one-hot vector representation, each word in a fixed size 

dictionary is represented as a binary vector with values all set to zero except the 

index of the word in the dictionary. For example, if a dictionary with 10,000 words 
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is transformed to one-hot vectors, it will have 10,000 binary vectors each has 10,000 

values. In this dictionary, if the index of the word Apple is 350, the binary vector for 

this word would be all zero values except for the 350th value which is marked with 

a 1. However, in word embedding, each word is associated with a point in a vector 

space and the technique learns from many different contexts of words how they are 

semantically related to each other. 

Representing words as dense and low-dimensional vectors significantly 

improves the performance of majority of neural network tools as their accuracy 

using high-dimensional, sparse vector representation is reported to be low [186]. 

Another outstanding advantage of word embedding comparing to one-hot vector 

representation is that the number of features is much smaller than the size of the 

vocabulary [187]. 

Word2vec is one of the effective techniques to learn word embeddings. It 

transforms words in each text samples of the dataset into vectors applying a two-

layer neural network. Two main algorithms used by word2vec for training are skip-

gram and continuous bag of words (CBOW) [188]. The later uses context to predict 

target word, while the former uses a word to predict the target context (Figure 6.3).  

Although it can be understood from definition of the algorithms that the 

performance of skip-gram is better as it can consider multiple meanings for a word 

such as bank (e.g., riverbank, food bank, and financial bank), accuracy of each of 

these training algorithms depends on the circumstances of the dataset and the 

machine learning task. 
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6.4.3 Extraction of Issues 

In this task, a pre-processed review text is fed into the model as input whereby it 

will be labelled as issue if the text conveys any issue reported. The way for 

distinguishing between reviews reporting an issue with other types of reviews in 

this task is adopting a Convolutional Neural Network (CNN) classifier with input 

words represented as word embeddings.  

As both datasets include reviews manually tagged with Issue Report labels, a 

combination of dataset one and dataset two are used for training and testing the 

model built for this task. Each of the datasets were split into 80% training and 20% 

testing parts.  

6.4.3.1 Vocabulary Building 

Creating a vocabulary of known words is of great importance when word 

embedding model is to be used. Using all existing words in the dataset, very large 

 

 

Figure 6.3: CBOW architecture (predicting word from context) and Skip-gram ar-
chitecture (predicting context from word) [188] 
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representation for documents will be generated. Thus, defining vocabulary of 

known words is an effective way to optimise the performance of the system. 

To create the vocabulary all reviews from training set are cleaned, tokenised 

into words, and occurrences of each one in the dataset was computed. Then, words 

with frequency less than two were filtered out to avoid negligible words.  The final 

vocabulary was saved into a text file to be used further for filtering input data prior 

to encoding them for modelling. This task was performed designing a simple 

algorithm in Python. 

6.4.3.2 Training Embedding Layer vs. Using Pre-trained Embeddings 

There are two techniques for creating embeddings to be used with the model. First, 

training embeddings using existing train data. Second, using off the shelf 

embeddings trained on huge volumes of human generated text. In this study, both 

techniques are applied to compare their impact on the accuracy of the proposed 

model. 

In the first model configuration, the word embedding is designed to be trained 

while the classifier is training. To this end, an embedding layer is added to the model 

using the Keras deep learning library in Python. The embeddings can also be trained 

in advance and saved into a file to be loaded and added to the model later. The 

word2vec algorithm is used in such cases to train embeddings in a standalone 

manner. Prior to adding the embedding layer, the created vocabulary is loaded to 

filter out negligible words from reviews. 

To meet the requirements of the Keras embedding layer, each review is 

encoded as a sequence of integer values indicating a word each. The preliminary 

values represented as vectors are random but becoming meaningful while training 

the algorithm. Training the model using all training reviews from the truth set maps 

all words from the vocabulary to unique integer values which are used for encoding 

input reviews.  

Alternatively, pre-trained embeddings on huge volume of text data are 

available to be used with neural network models. It is reported in the literature that 

using pre-trained embeddings for text processing tasks offers better performance 
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[179, 189]. Google has created a 300-dimension word2vec embeddings trained on 

Google News using more than 100 billion words which is also used with the model 

built in this task. 

6.4.3.3 CNN Model Building 

Continuing configuration of the model, Keras requires input documents of a same 

length for optimising the efficiency of the model. Therefore, a maximum length size 

for reviews was defined and used for zero-padding training reviews to the maximum 

length size. 

Class labels are required to be defined in the Keras to fit the supervised neural 

network model to classifying reviews. As the class labels need to be defined as 

integer values, reviews containing Issue Report are labelled by 1 and are otherwise 

tagged by 0. The test dataset is also encoded and padded for validating the model. 

An embedding layer is the first element added to the model. For training 

embedding while training the model, the embedding layer was set to vocabulary 

size, 300-dimensional word representation, and maximum length of the reviews. 

For the Google News pre-trained embedding, the embedding layer was set to the 

setting of the pre-trained embedding. 

 Next layer, one-dimensional  convolutional layer, was preliminarily  

configured with a rectified linear (relu) activation function which is easy to adopt 

and has greatly improved the performance of feedforward networks comparing to 

sigmoid hidden units [190]. The kernel size was set to 5 and 200 filters were used 

for processing words.  

To consolidate the output of the convolutional layer, a max pooling layer with 

pool size set to 3 was then added to the model. To reduce the dimensions of the 

output of the max pooling layer, a flatten layer is also added to the model.  
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Finally, a sigmoid activation function is used in the output layer to generate 1 

for reviews containing Issue Reports and 0 otherwise. A summary of the defined 

neural network model is illustrated in Figure 6.4. The summary shows that the input 

of the embedding layer is documents of 233 words length. Each word is encoded 

into a vector with 300 elements. 

To compile the model, which is a binary classifier, a binary cross entropy 

function was selected along with adam optimiser. Training reviews were fitted then 

on the model and number of epochs was set to 15 indicating that the model iterates 

15 times over the training reviews. The optimal configuration defined is based on 

successful empirical results on binary text classification problems [191, 192] and 

several trial and errors.   

After configuring and building the model, test reviews are fed into the model 

for evaluation purposes. Accuracy measures used in this project are Precision, Recall 

and F-measure. More detail on evaluation of the model is provided in Chapter 7. 

 

 

Figure 6.4: Summary of the model configuration 
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6.4.4 Extraction of Feature Requests, User Actions, and System Actions 

To classify reviews into reviews containing Feature Request and reviews with no Feature 

Request, similar to Issue Reports, a CNN model using word embeddings is designed. 

Same configuration and setup were applied. The only difference was in input data that 

the reviews from dataset one and dataset two containing Feature Requests and Other re-

views were fed into the classifier for training and testing purposes. 

Pertaining to User Action and System Action, to the best of our knowledge, this 

is the first time these two factors are to be identified automatically. Thus, one of the 

contributions of this project is proposing an approach for automatically identifying 

them. Due to the novelty of the approach, no ground truth dataset was found for this 

task resulting in using only dataset one that is specifically annotated for this project 

to train and test two binary classifiers designed for this task. 

Again, a binary CNN model with word embedding was designed for each of the 

usefulness factors (i.e., User Action and System Action). Unlike classifiers identifying 

Issue Reports and Feature Requests taking a whole review as a data sample, reviews 

from dataset one were split into sentences and the model was designed to perform 

the classification in sentence level which is due to the nature of these factors. As a 

short text, a review is designed to have a topic and few sentences expounding the 

topic. Issues and Feature Requests are also generic topics requiring to be explained 

in several sentences. However, User Action and System Action are small parts of an 

Issue or Feature Request with no more than one sentence to express. 

6.4.5 Extraction of Aspects 

Conducting a CNN model with word embedding is not efficient for identifying 

Aspects. The effectiveness of this approach is due to inclusion of several words in 

the input text. The neural network extracts several features from semantic 

relationships between words in a sentence enabling the classifier to perform 

accurately. However, the Aspects usually appear in a single word and using word 

embeddings is less efficient for such situations. On the other hand, the existence of 

an Aspect in a review is critical for identifying useful reviews for its key position in 
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the decision tree discussed in the following section. Therefore, an accurate approach 

for identifying Aspects is required to be designed.  

A group of proposed approaches detecting Aspects have focused on 

opinionated sentences. These approaches use an opinion word in a sentence and 

analyse its relationship with other words to find Aspect candidates. However, as it 

is discussed in Chapter 2, many aspects are mentioned in reviews without any 

opinion expressed. Moreover, many of the recent studies have used topic modelling 

for detection of Aspects which is not an efficient approach for short texts [58, 

87][41]. Other draw backs of topic modelling-based approaches are discussed in 

Chapter 2. As the performance of syntactic rule-based approaches is reported 

significantly optimal in capturing certain patterns from text [193-196], a set of 

syntactic rules are defined in this project to identify Aspects.  

NLP-based rules are usually defined over constituency and dependency 

parsing, and POS tagging results. The extraction rules defined in this project 

leverage dependency parsing and POS tagging to identify mentions of Aspect in a 

review. It is noteworthy mentioning that the aim of this task is to identify reviews 

mentioning an Aspect not specifically detecting which word or word phrase is the 

Aspect.  

6.4.5.1 Part of Speech (POS) Tagging 

Part of Speech tagging refers to the task of reading a piece of text and labelling the 

part of speech for each word. An example of POS tags is shown in Figure 6.5 where 

a sample sentence is tagged with abbreviations of part of speeches. Each tag has a 

certain meaning. PRP stands for preposition, VB is a verb, NN is noun, and so on. The 

diagram is drawn using Stanford CoreNLP online text processing tool. A list of POS 

tags is provided in Appendix IIII. 

 

Figure 6.5: An example of POS tags 
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StanfordNLP, a toolkit for natural language processing tasks used in this 

project, uses a Java implementation of the log-linear part-of-speech taggers 

proposed in [197, 198]. Stanza [199], a Python NLP package offered by StanfordNLP 

is used to perform the POS tagging task. An example of the output of Stanza POS 

tagger is provided in Figure 6.6.  

6.4.5.2 Dependency Parsing 

Dependency parsing is the task of clarifying syntactic structure of a sentence using 

words and grammatical relationships among them. A dependency tree consists of a 

root node which is the head of other nodes (words) and labelled directed arcs from 

head nodes to dependent ones. In a dependency relation 𝑛 → 𝑚, the head of the 

relation is 𝑛 and the dependent is 𝑚. The labels show syntactic dependencies 

between nodes, such as direct object, adjective modifier, and clausal subject, to name 

a few. A complete list of universal dependencies [200] is provided in [201]. Figure 

6.7 shows a dependency tree drawn for a sample sentence, “I would like to see a 

 

Figure 6.6: An example of Stanza POS tagger output 
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download option.”, and its dependency relationships. The diagram is drawn using 

Stanford CoreNLP online text processing tool.  

Recent improvements in NLP has approved the significant enhancement of 

novel NLP techniques such as dependency parsing [202] which is advanced enough 

now to be used for defining extraction rules. For this task, Stanford parser is used 

from Stanza package in Python as it had the best performance comparing to other 

tools [203, 204]. 

6.4.5.3 Rules Extracting 

The rules proposed in related approaches [94, 98, 99] have been investigated in terms of 

capability in identifying application aspects. The investigation revealed that this thesis 

cannot merely rely on them for identifying aspects for the following reasons: 

Firstly, empirically evaluating several feature extraction approaches on real 

world user reviews has revealed that these approaches achieve lower effectiveness 

than reported originally [36]. 

Secondly, detection of aspect in related work is contingent upon identification 

of opinion words. This is because most of these papers aimed at understanding 

users’/customers’ opinion about an aspect. However, many aspects are mentioned 

 
 

 

Figure 6.7: An example of dependency tree and its relationships 



 

123 

 

in reviews without any opinion word associated with. For example, in the following 

review, ‘message’ is an aspect with no opinion word in the sentence. 

“Every time that I open the app, a message pops up asking me to review the 

app.” 

Thirdly, there is negligence in definition of rules. Preliminary analysis of the 

rules in this project revealed several contradictions among them. Some of the 

examples are explained in the following sentences. Rule 1 and rule 2.1 in [98] are 

same, but all sub-rules of rule 2 are applicable only if there is no auxiliary verb. Rule1 

needs the modifier of the verb to be seen in an opinion lexicon, but rule 2.1 does not. 

Rule 2.2 and 2.3 in [94] are same. However, rule 2.2 needs the noun to be out of 

opinion lexicon, but rule 2.3 needs the noun to be in the lexicon. Rule 2.3 in the same 

study comes with an auxiliary verb, while all the sub-rules of rule 2 are applicable 

when there is no auxiliary verb in the sentence. Rule 3 in [98] considers a noun 

which is in copula relation with an auxiliary verb as an aspect, but the noun is not in 

relation with the verb in provided example (i.e. the camera is nice). These are just 

few examples to show how unreliable are existing rules.  

Finally, some types of sentences including important aspects are not detected 

by the existing rules. For example, the following review contains an aspect which is 

“edit section”, but the rules defined by Rana et al.,[99, 100] cannot capture this 

aspect. 

“It would add great value to have an edit section” 

Accordingly, useful rules are taken from related works, improved, and adopted 

for the aim of this project. More rules are also defined based on observations and 

analysis performed in this project to identify Aspects effectively.  

Investigating the appearance of aspects in product reviews, researchers have 

argued that 98% of the aspects are noun phrases [93, 100, 205]. Results of several 

studies show that aspects appear only in the form of nouns in reviews [206, 207]. 

Besides, manual analysis of reviews in a study conducted by Malik et al. [93] has 

revealed that nouns, verbs, and adjectives are key part of speeches in identifying 

application aspects. Therefore, to improve the precision, the focus of this thesis is 
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on noun phrases for identification of aspects. The following rules are defined and 

applied in this project for identifying reviews containing an Aspect. 

R1. If a word 𝑊1 has a noun POS tag and is dependent of the node 𝑊2 with a 

subject relationship, and 𝑊2 has an adjective or adverb modifier which is in the 

opinion lexicon, then 𝑊1 is an Aspect. The opinion lexicon2 is a collection of English 

negative and positive opinion words and sentiments gathered by Hu and Liu, [208] 

and then compiled over many years by the authors. Figure 6.8 illustrates this rule in 

a logical formula where 𝑊 is a word, and 𝑁𝑁, 𝐽𝐽 and 𝐴𝐷𝑉 stand for noun, adjective, 

and adverb, respectively. 

The noun ‘background’ in the following review, for example, is subject for the 

verb ‘drains’ which is modified by the adverb ‘quickly’. ‘quickly’ exists in the 

opinion lexicon. So, ‘background’ is captured as an Aspect. Figure 6.9 illustrates the 

dependency tree for the review used in this example. 

“the white background of the app drains the battery quickly.” 

 

 

2 https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html 

 

Figure 6.8: Logical representation for Rule1 

 

Figure 6.9: Dependency tree for Rule1_example 

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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R2. If a word 𝑊1 has a noun part of speech and is dependent of the node 𝑊2 

with a direct object, oblique nominal, or open clausal complement (xcomp) 

relationship, and 𝑊1 is not in the opinion lexicon, then 𝑊1 is an Aspect. The logical 

formula for this rule is shown in Figure 6.10 where 𝑑𝑜𝑏𝑗, 𝑜𝑏𝑙 and 𝑥𝑐𝑜𝑚𝑝 stand for 

direct object, oblique object, and open clausal complement relationships, 

respectively. 

The noun ‘option’ in the following review, for example, is in open clausal 

complement relationship with the verb ‘needs’ and is not in the opinion lexicon. So, 

‘option’ is an Aspect. Figure 6.11 illustrates the dependency tree for the review used 

in this example. 

“There needs to be a bulk download option.” 

 

 

 

Figure 6.10: Logical representation for Rule2 

 

Figure 6.11: Dependency tree for Rule2_example 
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R3. If a word 𝑊1 has a noun POS tag and is dependent of the node 𝑊2 with a noun subject 

relationship, and 𝑊2 is in copular relationship with an auxiliary verb 𝑊3, then 𝑊1 is 

an Aspect. Figure 6.12 illustrates this rule in a logical formula where 𝐴𝑈𝑋 is an auxiliary 

verb.  

The noun ‘option’ in the following review, for example, is subject for the word 

‘nice’ which is in copula relationship with the auxiliary verb ‘is’. So, ‘option’ is an 

Aspect. Figure 6.13 illustrates the dependency tree for the review used in this 

example. 

“The new search option is nice.” 

 

R4. If a word 𝑊1 has a noun part of speech and is dependent of the node 𝑊2, 

which is detected as an Aspect by other rules, with a compound relationship, then 

𝑊2 is concatenated to 𝑊1 as a part of the Aspect. For example, the word ‘search’ in 

 

Figure 6.12: Logical representation for Rule3 

 

Figure 6.13: Dependency tree for Rule3_example 

 

Figure 6.14: Logical representation for Rule4 
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Figure 6.13 is in compound relationship with ‘option’ which has been detected as 

an Aspect by R3. So, ‘search’ will be concatenated to ‘option’ to form the new 

Aspect, ‘search option’. Figure 6.14 illustrates this rule in a logical formula. 

6.5 Measuring the Usefulness 

applying a decision tree approach in this module, reviews labelled with usefulness 

factors are assessed for measuring their degree of usefulness for software 

development. This study does not investigate the usefulness as a binary concept. In 

the proposed extraction model represented in Figure 6.15, four classes of usefulness 

(i.e., Fully useful, Insufficiently useful, Less useful, Useless) are designed to classify 

reviews toward usefulness. Assessing the given review using the proposed model, 

we can decide to what extent the review is useful. A Fully useful review is what 

developers are looking for and count as important, while Useless reviews are to be 

discarded. Insufficiently useful and Less useful reviews are partially important for 

developers.  

This strategy facilitates developers and companies to focus on a certain degree 

of usefulness in analysing their reviews. For example, a large company with huge 

volume of reviews may only wish to filter Fully useful reviews, while in small scales, 

a developer managing a few apps and only receiving tens of reviews daily may prefer 

to get rid of Useless reviews and include Less useful reviews in his/her reading list 

as well.  

Moreover, the rationale behind this classification is that with a binary 

classification (i.e., Useful and Useless), there is a probability of missing reviews 

classified as Useless, but very close to the border of the Useful class. These reviews 

usually contain partially useful information which is ignored in a binary 
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classification. Thus, defining intermediate classes helps to purifying the samples 

fallen in each target class by defining the degree of membership.  

The decision tree approach (Figure 6.15) is designed at this step to perform 

the classification task in an organized manner. The very first branching point in the 

tree is the Aspect, “Is there any application Aspect mentioned in the review?”, 

because in terms of the purity, it gains the lowest possible Entropy which equals to 

0. Entropy is a technique to measure the uncertainty of a class in a subset of 

examples. It gives a number between 0 (i.e., 100% certain) and 1 (i.e., 100% 

uncertain). It measures the purity of split in a decision tree as shown in the following 

equation: 

 

 

 

Figure 6.15: The customized Decision Tree for measuring the usefulness 
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   𝐻(𝑠) = 𝑃(+) 𝐿𝑜𝑔2(𝑃+) −  𝑃(−) 𝐿𝑜𝑔2(𝑃(−))          6.1 

 

Where, 𝐻(𝑠) is the Entropy of the 𝑠 which is a subset of the annotated reviews. 

𝑃(+) is percentage of the true class and 𝑃(−) is percentage of the false class in 𝑠. In 

this research, true class for each factor is number of useful reviews in the sample 

including the target factor, while false class refers to number of useful reviews 

missing the target factor.  

The review will be classified as Useless if not referring to any aspect of the 

target application (‘No’ answer at the root node). Otherwise, the type of the review 

is assessed at the second level decision node where the outcomes are Issue, Feature 

request, or Other. Falling in the Other category, the review will be classified as 

Useless, while Issues and Feature requests are to be assessed for inclusion of User 

action and System action. Observing both factors in the review makes it Fully useful, 

but one of them causes the review to be classified as Insufficiently useful. For feature 

requests, if the review is free from User Action and System Action, it will be fallen in 

Less useful class. However, such a review will be classified as Useless in Issue report 

type.  

The decision tree implemented in this study, is a modified and customised 

version which is optimised based on requirements of this project. Therefore, 

calculation of the Entropy combined with the insights gained during the data 

annotation and previous tasks were used to construct the tree based on the selected 

factors. 
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6.6 Conclusion 

This chapter presented an overview of the proposed approach in this project 

to identify the usefulness of a given user review for software development purposes. 

The approach has three main modules, which are Review Parsing, Factors 

Extracting, and Usefulness Measuring. The modules are explained in this chapter 

and their technical details are discussed in depth in the subsequent chapter. 
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 Results and Discussion 

 

7.1 Introduction 

In this chapter, results of the experiments conducted in this study are reported, and 

performance of the proposed approach is evaluated. Another purpose of this 

chapter is to interpret and discuss the results. 

Section 7.2 describes the datasets used in this study for not only training and 

testing the supervised approaches for extracting usefulness factors, but also 

validating syntactic rule-based approaches. Performance results of the proposed 

approach are discussed in section 7.3 wherein two levels of evaluation are 

introduced. The section reports on the accuracy of each usefulness factor extraction 

technique as a standalone model, and the integrated system composed of these 

techniques. Finally, section 7.4 compares the results with baseline studies. 

7.2 Data Collection 

The first dataset used in this project, named dataset one, is a collection of mobile 

application reviews posted by real users which is crawled by Guzman and Maalej 

[58] in February 2014. The dataset includes thousands of reviews on 8 well known 

mobile applications from App Store and Google Play. A subset of 1000 reviews on 4 

applications was selected as the corpus of this study for the following reasons. 

Firstly, the reviews were collected from various sources. So, some original meta data 

coming with the context of the review were missing for some reviews. Second, initial 

observations revealed that some applications might have been target of massive 

spam attacks as there were lots of reviews not delivering a sensible meaning (e.g., 

“very good”, “love it”, “Excellent!”, etc.). Third, in some versions of some 

applications, a critical issue was observed reflected in a huge number of reviews 

causing bias in the data. Finally, circumstances and scope of this project demand 

such a subset.  
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Each review in the dataset consists of 7 original meta-data items coming with 

the context of the review (i.e., ID, App ID, App Version, Title, Reviewer, Star rate, and 

Date), though the circumstances and objectives of this project demands to use 

review content only. The data is publicly available by the researchers in the form of 

SQL commands to create and populate relevant tables. Thus, SQL tables were 

populated with data samples to obtain the complete dataset used in [58]. Running 

simple SQL queries, the final subsample of the data was obtained which is called 

dataset one in this thesis. Transforming the data into .xml files, they were fed into 

the General Architecture for Text Engineering (GATE) [209] for further annotation 

and analysis. 

Considering that the main approach for extracting the usefulness factors is 

deep learning, a set of manually annotated data samples are required. So, for 

training and testing the proposed classifiers, a peer manual analysis of the 1,000 

sampled reviews was conducted to create the truth set. The data annotation task 

was to manually identify and label occurrences of each usefulness factor (i.e., 

Aspects, Feature Requests, Issues, System Actions, and User Actions). The author of 

this thesis and a PhD candidate with more than six years of mobile application 

development experience have performed this task. A coding guideline was provided 

to gain a higher Inter Annotator Agreement (IAA) [210] and maximise the quality of 

the output [211]. The guideline included explanations and clarifications on what 

each usefulness factor is, how to deal with uncertainties, and review examples for 

each factor.  

To handle disagreement between annotators they were asked to separately 

label 100 reviews in a preliminary annotation task. Then, in a meeting comparing 

and justifying judgements, they gleaned insights from discussions and prepared to 

start the main data annotation task. The coding guideline was updated accordingly 

and provided to the annotators. After coding all the reviews in the dataset, in a 

meeting discussing disagreements with coders, the unresolved ones were discarded 

from dataset one and new reviews where replaced. Therefore, each of the reviews 

in dataset one is jointly labelled by the two coders. 
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The second dataset used in this study, called dataset two, is collected by Maalej 

and Nabil, [60] in 2014 which has reviews classified into four categories including 

bug report, feature request, user experience, and rating. The crawled dataset 

contains 1,246,057 reviews collected from App Store and Google Play Store. The 

authors randomly sampled 4,400 reviews for manual analysis. They hired computer 

science master students to perform the annotation. Each review was classified by 

two coders into the categories. As identification of user experience and rating 

classes are out of the scope of this project, the reviews fallen in these two classes are 

discarded from dataset two. The final dataset contains 3,691 reviews classified into 

feature request, bug report, and other.  

The reason for using this dataset as the second dataset for this study is to 

enrich the number of data samples for Issues and Feature Requests resulting in the 

improvement of the proposed classifier for extracting these factors. 

The original downloaded dataset was provided in JavaScript Object Notation 

(JSON) format which was converted into Comma-Separated Values (CSV) to be 

combined with dataset one for training and testing of feature request and issue 

report classifiers. 

7.3 Performance Results  

Evaluation of the proposed approach is performed in two levels, component level 

and system level. In component level, the process of extracting each usefulness 

factor is validated as a standalone model, and the accuracy of that certain task is 

measured. Putting these distinct models in a pipeline, an integrated system getting 

reviews as input and labelling them with the pre-defined degree of usefulness is 

achieved. System level evaluation measures the accuracy of the system. Before 

discussing each of these validation levels in this section, the metrics used for 

measuring the accuracy of the techniques are introduced. 

7.3.1 Evaluation Metrics 

The evaluation metrics used in this study are the precision, recall and F-Measure. 

The procedure for calculating the precision and recall is to run each of the proposed 
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models to classify reviews to positive (i.e., when the review includes the target 

usefulness factor) and negative (i.e., when the review does not include the target 

usefulness factor). The outcome is then compared to the ground-truth dataset built 

for this study implying the evaluation metrics subsequently described.   

Calculating the recall, number of reviews captured as positive by the proposed 

model which also are judged as positive by human experts is divided by the number 

of all reviews judged as positive by human experts.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡} ∩ {𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|

|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡}|
                          7.1 

Likewise, Precision is computed dividing the number of reviews identified as 

positive by the algorithm which also are judged as positive by human experts by the 

number of all detected reviews by the algorithm.  

Precision =  
|{𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡𝑟𝑢𝑡ℎ 𝑠𝑒𝑡} ∩ {𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|

|{𝐼𝑡𝑒𝑚𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚}|
                        7.2 

Finally, F-Measure is used to combine the Precision and Recall. The F-Score 

could be calculated using the subsequent formula. 

F-Measure =   2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
       7.3 

 

7.3.2 Component Level Evaluation 

Five usefulness factors are defined in this study to measure the usefulness of a given 

user review (Chapters 3 and 4). To facilitate the task of extracting each of them from 

review text, an NLP based approach is proposed. In this sub-section, proposed 

approach for automatically identifying each usefulness factor is validated and the 

corresponding results are reported.  

7.3.2.1 Extraction of Issues 

The proposed approach for identifying reviews containing an Issue (Chapter 6) is vali-

dated using a ground truth dataset (Section 7.2). Evaluating the automatic approach for 

extracting this usefulness factor, both dataset one and dataset two were used to train and 
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test the model. Precision, Recall, and F-Measure were also expected from the classifier 

validation setting.  

The domain specific embeddings trained in this experiment and the pre-

trained embeddings from Google were used to represent the input words to the 

neural network (Section 6.4.3.2) to compare the results obtained using each of the 

embeddings with the neural network model. After successfully building the models, 

the following results were obtained (Table 7.1). 

As the results show, performance of the model is significantly better when the 

input words are represented as embeddings using the pre-trained Google 

embeddings comparing to the embeddings trained in this study.  

Word embedding learns semantic relations between words in the given 

training sentences to build the word vectors causing semantically relevant words to 

be clustered in a same group or very close to each other on the vector space. Decision 

of the utilised CNN model is contingent upon these features.  

Thus, at the first glance, embeddings trained using application reviews are 

expected to have more positive impact on the performance of the classifier rather 

than Google embeddings trained with news data. This is a reasonable expectation as 

the wording and writing style of all the data samples are for reviewing apps 

resulting in more relevant relationships between words. However, the key for 

Google embeddings success is for the huge volume of the input training data. Billions 

Table 7.1: Accuracy of the neural network used for identifying Issues in reviews 

 Precision Recall F-Measure 

CNN + Training  

embeddings 

0.48 0.66 0.55 

CNN + Google Pre-

Trained embeddings 

0.60 0.76 0.67 
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of sentences written by human used to train the embedding covering variety of 

individuals’ phrasing patterns and discovering too many relationships between 

used words. In this experiment, few thousands of reviews are used to train the 

domain specific embeddings. 

7.3.2.2 Extraction of Feature Requests 

Similar to Issue reports detection, dataset one and dataset two were jointly used for 

training and testing the CNN model designed for identifying reviews requesting a 

new feature for the application. This is because both datasets include reviews 

manually tagged with the ‘Feature Request’ label. The model was configured to 

compute Precision, Recall, and F-Measure as validation metrics. The two different 

embeddings were also used to represent the input words to the neural network and 

to compare the accuracy. Training and testing the models using each of the 

embeddings, the following results obtained (Table 7.2). 

Again, the results show that the accuracy of the model when is fed with Google 

pre-trained embeddings is significantly better. The reason for such behaviour is 

explained in previous section.  

In general, comparing the results with the ones obtained from evaluating the 

Issue detection model, one can see a more accurate model which is due to the nature 

of the factors. Issues have a large application domain so that variety of problems, 

bugs, shortcomings, and user complaints are all branched off from this concept. 

Thus, many different expressions and wordings are used by individuals to write the 

Table 7.2: Accuracy of the neural network used for identifying Feature Requests in 
reviews 

 Precision Recall F-Measure 

CNN + Training  

embeddings 

0.55 0.72 0.62 

CNN + Google Pre-

Trained embeddings 

0.67 0.78 0.72 
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reviews to be identified as Issue reports by our neural network. On the other hand, 

this variety is far less broad when users are requesting a feature causing the use of 

not only more similar wordings and expressions, but also less dispersed grammatic, 

semantic, and even syntactic relations in review text. This fact influences the 

performance of the neural network models as word embeddings used in these 

models capture similarities between words and their semantics. Therefore, more 

similar wordings used in target class data samples leads to higher accuracy for the 

model. 

7.3.2.3 Extraction of User Action 

Referring to the discussion in Chapter 5, no manually coded dataset was available to 

be used as truth set for training and testing the model designed for this task as this 

is the first research attempt for automatically identifying reviews reporting a User 

Action. So, the only ground truth dataset used for this task is dataset one manually 

coded as a part of this experiment. Results of evaluating the proposed model using 

reviews from dataset one is shown in Table 7.3. 

 

The results reveal that the model can more precisely extract User Action 

sentences from reviews. It is worth noting to mention that this classification is 

performed at sentence level. Particularly, the model identifies sentences explaining 

User Action from the text of a review rather than labelling a whole review as User 

Action or Other. This fact could considerably impact the accuracy of the proposed 

model.  

Table 7.3: Accuracy of the neural network used for identifying User Action in re-
views 

 Precision Recall F-Measure 

CNN + Training  

embeddings 

0.77 0.68 0.72 

CNN + Google Pre-

Trained embeddings 

0.81 0.67 0.73 

 



 

138 

 

7.3.2.4 Extraction of System Action 

The model constructed for identifying System Actions has similar configurations 

and specifications to the model discussed in previous section for extracting User 

Actions. The proposed model for this task is also a novel approach. Thus, the only 

available dataset for training and testing the classifier was dataset one manually 

annotated in this research. Results of validating the proposed model is represented 

in Table 7.4. 

7.3.2.5 Extraction of Aspects 

The proposed approach for extracting Aspects discussed in previous chapter is 

validated using a ground truth dataset discussed in Section 7.2. dataset two does not 

include any human judgment regarding this usefulness factor. So, dataset one is used 

to validate the proposed approach for this task. Unlike other usefulness factors, 

Aspects are identified defining a set of semantic rules. The accuracy of these rules is 

presented in Table 7.5. 

Table 7.4: Accuracy of the neural network used for identifying System Action in re-
views 

 Precision Recall F-Measure 

CNN + Training  

embeddings 

0.79 0.74 0.76 

CNN + Google Pre-

Trained embeddings 

0.82 0.80 0.81 

 

Table 7.5: Accuracy of the semantic rules used for identifying Aspects in reviews 
text 

 Precision Recall F-Measure 

Semantic rules 0.85 0.90 0.87 
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The results show that although the set of semantic rules is not completely 

accurate in detecting Aspect mentions in reviews, employing it can reasonably 

accurately perform the task.   

Pattern-based approaches are known for their good accuracy in detecting true 

positives. However, as they are designed to capture a certain pattern from the text, 

these techniques always suffer from high volume of false negatives. To alleviate this 

issue, the defined rules are supported with a taxonomy of marker words which are 

the words frequently observed in a sentence containing an Aspect. So, if an Aspect 

candidate is captured by the semantic rules, but there is no marker in the sentence, 

the word will not be considered as an Aspect.  

Another reason for such a good accuracy achieved is that the aim of this 

approach is to label sentences including an Aspect mention rather than capturing 

exact Aspect word/phrase. Thus, false positives fallen in a sentence that already has 

a true positive will be effectless.  

7.3.2.6 Further Discussion on Results of Factor Extractors 

Comparing the results of the neural network models shows that the accuracy of the 

classifiers in sentence level is significantly better than review level. This finding 

could be justified and interpreted in two ways. First, as it has been discussed earlier, 

the word embeddings are contingent upon the similarity of the words used in the 

review. Observing the outcome of the classifier used for identifying Issues, a 

considerable number of false positives (i.e., reviews predicted as Issue which are not 

really an Issue) were feature Requests and vice versa. The reviews reporting an 

issue, and the ones requesting a feature, both contain sentences explaining system 

and user behaviour (i.e., System Action, and User Action) making the reviews more 

similar in terms of utilization of words and semantic relations among them. This 

could be one of the convincing reasons for such behaviour of the classifiers.  

Although its impact should be minimal, the second possible reason for such 

gap in the accuracy of the two groups of neural network models could be the use of 

dataset two for training and testing the first group of classifiers with lower accuracy. 

Dataset two is crawled and annotated by another group of researchers for distinct 
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aims and objectives. Thus, it is inevitable that slightly different interpretations had 

been used for manually identifying Issues and Feature Requests among reviews. 

Moreover, domain of the applications selected in their dataset, existence of outliers, 

spam reviews, burst review patterns for a critical issue or for the lack of an essential 

feature are other possible treats to the validity of dataset two. 

7.3.3 System Level Evaluation 

Accuracy of the approaches for identifying each usefulness factor is reported in 

previous sections. As components of a final system for detecting the degree of 

usefulness of a given review, these five approaches are integrated in a pipeline and 

formed the final system. Testing on dataset one which contains reviews labelled 

with all five usefulness factors, accuracy of the final system is measured and 

reported in Table 7.6. According to the decision tree represented and discussed in 

section 6.5, the final decision for any given reviews would be one of the four possible 

degree of usefulness. The following conditions might happen when processing a 

review. 

1. A fully useful review contains Aspect AND (Issue OR Feature Request) AND 

(User Action AND System Action). 

2. An Insufficiently Useful review contains Aspect AND (Issue OR Feature 

Request) AND (User Action OR System Action). 

3. A Less Useful review contains (Aspect AND Feature Request) AND (User 

Action OR System Action). 

4. A Useless review does not match with any of the above conditions. 

So, the accuracy of the integrated system to process the reviews according to the 

decision tree for the possible outputs is represented in Table 7.6. 
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The accuracy achieved at this level shows that integrating the approaches for 

extracting each usefulness factor to form the final system reduces the accuracy. This 

accuracy reduction could be due to the stochastic nature of neural networks. 

Stochastic is a mathematical term explaining the randomness and some uncertainty 

the outcome of neural networks is involved with. This algorithmic behaviour is a 

fundamental concept in machine learning assisting justification and analysis of 

algorithms output. Training and testing the convolutional neural network models 

several times in this study, slightly different results were obtained. To report 

consistent results, each model was evaluated 10 times and the average of the 

reported accuracy is computed and reported in this chapter. So, the model saved and 

loaded to be used in the final system might have been of a lower accuracy than what 

is reported in Sections 7.3.2.1 to 7.3.2.4. 

Another reason for dropping accuracy when the models are used to predict a 

large amount of data could be the limited variety of samples of the target class in 

training phase. Individuals use to express their views using their own language [41, 

212]. Their creative brains, therefore, generate diverse types of expression for a 

same concept. Training the model with huge volume of data samples will obviously 

help the algorithm to learn more variety of such expressions which alleviates the 

accuracy problem.  

Finally, putting individual predictive models in a pipeline results in reduction 

of the accuracy as the error rate of the former models will be propagated into the 

Table 7.6: Accuracy of the integrated system designed for identifying the degree of 
usefulness of a given review 

 Precision Recall F-Measure 

Fully Useful Reviews  0.5 0.57 0.53 

Insufficiently Useful Reviews 0.56 0.63 0.59 

Less Useful Reviews 0.49 0.58 0.53 

Useless Reviews 0.61 0.69 0.65 
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later ones. Measuring the degree of usefulness of a fully Useful review, for example, 

if Aspect detection approach misses the aspect mention (i.e., false negative), the 

review will be labelled as Useless, though other usefulness factor extractors, such as 

Issue Report, User Action, and System Action, make correct decisions. This 

propagation of error rate from initial processing steps to the higher is a common 

problem in text mining, but it leads to reduction of the accuracy of the final system 

[213]. 

This is worth mentioning that, observing the outputs, in some cases, the Issue 

detection model detects Issues where there is no issue (i.e., false positive), but the 

selected review is a FR which is yet in the category of Useful reviews. Similarly, in 

some cases, the Issue detection model detects Issues when there is no issue (i.e., 

false positive), but the review does not contain any Aspect and will be discarded. For 

example: “Please improve your photo viewing experience and provide full screen 

option to see photos, videos and documents.” OR “Need to have an option to select 

multiple documents (and/or folders) and forward them at the same time instead of 

opening each one individually!” is labelled as an Issue by the Issue detector model, 

but the review is a Feature Request in fact. So, there are wrong predictions in some 

modules compensated by the others when classifiers are placed in a pipeline. 

7.4 Comparison with Baseline Studies 

In this section, the results obtained from the component level evaluation phase are 

compared to the state-of-the-art to visualise how effective each proposed approach 

is in detection of the corresponding usefulness factor. There is no comparison 

against the system level results as, to the best of my knowledge, this is the first time 

such a system is proposed. 

Related studies extracting Issues from mobile application reviews, discussed 

in Chapter 2, have also proposed supervised models for this task. In [80] (S52) and 

Guzman, et al. [62] (S18), deep learning models are learnt to identify problem 

reports. Maalej and Nabil, [60] (S21) have also trained a Naïve Bayes classifier to 

perform a similar task. Comparing to these baseline studies, the model proposed in 

this study achieves an acceptable accuracy but does not outperform them yet. Table 

7.7 represents this comparison. Please see Appendix I to find the papers using study 
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IDs. It is noteworthy to mention that the accuracy reported for S21 in this section is 

the highest accuracy achieved by the authors’ model focusing on the text of given 

reviews.  

Chapter 2 has also discussed studies investigated the task of extracting Feature 

Requests employing machine learning techniques.  Supervised approaches have 

been used in (S21, S18) to extract this factor. Table 7.8 compares the accuracy 

achieved by our proposed model to the baseline approaches. 

Table 7.7: Accuracy of the neural network used for identifying Issues from review 
text compared to the baseline studies 

 Precision Recall F-Measure 

S52 (NN + problem report) 0.46 0.60 0.52 

S18 (NN + Bug report & Complaint) 0.64 0.42 0.51 

S21 (NB + Bug report) 0.71 0.72 0.71 

This approach (CNN + Issue Report) 0.60 0.76 0.67 

Table 7.8: Accuracy of the neural network used for identifying Feature Requests 
from review text compared to the baseline studies 

 Precision Recall F-Measure 

S18 (NN + User Requests) 0.71 0.39 0.50 

S21 (NB + Feature Request) 0.76 0.68 0.72 

This approach (CNN +  

                               Feature Request) 

0.67 0.78 0.72 
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Aspect is the last usefulness factor that could be compared with baseline 

studies in terms of accuracy. The accuracy of our proposed approach for extraction 

of Aspects is compared with the baseline studies in Table 7.9. In the first baseline 

study [180] (S54), deep learning models are combined with linguistic patterns to 

extract Aspects from review text. Testing their approach, the authors used reviews 

for two types of products (i.e., laptop and restaurant) the average of which is 

reported on Table 7.9.  Rana et al., [99] (S55) used sequential patterns and opinion 

lexicon, taken from [101] (S56) wherein no validation is reported, to extract noun 

phrases and opinion words. then, they measured frequency of Aspect candidates to 

find Aspect mentions.  

As the table shows, the accuracy achieved in S55 is slightly higher than the 

proposed approach in this thesis. However, there are several drawbacks with the 

approach proposed in S55.  

Firstly, the approach is an opinion mining technique and aims to extract user 

opinions on an Aspect of a product. The Aspects discussed technically without any 

opinion associated, therefore, are ignored using such approaches. Analysing app 

review datasets in this research, too many samples of Aspects used in neutral 

sentences were observed. A simple example for demonstrating ineffectiveness of 

Table 7.9: Accuracy of the semantic rules used for identifying Aspects from review 
text compared to the baseline studies 

 Precision Recall F-Measure 

S54 (CNN +  

Linguistic patterns) 

0.82 0.87 0.84 

S55  

(sequential patterns) 

0.87 0.92 0.89 

This approach  

(Semantic rules) 

0.85 0.90 0.87 
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such approaches for analysing app reviews is the following review containing an 

Aspect and having a neutral sentiment: 

“I use the navigation feature to travel overseas” 

Secondly, another clue for identifying Aspects in their study or for pruning 

detected Aspects to increase the recall by minimizing false positives, they took the 

frequency of Aspect candidates’ occurrences in the dataset to approve them as an 

Aspect mention. It might be useful when processing product reviews to find 

problematic components, for example, discussed in several reviews. Analysing ap 

reviews, however, it causes missing rarely mentioned Aspects. Particularly, 

investigating existence of Feature Requests, the proposed Aspect might be used only 

once in the whole dataset. 

Thirdly, the analysed reviews in their approach are product reviews, such as 

DVD players, cameras, and MP3 players, rather than mobile app reviews. Obviously, 

type of the aspects used in these two domains of reviews vary significantly effecting 

the accuracy of the extraction technique.  

Finally, as it has been discussed in Section 2.7.1.3, Dabrowski et al. [36] 

discovered in an empirical study that such approaches achieve lower effectiveness 

than reported originally. Therefore, in terms of processing app reviews, the 

effectiveness of the approach proposed in S55 is far below the expectations. 

7.5 Conclusion 

Validation of the proposed final system for measuring the usefulness of app reviews 

is reported in this chapter along with individually validating its components. The 

results are interpreted and justified across several sections and are compared to the 

baseline studies reported comparable approaches. As this is the first research 

attempt on automatically identifying User Action and System Action, there is no 

comparison with baseline approaches reported in this chapter.  

As the most important finding of this chapter, the results demonstrate that the 

process of automating the task of extracting each of the usefulness factors proposed 

in this research and integrating them as a final system is practical and achievable.  
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 Research Limitations and 

Challenges 

8.1 Introduction 

The research reported in this thesis addresses several challenges and exposes 

several limitations that suggest future research. In this chapter, the limitations and 

challenges this research project was encountered during different phases are 

discussed. 

This chapter consists of two sections. Section 8.2 discusses details on the 

limitations of this research. This is followed by a statement of the challenges our 

study was tackled with in Section 8.3. 

8.2 Limitations of the Approach 

Observations on various datasets show that domain dependency has an inevitable 

impact on the performance of app review processing approaches. Although reviews 

for six apps from different domains have composed the dataset used in this research, 

several domains of the existing apps are yet unexplored for this research, such as 

medical apps, games, and financial apps to name a few.  

Each of the domains has their own terminology and jargons making factors 

extraction complicated. In some cases, the explanation of users in their review is 

very similar to one of the required factors, but they are just explaining their personal 

life rather than referring to the app functionality. The proposed system might not be 

able to capture all these cases due to the complexity of natural language and the 

unstructured reviewing platforms. The following fabricated review is an example of 

capturing User Action by the proposed approach while there is no User Action in the 

review. 

Ali: “When I started my travel, I realised that I had forgotten to pay for my 

booking. So, I used the app and paid it easily.” 
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In the above example, the user is explaining his action, but it is not a User 

Action as described in Section 3.4.4. However, the proposed approach captures this 

as a User Action because it is explaining an action of the user, and several key terms 

such as ‘pay’, ‘booking’, and ‘travel’ are in the review that are components of an 

app in many domains such as travelling, booking, etc. 

The aim of this study for proposing semantic rules for extracting Aspects is to 

discover reviews including an Aspect mention. These rules are crafted in a way to 

meet the project aim.  Thus, such semantic rules might not perform appropriately 

when used in opinion mining tasks for detecting exact Aspect word/phrase without 

proper customisations and adaptation. 

Another limitation of the proposed approach for detecting Aspects is dealing 

with negations. Negations do not considerably impact the machine learning 

techniques used for extracting other usefulness factors as the models trained using 

the manually coded data samples, and the word embeddings used have already 

considered such relationships between words. However, the semantic rule-based 

approach needs to be equipped with a negation detection technology, though 

observing data samples in the corpus reveals the minimal impact of negations on 

the accuracy of aspect detection rules. 

Cross document processing is out of the scope of this study. Although we had 

no observation of interaction between reviewers causing distribution of usefulness 

factors across several reviews in the dataset, the current approach is unable to find 

such relations between different reviews in order to extract and link the factors 

across several revies. The following reviews are fabricated to show how a useful 

review will be considered useless using the proposed system for ignoring the 

relationship between revies.  

Ali: “When I open the app, it freezes at the login page, and I cannot even enter 

my username and password” 

Zeynab: “I have the same issue Ali, but mine accept username and password, 

then freezes” 



 

148 

 

One of the required usefulness factors for each review to be considered as 

useful is Aspect. In the reviews above the aspect mention ‘login page’ is in Ali’s 

review, but it is referred to in Zeynab’s review as well. However, the proposed 

approach is unable to capture Zeynab’s review as useful. 

The F-Measure of the proposed approaches for detecting Feature Requests, 

User Actions, and System Actions are currently state-of-the-art. Performance of the 

Issue and Aspect detector approaches are also considered as good with the F-

Measures equal to 0.67 and 0.87, respectively. However, there is still between %10 

to %33 wrong predictions with the approaches. Propagating these errors further 

has caused lower accuracy for the integrated final system. 

8.3 Research Challenges 

The research presented in this thesis was posed to a number of unique challenges, 

mainly related to the proposed approaches for extracting usefulness factors from 

app reviews. These challenges are discussed in the following paragraphs. 

Sensitivity and complexity of Neural Network hyperparameters. The main 

technology used in this research is Neural Network which had better performance 

comparing to other supervised machine learning techniques used for processing 

natural language [179, 214]. However, in terms of variety of hyperparameters to be 

tuned, the networks are significantly sensitive and complicated. Configuring a CNN 

model for text processing, Zhang and Byron [191] analysed the sensitivity of Neural 

Network hyperparameters. They argued that CNN-based approaches are very 

sensitive to many free parameters causing difficulties in repeating experiments for 

practitioners.    

Using invented abbreviations for writing reviews. Observing the dataset, a 

considerable percentage of reviews were found written in shortened word forms. 

Some people use to shorten the words into ungrammatical abbreviations whenever 

possible to type less characters. This trend initiated when there was text limitation 

in some platforms. There are several words that can be abbreviated in English such 

as That=’dat’, The = ‘d’, Please = ‘plz’, Friend = ‘frnd’, Your = ‘ur’, and Message = 

‘msg’, to name a few. This type of writing defects the training and testing processes 
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in machine learning based approaches, causes pattern matching mistakes in rule-

based ones, and results in redundant outputs. Unfortunately, as these abbreviations 

are invented by the reviewers, detecting them using existing NLP and text 

processing tools is almost impossible. In this research, a word replacing heuristic 

was developed to search for frequent abbreviations and correct them as many of 

them are frequently repeated. However, as the human brain is creative, several odd 

cases were not captured by the heuristic and manually corrected.  

Conflicting app Aspects with real world objects. One of the challenges in 

extracting app Aspects is detecting aspects having similar names to real world 

things. For example, Pintrest has an Aspect called ‘pin’ which is expected to be 

captured as an Aspect when it is occurred in Pinterest reviews and not captured 

otherwise. Similarly, the word ‘chat’ is used as an Aspect in Whatsapp reviews but 

as conversation in other app reviews. In the following review, as another challenging 

example, although the word ‘note’ is one of the Evernote components, it is not an 

Aspect.  

“Instead of having multiple paper notebooks or little notes everywhere, 

everything I need to remember or reference goes into Evernote. This will be my tool 

for going paperless.” 

As there are lots of these conflicting Aspects, detecting them is challenging 

because several text processing techniques such as keywords become ineffective. 

This problem was alleviated in this study defining semantic rules to use 

relationships between different words in a sentence to decide on the role of a word. 

However, the issue is yet challenging. 

Error-prone nature of natural language. In this research, dependency 

relations between words are combined with part of speeches of them to define 

accurate rules for identifying Aspects. The reviews are written by human and might 

not go through grammar and spell-checking systems or are corrected by the 

automatic spell-checking systems inappropriately. This fact affects the accuracy of 

the proposed approach. For example, ‘upload’ is tagged as a Verb in the following 

review taken from our dataset because the word ‘an’ is used rather than the correct 
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word ‘and’. The POS tagger will tag ‘upload’ as a Noun if we correct the mistake and 

change the word ‘and’ to ‘an’. 

“…also and upload to Facebook would be as equally wonderful for the one 

place stop to go to.” 

Grammar mistakes. As the reviewing facility is provided by global platforms, 

English is second language of many users posting English reviews for mobile apps. 

Analysing the dataset used in this research, several sentences where found using 

incorrect grammar that have not been captured by grammar exception detectors. 

Our manual analysis reveals that the grammar used in the review is either taken 

from individuals’ first language which is not English, or due to the reviewer’s 

language barriers. The following review, for example, is not identified by automatic 

grammar correction tools. 

“But there is one suggestion is you that have include chat functionality.” 

8.4 Conclusion 

The research experiment reported in this thesis has encountered several limitation 

and challenges. These limitations and challenges are discussed in this chapter to 

provide future practitioners and researchers from the same domain with insights 

and cautions while conducting experiments.  
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 Conclusion 

9.1 Introduction 

In this thesis, an approach for efficiently measuring usefulness of mobile application 

reviews has been defined. Carefully applying the discretion of mobile application 

developers and requirement engineers, five usefulness factors were defined to 

quantify the task of measuring usefulness of application reviews. For reality 

checking and investigating the feasibility of automating the process of detecting 

usefulness reviews using these factors, an NLP approach was proposed for 

extracting each factor and the results were checked against real world reviews and 

human judgements. In Chapter 1, a set of research questions is defined. How this 

research answered these research questions is discussed in Section 9.2. This is 

followed by a number of future research directions discussed in Section 9.3. 

9.2 Research Questions 

RQ1. How to effectively measure the usefulness of app reviews? What usefulness factors 

could be used? 

In this research, the task of identifying usefulness factors was performed in 

two phases to fulfil adjective one. First, conducting a systematic literature review, 

related papers studying app review analysis for software development were 

selected and investigated to understand how researchers have measured the 

usefulness of an app review for software evolution. Besides, research outputs from 

projects investigating the quality of software artifacts, such as user needs, bug 

reports, app testing results, and requirement statements were analysed to identify 

any possible metric to be used for measuring the usefulness of natural language 

reviews from developers’ viewpoint. The output of this phase was a preliminary list 

of 12 usefulness factors for measuring the usefulness of app reviews. Details of this 

phase are reported and discussed in Chapter 3.  
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The second phase of this task was to seek advice and suggestions from 

experienced developers and requirements engineers for any factors. This phase is 

discussed in sections 428 and 4.2.9. 

RQ2. How to validate the proposed factors for measuring the usefulness of app reviews? 

To fulfil objective two which is designed to address this research question, six 

well-skilled mobile app developers were invited to a focus group discussion. The list 

of identified factors was discussed and validated in the FGD. The outcome of this 

task was a set of five approved usefulness factors. Details of this phase are reported 

and discussed in Chapter 4. 

RQ3. How to automatically extract the usefulness factors from the text of app reviews? 

To address this research question, the annotated dataset discussed in Section 

7.2 was carefully analysed to investigate possibility of extracting the usefulness 

factors automatically. Considering all specifics of each usefulness factor, proper 

extraction technique was proposed. To extract Issues and Feature requests, CNN 

models were applied with word embeddings as word representation. The similar 

approach was used for extracting User Action and System Action, but the analysis 

was at sentence level. Details of the extraction methods are explained in Sections 

6.4.3 and 6.4.4. Finally, Abstracts were extracted using semantic rules discussed in 

Section 6.4.5. 

RQ4. How to automatically detect useful reviews using the usefulness factors? 

Objective 4 was designed in this project to address this research question. To 

fulfil objective 4, the individual approaches proposed for automatically extracting 

each of the usefulness factors gathered in a pipeline to form an integrated system 

for measuring the usefulness of given reviews. The measurement was done using 

the decision tree discussed in Section 6.5.  

RQ5. How to evaluate the proposed automatic approaches? 

To evaluate the individual extraction approaches, a ground truth dataset was 

created in Section 7.2. Each of the approaches were then tested against the ground 

truth datasets using the evaluation metrics (i.e., Precision, Recall, and F-Measure) 
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defined in Section 7.3.1. Results of evaluating the approaches are discussed in detail 

in Chapter 7. The results show that the approaches perform well.  

The final system composed of these individual approaches for measuring the 

usefulness of given reviews was also tested on the ground truth dataset. Similar 

validation metrics were also used for the evaluation. Results show that the 

integrated system has a reasonable accuracy with potential for further 

improvement. An important finding at this point is that the automation task of 

extracting the proposed usefulness factors is feasible as the implementation phase 

of this research demonstrates. 

9.3 Future work 

9.3.1 Tool Extensions and Improvements 

One direction of future work could be extending each individual approach 

proposed for extracting each of the usefulness factors to improve the accuracy and 

effectiveness. Integrating these individual approaches to form a system for 

identifying useful reviews, such improvements will increase the overall accuracy of 

the system. 

The neural network-based models trained for extracting Issues, Feature 

Requests, User Actions, and System Actions could be extended further by identifying 

and engineering effective features from review text and using them as classification 

attributes to improve the accuracy of the classifier. Name entities, semantic roles, 

frequently repeated keywords, readability of reviews, and Bag of Words (BoW) are 

few examples of such features. These supervised models can also be further 

improved by employing other available types of information coming with a review. 

For example, rating given to the target app is one of the useful clues in identifying 

Issues as problematic apps usually receive low rates[18, 49]. Available data and 

metadata fields attached to a review are discussed in Section 5.2.  

Integrating these supervised models with related complementary approaches 

to form a hybrid approach is another possibility of improvement. For example, 

results obtained from the CNN models could be further investigated using syntactic 
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rules and heuristics. The complementary approaches can also be computed on 

training data and fed into the model to enrich the training phase. The last suggested 

improvement for such convolutional neural network models is designing much 

deeper architectures for the networks. Comparing the performance of existing 

architectures with limited layers to the ones suggested by Conneau et al, [215] with 

more than 100 layers demonstrates the privilege of the deeper architectures 

designed for processing natural language text. 

In terms of extending the sematic rule-based approach proposed in this 

research for identifying Aspects, one future improvement could be exploring more 

in-dept relationships among words, sentences, and semantics in reviews not only to 

refine existing rules accordingly, but also to define new rules. Similar to the 

supervised approaches discussed above, combining with other approaches, such as 

heuristics, statistical methods, and machine learning techniques, rule-based 

approaches can also be part of a hybrid approach to improve the performance. 

9.3.2 Expanding the Current Research 

One of the future research directions in identification of constructive user 

requirements for software development from user generated feedback is to explore 

other sources of user feedback. Apart from mobile application reviews posted on 

opinion sharing websites such as Google Play and App Store, other channels are 

available to be mined for mobile application constructive user feedback. In recent 

research efforts, relevant information for software companies is observed and 

investigated in mobile application related tweets [148, 216, 217], and software 

forums [149, 218]. The quality factors defined for extracting useful reviews, 

approaches proposed for identifying each factor, and the proposed system for 

extracting useful reviews could be adopted for mining and analysing such channels 

to identify useful information for mobile application evolution.  

The performance evaluation of the proposed approach is reported in two 

levels (i.e., component level and system level) in Chapter 7. It is expected that either 

the final system, or any of its individual components can be used for analysing 

reviews in other languages. Although the grammar and semantic relationships used 

in other languages varies considerably, available tools and Python libraries to elicit 
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such syntactic roles and semantic dependencies facilitate the customisation of the 

system.  

Facilitating the requirements engineering task, the next step after automating 

the process of extracting user needs from app reviews would be transforming them 

to requirements. Very similar to the requirements engineering phases, identified 

user needs are to be processed further (i.e., removing redundant needs, 

summarizing topics, and classifying them into further sub-categories). Finally, the 

prepared requirements are to be automatically prioritised to be incorporated in the 

next releases of the app versions. Effective automated approaches at this step is a 

promising future work for transforming user needs to requirement statements and 

prioritizing them with respect to developers’ viewpoint 

9.4 Summary 

This thesis aims to address the issue of ignoring developers’ perspective in 

identification of useful app reviews for software evolution. To achieve this, 

experienced mobile app developers were employed to identify five usefulness 

factors for measuring the usefulness of app reviews with respect to developers’ 

viewpoint. To demonstrate how achievable is the automation of the usefulness 

factors, an NLP based approach was proposed for extracting each of the factors. 

Finally, the individual factor extractors were integrated to form a final system for 

measuring the usefulness of app reviews. In its first section, this chapter answers 

the research questions defined in Chapter 1. Several related chapters are cited for 

more details. Several future research directions are also provided in this chapter. 
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Proceedings of the 36th ACM Interna-

tional Conference on Software Engineer-

ing 

S14 (Guzman & 

Maalej. 2014) 

How do users like this feature? a 

fine grained sentiment analysis of 

app reviews 

 22nd IEEE international requirements 

engineering conference 

S15 (Khalid et al. 

2014) 

What do mobile app users com-

plain about? 

IEEE Software 

S16 (Gu & Kim et 

al. 2015) 

 What Parts of Your Apps are Loved 

by Users? 

 30th IEEE/ACM International Confer-

ence on Automated Software Engineer-

ing 

S17 (Guzman et 

al. 2015) 

Retrieving diverse opinions from 

app reviews.  

Empirical Software Engineering and 

Measurement (ESEM), 2015 ACM/IEEE 

International Symposium on, IEEE. 

S18 (Guzman et 

al. 2015) 

Ensemble methods for app review 

classification: An approach for soft-

ware evolution 

Automated Software Engineering 

S19 (Khalid et al. 

2015) 

Towards improving the quality of 

mobile app reviews 

International Journal of Information 

Technology and Computer Science 

S20 (Lee et al. 

2015) 

They'll Know It When They See It: 

Analyzing Post-Release Feedback 

from the Android Community 

 InProc 21st Amer Conf. Info. Sys.-AMCIS. 

Puerto Rico 

S21 (Maalej & Na-

bil. 2015) 

Bug report, feature request, or 

simply praise? on automatically 

classifying app reviews  

23rd IEEE international requirements 

engineering conference 
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Study 

ID 
Citation Title Venue 

S22 (Moghaddam 

et al. 2015) 

Beyond sentiment analysis: mining 

defects and improvements from 

customer feedback 

European Conference on Information Re-

trieval, Springer. 

S23 (Palomba et 

al. 2015) 

User reviews matter! tracking 

crowdsourced reviews to support 

evolution of successful apps 

IEEE International Conference on Soft-

ware Maintenance and Evolution 

S24 (Vu et al. 

2015) 

Mining User Opinions in Mobile 

App Reviews: A Keyword-Based 

Approach 

30th IEEE/ACM International Conference 

on Automated Software Engineering 

S25 (Yang & 

Liang. 2015) 

 Identification and Classification of 

Requirements from App User Re-

views 

ACM International conference on Soft-

ware engineering and knowledge engi-

neering 

S26 (Panichella et 

al. 2015) 

How can i improve my app? classi-

fying user reviews for software 

maintenance and evolution 

IEEE International Conference on Soft-

ware Maintenance and Evolution 

S27 (Di Sorbo et 

al. 2015) 

What would users change in my 

app? summarizing app reviews for 

recommending software changes 

Proceedings of the 24th ACM SIGSOFT In-

ternational Symposium on Foundations 

of Software Engineering 

S28 (Genc-Nayebi 

& Abran . 

2016) 

A Systematic Literature Review: 

Opinion Mining Studies from Mo-

bile App Store User Reviews 

Journal of Systems and Software 

S29 (Maalej et al. 

2016) 

On the automatic classification of 

app reviews 

Journal of Requirements Engineering 

S30 (Martin et al. 

2016) 

A survey of app store analysis for 

software engineering 

IEEE Transactions on Software Engineer-

ing 

S31 (McIlroy et al. 

2016) 

Analysing and automatically label-

ling the types of user issues that 

are raised in mobile app reviews 

Empirical Software Engineering 

S32 (Panichella et 

al. 2016) 

ARdoc: app reviews  

development-oriented  

classifier.  

Proceedings of 24th ACM SIGSOFT Inter-

national Symposium on Foundations of 

Software Engineering 
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Study 

ID 
Citation Title Venue 

S33 (Jha & 

Mahmoud.  

2017) 

Mining User Requirements from 

Application Store Reviews Using 

Frame Semantics 

International Working Conference on Re-

quirements Engineering: Foundation for 

Software Quality 

S34 (Jha & 

Mahmoud.  

2017) 

MARC: A Mobile Application Re-

view Classifier 

International Working Conference on Re-

quirements Engineering: Foundation for 

Software Quality 

S35 (Al-Hawari et 

al. 2020) 

Classification of application re-

views into software maintenance 

tasks using data mining techniques 

Software Quality Journal, 

S36 (Al Kilani et 

al. 2019) 

Automatic Classification of Apps 

Reviews for Requirement Engi-

neering: Exploring the Customers 

Need from Healthcare Applications 

Sixth International Conference on Social 

Networks Analysis, Management and Se-

curity (SNAMS). 

S37 (Guo, Hui and 

Munindar P 

Singh. 2020 

Caspar: extracting and synthesizing 

user stories of problems from app 

reviews 

Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engi-

neering 

S38 (Haroon et al. 

2020) 

Comparing mobile apps by identi-

fying ‘Hot’ features 

Future Generation Computer Systems 

S39 (Gao et al. 

2018) 

Online app review analysis for 

identifying emerging issues 

Proceedings of the 40th International 

Conference on Software Engineering 

S40 (Gao et al. 

2019) 

Emerging app issue identification 

from user feedback: experience on 

wechat 

 

IEEE/ACM 41st International Conference 

on Software Engineering: Software Engi-

neering in Practice (ICSE-SEIP) 

S41 (Martijn et al. 

2020) 

Identifying and Classifying User Re-

quirements in Online Feedback via 

Crowdsourcing 

International Working Conference on Re-

quirements Engineering: Foundation for 

Software Quality 

S42 (Tao et al. 

2020) 

Identifying security issues for mo-

bile applications based on user re-

view summarization 

Information and Software Technology 

 

S43 (Jha & Anas 

2018) 

Using frame semantics for classify-

ing and summarizing application 

store reviews 

Empirical Software Engineering 
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Study 

ID 
Citation Title Venue 

S44 (Jha & Anas 

2019) 

Mining non-functional require-

ments from App store reviews 

 

Empirical Software Engineering 

 

S45 (Guo et al. 

2018) 

Mining and Analyzing User Feed-

back from App Reviews: An Econo-

metric Approach 

SmartWorld/SCALCOM/UIC/ATC/CBD-

Com/IOP/SCI 

 

S46 (Wang et al. 

2020) 

Opinion Analysis and Organization 

of Mobile Application User Reviews 

REFSQ Workshops 

 

S47 (Buchan et al. 

2018) 

Semi-automated extraction of new 

requirements from online reviews 

for software product evolution 

25th Australasian Software Engineering 

Conference (ASWEC) 

 

S48 (Noei et al. 

2019) 

Too Many User-Reviews, What 

Should App Developers Look at 

First? 

IEEE Transactions on Software Engineer-

ing 

S49 (Truelove et 

al. 2019) 

Topics of concern: identifying user 

issues in reviews of IoT apps and 

devices 

IEEE/ACM 1st International Workshop 

on Software Engineering Research & 

Practices for the Internet of Things 

(SERP4IoT) 

S50 (Zhou et al. 

2020) 

User review-based change file lo-

calization for mobile applications 

IEEE Transactions on Software Engineer-

ing 

S51 (Zhang et al. 

2019) 

Software feature refinement priori-

tization based on online user re-

view mining 

Information and Software Technology 

 

S52 (Stanik et al. 

2019) 

Classifying multilingual user feed-

back using traditional machine 

learning and deep learning 

IEEE 27th International Requirements 

Engineering Conference Workshops 

(REW) 

 

S53 (Poria et al. 

2014) 

A rule-based approach to aspect 

extraction from product reviews 

Proceedings of the second workshop on 

natural language processing for social 

media (SocialNLP) 
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Study 

ID 
Citation Title Venue 

S54 (Poria et al. 

2016) 

Aspect extraction for opinion min-

ing with a deep convolutional neu-

ral network 

Knowledge-Based Systems 

 

S55 (Rana & 

Cheah, 2017) 

A two-fold rule-based model for as-

pect extraction 

Expert systems with applications 

S56 (Rana & 

Cheah, 2015) 

Hybrid rule-based approach for as-

pect extraction and categorization 

from customer reviews 

9th International Conference on IT in 

Asia (CITA) 
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Appendix II 

Number of the papers published in each channel 

Publication Channel 
Number 

of papers 
Study ID(s) 

IEEE/ACM International Conference on Software Engineering (ICSE)  6 S8, S10, S13, S37, 
S39, S40 

IEEE international requirements engineering conference 4 S12, S14, S21, S52 

International Working Conference on Requirements Engineering:  
Foundation for Software Quality 

4 S33, S34, S41, S46 

 IEEE/ACM International Conference on Automated Software  
Engineering (ASE) 

3 S16, S18, S24 

IEEE Transactions on Software Engineering 3 S30, S48, S50 

Empirical Software Engineering 3 S31, S43, S44 

IEEE Working Conference on Mining Software Repositories 2 S2, S11 

Australian Computer-Human Interaction Conference 2 S3, S4 

IEEE International Conference on Software Maintenance and Evolution 2 S23, S26 

ACM SIGSOFT International Symposium on Foundations of Software 
Engineering 

2 S27, S32 

Information and Software Technology 2 S42, S51 

The Journal of Society for e-Business Studies 1 S1 

ACM SIGKDD international conference on Knowledge discovery and 
data mining 

1 S5 

Consumer Communications and Networking Conference 1 S6 

International BCS Human Computer Interaction Conference 1 S7 

CHI'13 Extended Abstracts on Human Factors in Computing Systems 1 S9 

IEEE Software 1 S15 

ACM/IEEE International Symposium on Empirical Software  
Engineering and Measurement (ESEM) 

1 S17 

International Journal of Information Technology and Computer  
Science 

1 S19 

Australasian Software Engineering Conference (ASWEC) 1 S47 

 Amer Conf. Info. Sys.-AMCIS. Puerto Rico 1 S20 

European Conference on Information Retrieval, Springer. 1 S22 

International Conference on Social Networks Analysis, Management 
and Security (SNAMS) 

1 S36 

ACM International conference on Software engineering and knowledge 
engineering 

1 S25 

Journal of Systems and Software 1 S28 

Journal of Requirements Engineering 1 S29 

Knowledge-Based Systems 1 S54 

Future Generation Computer Systems 1 S38 

Software Quality Journal 1 S35 
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Publication Channel 
Number 

of papers 
Study ID(s) 

workshop on natural language processing for social media  
(SocialNLP) 

1 S53 

IEEE/ACM International Workshop on Software Engineering Research 
& Practices for the Internet of Things (SERP4IoT) 

1 S49 

International Conference on IT in Asia (CITA) 1 S56 

SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 1 S45 

Expert systems with applications 1 S55 
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APPENDIX III 

Mobile app development topics discovered in the 56 selected studies. 

Topic Category Specific Topic Study Id 

General Comment Entirely reviewing the app, Works/Doesn’t work S6 
Positive S7 
Helpfulness, Praise S12 
Rating S21 
Feature strength, General Praise S18 
Descriptions S13 

Negative comment Works/Doesn’t work - Uninstalled S6 
Negative S7 
Shortcoming, Dispraise, Dissuasion S12 
General complaint S13, S18 
Compatibility, App Crashing, Network Problem, 
Interface Design, Privacy and Ethical, Response 
Time, Uninteresting Content, Resource Heavy 

S8, S31 

App Comparison Comparison with other apps S6 
Comparative S7 
Other app S12 

Issue Report Feature/Functionality S6 
Issue reporting S7 
Content request, Feature, Bug report S12 
Functional bug S9, S31 
Performance flaw S13 
Functional error, Feature Removal S8, S13 
Bug report S18, S21, 

S22, S33, 
S34 

Solution proposal S26, S32 
Problem discovery S26, S27, 

S32 
Feature shortcoming S18 

Feature Request Aesthetics S6 
Request for requirements S7 
Improvement request S12, S22 
Promise better rate for improvement S12 
Functional demand, Non-Functional request S9 
Feature Request S8, S11, S12, 

S21, S26, 
S27, S32 

User Request S18 
User Requirements S33, S34 

User Experiences Tips (installation/usage) S6 
Usability S7 
Question (How to use) S12, S13 
User experiences S21 
Information Seeking, Information Giving S26, S27, 

S32 
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Opinion asking S26, S32 
User scenario S18 

Updates Updates (comparing to previous version) S6 
Update issues S31 
Versioning S7 

Price Money (worth the money) S6 
Price related S7 
Hidden Cost S8 
Additional Cost S31 

Recommendation Recommending the app S6 
Customer support S7 
Recommendation S12 

Other Additional Program needed, Number and con-
tent of ads, Company, Just downloaded, Not used 
yet, Device model, Permissions, Preinstalled app, 
Consumption of resources 

S6 
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Appendix IIII 

List of POS tags 3 used in this study 

No. Tag Description 

1 CC Coordinating conjunction 

2 CD Cardinal number 

3 DT Determiner 

4 EX Existential there 

5 FW Foreign word 

6 IN Preposition or subordinating conjunction 

7 JJ Adjective 

8 JJR Adjective, comparative 

9 JJS Adjective, superlative 

10 LS List item marker 

11 MD Modal 

12 NN Noun, singular or mass 

13 NNS Noun, plural 

14 NNP Proper noun, singular 

15 NNPS Proper noun, plural 

16 PDT Predeterminer 

17 POS Possessive ending 

18 PRP Personal pronoun 

19 PRP$ Possessive pronoun 

20 RB Adverb 

21 RBR Adverb, comparative 

22 RBS Adverb, superlative 

23 RP Particle 

24 SYM Symbol 

25 TO to 

26 UH Interjection 

27 VB Verb, base form 

28 VBD Verb, past tense 

29 VBG Verb, gerund or present participle 

30 VBN Verb, past participle 

31 VBP Verb, non-3rd person singular present 

 

 

3 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 
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No. Tag Description 

32 VBZ Verb, 3rd person singular present 

33 WDT Wh-determiner 

34 WP Wh-pronoun 

35 WP$ Possessive wh-pronoun 

36 WRB Wh-adverb 

 

 

 

 

 

 


