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Abstract

Motivation: Free Libre Open Source Software (FLOSS) has become a critical component

in numerous devices and applications. Despite its importance, it is not clear why FLOSS

ecosystem works so well or if it may cease to function. Majority of existing research is focused

on studying a specific software project or a portion of an ecosystem, but FLOSS has not

been investigated in its entirety. Such view is necessary because of the deep and complex

technical and social dependencies that go beyond the core of an individual ecosystem and

tight inter-dependencies among ecosystems within FLOSS.

Aim: We, therefore, aim to discover underlying relations within and across FLOSS

projects and developers in open source community, mitigate potential risks induced by the

lack of such knowledge and enable systematic analysis over entire open source community

through the lens of supply chain (SC).

Method: We utilize concepts from an area of supply chains to model risks of FLOSS

ecosystem. FLOSS, due to the distributed decision making of software developers, technical

dependencies, and copying of the code, has similarities to traditional supply chain. Unlike

in traditional supply chain, where data is proprietary and distributed among players, we

aim to measure open-source software supply chain (OSSC) by operationalizing supply chain

concept in software domain using traces reconstructed from version control data.

Results: We create a very large and frequently updated collection of version control

data in the entire FLOSS ecosystems named World of Code (WoC), that can completely

cross-reference authors, projects, commits, blobs, dependencies, and history of the FLOSS

ecosystems, and provide capabilities to efficiently correct, augment, query, and analyze that

data. Various researches and applications (e.g., software technology adoption investigation)

have been successfully implemented by leveraging the combination of WoC and OSSC.
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Implications: With a SC perspective in FLOSS development and the increased visibility

and transparency in OSSC, our work provide potential opportunities for researchers to

conduct wider and deeper studies on OSS over entire FLOSS community, for developers

to build more robust software and for students to learn technologies more efficiently and

improve programming skills.
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Chapter 1

Introduction

1.1 Object of Study

As society increasingly relies on open source software (OSS), so does the need to better

understand the behaviour of a highly interconnected network of OSS developers who are

scattered all over the world. With a large number of software projects (over 100M [39])

and a rapid growth, it becomes more and more challenging to study how the entire OSS

ecosystem functions, despite various studies on individual OSS projects [17, 64]. This thesis

is investigating ways to conceptualize OSS as a software supply chain (SSC), to measure

the SSC of the entire of OSS ecosystems, to provide insights to this operation, and to

suggest approaches to reduce several types of the risk that participants are exposed to in

this decentralized environment.

Supply chain (SC) concept has been widely studied and explored in traditional industries

for many years. In business and commerce, a successful supply chain management [8], i.e.,

planning, organizing, and controlling in business logistics, plays an important role for a

company to sustain competitiveness in product marketing [104]. Software development,

especially for OSS, encompasses a number of properties that provide the potential for being

viewed and explored from the perspective of supply chain:

• Developers are distributed and scattered all of the world geographically, but cooperate

on the development of software products through virtual internet.
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• A majority of software products are built on top of one or more mature software

products by directly reusing source code of other projects, following successful design

in other projects, involving core developers from other projects, etc.

Supply chain management has been successful for helping businesses manage risks from the

distributed nature of production. We want to leverage existing findings and transformative

insights from SC and apply to software domain.

After an exploration of existing SSC related works (see details in Chp. 2), we found that

there was no definition of SSC contextualized for OSS where it may help with distributed

decision making, and there was no measurable definition of SSC.

We define SSC by making analog of components in traditional SC. SSC has developers and

groups (companies), corporate backers supporting these developers or groups (”financing”),

relationships among software projects or packages representing the ”chain” of the flow, and

changes to source code (e.g. files, modules, frameworks, or entire distributions) representing

products or information.

With a supply chain perspective in OSS development, developers can better evaluate

software components on various properties, e.g., risks, maintenance and quality, thus being

enabled to make more wise decisions on the selection of downstream packages to use. Besides,

as the increment of transparency and visibility in SSC, developers are enabled to seek for more

talented software engineers to cooperate with, which leads to a faster growth in knowledge

and learning experience for developers, more mature and successful software products, and

meanwhile, speeds up the evolution of software ecosystems.

With the potentially large amount of benefits of SSC, we move forward to measure

SSC. In order to assist empirical researches and investigations in SSC with need for

software development data in large, we propose to construct an infrastructure for mining

software development data from open source forges, reorganizing data to feed the analytic

need, and providing free service (API query) for scholars to conduct their researches.

We notice that several large-scale software mining efforts (e.g., Software Heritage [30],

GHTorrent [50, 47, 48, 52, 51], Boa [34]) already exist and provide services to the public,

however, none of them provide a complete census of OSS with an analysis engine. We,

therefore, decide to build our own infrastructure, World of Code (WoC). WoC periodically
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(every three months) retrieves projects with new development activities from popular open

source forges, e.g., GitHub, BitBucket, extracts and stores new development data to our core

distributed database. Subsidiary services are also updated to provide the latest development

data to researchers. Currently, WoC1 contains a collection of more than 123M software

projects, 42M developer IDs and 2B commits. So far, we provide three types of APIs (Python,

Perl, Shell Script) to meet different users’ needs with various backgrounds. Initially, WoC

is designed to serve the queries among software development entities, e.g., given a developer

ID, returns all of his/her project name. According to the definition of SSC, these entities

are the components in SSC networks, and any SSC network can be constructed simply by

integrating a series of queries. Besides such basic query service, we develop various subsidiary

services to further assist researchers:

• Language based software ecosystem data source is gathered by extracting projects,

developers and source files that are related to specific language. These data source can

reduce the efforts that researchers otherwise have to spend on conducting researches

in a specific language domain.

• Fork detection [101] is enabled to achieve a more clean set of software projects by

deduplicating projects that are essentially clones. Data set encompassing forks/clones

might introduce bias to research analytics and might weaken corresponding findings.

• Developer ID deduplication [4] is enabled to cluster multiple developer IDs (owned by

a single developer) to a single real developer. A software developer may have multiple

accounts and use different IDs when contributing source code. By correctly identifying

and clustering multiple IDs attached to a single developer, we can achieve more accurate

SSC networks (authorship network), and better evaluate developer’s reputation and

contribution.

Once the WoC infrastructure is ready, we begin to evaluate SSC from two perspectives:

Insights and risk reduction. More specifically, we want to learn if SSC could bring new

insights to software development, and what new insights and analysis it could bring.

1https://bitbucket.org/swsc/overview/src/master/
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Furthermore, we want to see if SSC can help in reducing various risks in both software

development and OSS community.

We found that SSC brings insights in various aspects.

After leveraging the joining power of SSC and WoC infrastructure, researchers success-

fully conducted various types of researches and analysis:

• Historical trend of usage of programming languages are captured

• A couple of cross-ecosystem comparison studies (file cloning and developer migration)

are implemented

• Python package sustainability analysis

Another insight is the operationalization of SSC, i.e., what are the components and

networks in SSC? In software domain, we have three major entries: software project,

developer, and source code. Based on the types of node and edge (relationship) in SSC , we

propose three different networks to describe SSC: dependency network, code reuse network

and knowledge network. Dependency network represents the dependency relationships

among software projects and packages; Code reuse network describes the source code spread

across software projects on a finer level; Knowledge flow network represents knowledge

transformation within developers through cooperation in software development. Each of

the networks represents a unique type of relationship, and we hope these networks are able

to capture crucial relationships in software development. Note that there might be other

types of networks in SSC based on different relationships, which can be added in to further

improve the completeness of SSC measurement, but we do not discuss it in this thesis.

SSC is helpful in mitigating risks embedded in the development and usage of OSSs. To

exemplify the benefit of SSC for risks reduction, we investigated the risk of abandonment

from the perspective of a user downstream and the risk of low adoption from the perspective

of the producer upstream.

Among other potential research topics, the phenomenon of software technologies spread

draws our attention. We investigate what combination of attributes are driving the adoption

of a particular software technology, and hope that developers seeking to increase the adoption

4



rate of their products can benefit from our findings. We look into the adoption of a pair

of competitive packages (tidy and data.table) in R, derive 11 variables (e.g., issue response,

overall deployments, etc.) from social contagion theory and SSC to model the adoptions,

leverage WOC infrastructure to extract the adoption related data in OSS community, and

train a choice model (regression model) over the collected dataset to measure the influence

of each factor. We find that a quick response to raised issues, a larger number of overall

deployments, and a larger number of high-score StackExchange questions are associated

with higher adoption. Decision makers tend to adopt the technology that is closer to them

in the technical dependency network and in author collaborations networks while meeting

their performance needs. To gauge the generalizability of the proposed methodology, we

investigate the spread of two popular web JavaScript frameworks Angular and React, and

achieve a similar result. We hope that our methodology encompassing social contagion

that captures both rational and irrational preferences and the elucidation of key measures

from large collections of version control data provides a general path toward increasing

visibility, driving better informed decisions, and producing more sustainable and widely

adopted software.

In short, a supply chain perspective on OSS development leads to novel research questions,

insights, and practical applications. In this thesis, we firstly define SSC, propose a number

of crucial networks to measure SSC, describe the construction of an infrastructure (WOC)

which provides free access to an almost entire collection of OSS development data for study

and research, show how various empirical engineering applications could benefit from our

infrastructure, and in the end report an investigation on the spread of software technologies

from the perspective of SSC. We conclude that SSC networks are vital in understanding how

OSS ecosystem functions, and play an important role in helping mitigate the risks of relying

on the OSS system. Ultimately, we hope that the discoveries enabled by SSCs would allow

the rapid innovation in OSS along with its growing size and complexity.

5



1.2 Problem Statement

As OSS communities flourish, software industry is increasingly dependent on OSS. Giant

companies in software domain often open source inner projects to attract developers

worldwide to contribute and increase their market share. Meanwhile, OSSs are always

attractive to commercial companies to use for its free-of-cost nature. Although researchers

have been spending large amount of efforts in investigating OSS development, most of such

investigations are focused on a specific software project or groups of projects within one

ecosystem [17, 64]. As lacking of evaluation over the entirety of OSS, the findings from

these researches might be limited to specific software projects or ecosystems, posing risks to

scenarios where the findings are applied but not fit.

In the process of a typical OSS development, developers that are scattered all over

the world cooperate together remotely, and make contributions to a software repository

hosted on one of open source platforms, where version control system (VCS) is embedded

to ensure that conflicts can be resolved and synchronisation are maintained, along with the

capability to roll back to previous versions as all historical changes are saved inside VCS.

Inspired by the concept of SCM in traditional industries, where supply chain design and

maintenance are optimized to retain great commercial profit while various potential risks

are reduced, software development, especially for open source software, can be viewed as

a process of SCM. More specifically, source code as product in software development is

generated by software developers and shipped to the host (software repository), and then

shipped to other developers to integrate their newly generated piece of source code. From the

perspective of dependency, a software may depend on other software projects and packages,

i.e., downstream packages or projects, and each software project serves as an upstream

or/and downstream from the global view. The risks in one software project will influence its

upstream projects, posing the potential to leverage existing SCM findings on risk mitigation

in OSS domain.

The very first research question need to be addressed for SSC is:

(RQ1) How to define SSC?

6



We extensively explored the existing published related studies on SSC, and found that

there was neither proper contextualized SSC definition for OSSs, nor a measurable definition.

We define SSC by carefully making analog of every key component from traditional SC, so

that vast amount of existing findings in traditional SC can be tested and applied to SSC in

an effortless manner.

Once we have the proper definition of SSC, the next step is to measure SSC. So we ask:

(RQ2) How to measure SSC for OSS?

In order to measure SSC, we need to have an infrastructure for providing access to

software development data in large. There are already a number of data mining platforms

available: Software Heritage [30], GHTorrent [50, 47, 48, 52, 51], Boa [34], etc. However,

none of these platforms can meet our high demand of large data query on relationships

discovery and analysis over the entirety of OSS (see Sec 3.2 in Chapter 3 for reference).

We aim to build an infrastructure to facilitate the discovery of various relationships in

OSS community and make the related analytics efficiently. To meet such a requirement,

we leverage HPC resources to collect large amount of OSS from various open source

platforms, extract and refine the development data, create distributed key-value databases

to store these components and relationships, and serve queries directly from these core

databases. Meanwhile, we pre-calculate basic statistics for different entities and store then

into MongoDB databases to meet the potential queries for direct analysis usage. The details

of the infrastructure and services are reported in Chapter 3. Note that our infrastructure

(WoC) is evolving and more services are expected to be provided in the future.

With such an infrastructure ready, we would like to evaluate SSC. More specifically, we

evaluate SSC from two perspectives: new insights/analysis and risk mitigation in OSSs.

From the perspective of new insights and analysis, we ask:

(RQ3) What can we learn about SSC in OSS?

We conducted two types of studies on top of SSC using WoC infrastructure to verify

if our infrastructure is capable of supporting research tasks in SSC, and to see what new

insights and analysis can be implemented in SSC.

To achieve this, we implemented several basic research tasks that require the entirety

of FLOSS data as a part of the investigation. Furthermore, we recruited three researchers
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external to our group to either conduct investigations of their own utilizing WoC and SSC, or

to provide us with their research problems that can only be solved by using WoC. We found

that the combination of SSC and WoC infrastructure can enable and efficiently support

various domain specific and cross-ecosystem researches. Furthermore, we plan to move our

services to cloud platform to attract more users, and many more promising insights and

analysis would be expected in the future.

Besides these insights on specific research tasks, the operationalization of SSC networks

itself might be interesting. In software development, developers, projects, source code

and tacit knowledge are primary entities. SSC networks should represent the complicated

relationships within and across these entities. Based on the types of components and

relationships, we propose three SSC networks (dependency network, code reuse/spread

network and knowledge flow/authorship network, see details in Chapter 4). We are aware

that these three networks can not cover all relationships inside OSS ecosystem, and we look

for additional types of networks in the future to make the operationalization of SSC towards

becoming complete.

From the perspective of the value of SSC in risk mitigation in OSS, we ask:

(RQ4) How can we reduce the risks through SSC in OSS?

To exemplify the value of SSC on reducing OSS risks, we look into a specific research

domain, the analysis of software technologies adoption among developers. Software

technologies spread or migration is vital for both software developers and software companies.

On one hand, being able to recognize and pay particular attention to the influential factors of

software adoptions can help software developers maintain the attractiveness of their software

products and keep users loyalty. On the other hand, being able to correctly evaluate a

software’s competitiveness and predict the adoption trend would help software companies

to make wise decisions on which technology to support and which to abandon. We leverage

social contagion theory and statistical modeling to identify, define, and test empirically

measures that are likely to affect software adoption. More specifically, we construct a software

dependency chain for a specific set of R language source-code files. We formulate logistic

regression models, where developers’ software library choices are modeled, to investigate the

combination of technological attributes that drive adoption among competing data frame
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(a core concept for a data science languages) implementations in the R language: tidy and

data.table. We quantify key project attributes (e.g., response times to raised issues, overall

deployments, number of open defects, etc.) and find that a quick response to raised issues,

a larger number of overall deployments, and a larger number of high-score StackExchange

questions are associated with higher adoption. Decision makers tend to adopt the technology

that is closer to them in the technical dependency network and in author collaborations

networks while meeting their performance needs. See Chapter 5 for more details.

1.3 Motivations and Goals

The key output of software development activity is the source code. Therefore software

development is reflected in the way the source code is created and modified. Although

various individual and groups of projects have been well studied, it only gives partial results

and conclusions on the propagation and reuse of source code in the large. For example, Cédric

Teyton studied library migration for Java projects in Apache[106], Foutse Khomh studied

release cycles relation with software quality in Mozilla Firefox[63], Michael W. Godfrey

investigated the evolution of open source software on Linux source code[111]. Moreover,

little is known about intensive interactions and complicated relations among software projects

and software developers, which could bring risks to one’s system. For example, an 11 lines

NPM package called left-pad with only 10 stars on GitHub was unpublished and it broke

some of the most important packages on all of NPM, and Facebook stopped functioning.

Besides, no systematic architecture or approach has been created to discover and analyze

these underlying relations.

We propose to bridge these gaps through the lens of software supply chain. As in

traditional supply chains, the developers in FLOSS make individual decisions with some

cooperative action, hence the analytical findings from traditional supply chains may help in

FLOSS. Second, we have a complicated network of technical dependencies with code and and

knowledge flows akin to traditional supply chains, making the analogies less complicated.

Third, the emerging phenomena, for example, the lack of transparency and visibility, appear

to be as, or more, important in FLOSS as in traditional supply chains. Fourth, unlike
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traditional supply chains, FLOSS has very detailed information about the production and

dependencies. We, therefore, hope that detailed data with supply chain analytical framework

may bring transformative insights not just for FLOSS supply chains, but for all supply chains

generally. We, therefore, would like to systematically analyze the entire network among all

the repositories on all source forges, revealing upstream to downstream relations, the flow of

code and the flow of knowledge within and across projects.

1.4 Contribution

Firstly, we developed an approach (SSC) to enable systematic analysis of open source com-

munity, revealing underlying complicated relations among software projects and developers.

As the transparency and visibility increase in SSC, software developers are enabled to

have a more comprehensive knowledge and estimation of other software projects, make

wise decisions when choosing from other software projects to integrate (as downstream

components) through the evaluation of a combination of developer reputation and software

project maintenance. Furthermore, risks in software development can be mitigated by

an early detection of bug/vulnerability propagation in source code snippets (code reuse

network), downstream packages (dependency network), and submissions from inexperienced

or malware developers (knowledge flow/authorship network).

Secondly, we built an infrastructure(WoC) to provide broad data access and facilitate

SSC network construction and related analysis. We enable wide data access to collected

data source by providing a tool built on top of the infrastructure, which scales well with

completion to query in linear time. Furthermore, we implement ways to make this large

dataset usable for a number of research tasks by implementing targeted data correction

and augmentation and by creating data structures derived from the raw data that permit

accomplishing these research tasks quickly, despite the vastness of the underlying data. In a

nutshell, WoC can provide support for diverse research tasks that would be otherwise out of

reach for most researchers. Its focus on global properties of all public source code will enable

research that could not be previously done and help to address highly relevant challenges of

open source ecosystem sustainability and of risks posed by this global software supply chain.
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Lastly, by leveraging SSC networks, we investigated the adoption of technologies in

software domain, discovered factors that are influential to decision makers and provide

suggestions to software developers on making one’s product popular. The contribution

consists of proposing a method to explain and predict the spread of technologies, to suggest

which technologies are more likely to spread in the future, and suggest steps that developers

could take to make the technologies they produce more popular. Developers can, therefore,

reduce risks by choosing technology that is likely to be widely adopted. The supporters of

open source software could use such information to focus on and properly allocate limited

resources on projects that either need help or are likely to become a popular infrastructure.

In essence, our approach unveils previously unknown critical aspects of technology spread

and, through that, makes developers, organizations, and communities more effective.

1.5 Thesis Organization

This thesis is divided into six chapters. The remaining of this thesis is organized as follows:

Chapter 2 describes the origin and success of supply chain in traditional industries, the

background of SSC in OSS community, the definition of SSC, the importance of transparency

and visibility properties in SSC.

Chapter 3 dives into the details of WoC infrastructure construction to meet queries for

software development data in large and assist various analytics implemented by researches

in open source domain. The whole framework are divided into four stages: project discovery

from open source platforms, project clone to local machines, development data extraction,

decomposition and store, and database update. This chapter also discusses a novel update

mechanism through which overall data transmission demand are largely reduced and the

total time cost for a full update significantly decreases. Besides the details of infrastructure

design, this chapter describes various APIs provided for users to run and customize the

queries. Furthermore, performance benchmark of different APIs and suggestions for choosing

proper API for different tasks are provided for assistance. Finally, it discusses the potential

limitations on data incompleteness and data update frequency, and poses a list of services

that are expected to be implemented in the future.
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Chapter 4 discusses the evaluation of WoC’s capability on being supportive for a wide

range of applications. It reports researches that include both ecosystem-wise and cross-

ecosystem analysis which leverage WoC for data resources. It also provides sample code

(multiple approaches) that are used in one of the applications as a guidance for users to

follow. Lastly it discusses the operationalization of SSC and various types of SSC networks.

Chapter 5 reports a study of software technology adoptions among developers to show

how OSS risks can be reduced by leveraging SSC. It describes an investigation on what

combination of attributes are driving software technology adoption by modeling (choice

model) a group of key properties (derived from social contagion and SSC) on a pair of

competitive R packages (data.table and tidy). It also includes a second case study in

Javascript domain (Angular VS. React) to verify the external generalizability of the previous

findings.

Chapter 6 concludes by reiterating over the research questions and the answers we found,

as well as the summary of contributions made in this thesis.
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Chapter 2

Conceptualization of Software Supply

Chain
1

2.1 Overview

In this chapter, we discuss how integrating the concept of supply chains [87] with OSS

development and leveraging the existing knowledge on traditional supply chains, big data,

and data science can lead to a more comprehensive understanding, the formulation of new

research problems, and practical applications. More specifically, we start by introducing SC

concept and the rise of SSC. Then, we explore the historical studies on SSC. After that,

we give our definition of SSC in an measurable manner. Finally, we discuss two important

properties (visibility and transparency) in SC and SSC, and emphasize how we can benefit

in the context of OSS.

1This chapter, in part, is a reprint of the material as it appears in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion), pp. 458-459, titled “Constructing
supply chains in open source software” (2018). Authors: Yuxing Ma and Audris Mockus. The dissertation
author was the primary investigator and author of these two papers. Copyrights of both papers are held by
Yuxing Ma and Audris Mockus.
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2.2 The rise of SC and SSC

2.2.1 Traditional Supply Chain and Management

Supply chains (SC) were originally defined as encompassing all activities associated with the

flow and transformation of goods from raw materials through to the end user, as well as the

associated information flows. For example, the supply chain of a cheesecake factory includes

cheese factories (upstreams) where cheese (raw material) were made and shipped to cheese

factory, and cheesecake stores (downstreams) where cheesecakes were put on sale to meet

shoppers/customers (end users).

The term of ”Supply Chain Management” (SCM) was invented by Keith Oliver [87] in

1982. However, it did not draw much attention until late 1990s, when Robert published

a book pertaining to ”Supply Chain Management” [91] and further defined it as the

integration of supply chain activities through improved supply-chain relationships to achieve

a competitive advantage. The ultimate goal of SCM is to ensure that merchandise produced

and distributed at the right quantities, to the right locations, and at the right time, in order

to minimize system-wide costs while satisfying service level requirements.

2.2.2 Software Supply Chain

In last century, software was mainly developed separately within each software company,

and few intermediate products (source code) were able to be seen/utilized by other software

engineers outside, which indicates a loss of their full value. In 1998, the open-source software

movement came into the scene and greatly shocked traditional software building process

by introducing the core idea ”free and open software”. Under the influence of this idea,

millions of free software supporters create and share software projects on popular open-

source platforms such as GitHub and BitBucket, where most projects are public and every

piece of source code is available.

With this futile land for growing software, we are enabled to view software domain from

a new perspective: Software Supply Chain (SSC).
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Supply chain concept of a system of organizations, people, activities, information, and

resources involved in moving a product or service from supplier to customer has been

tremendously successful for helping businesses manage risks that arise from the distributed

nature of production. OSS production is also distributed with decision making that is not

centralized and done by a variety of individuals and groups. With a variety of risks affecting

software development, it is reasonable to assume that the supply chain concept will benefit

open source community and the achieved experience and findings in traditional supply chain

for mitigating various risks will apply in OSS.

2.3 Literature Review

Before we devote into the study of SSC, let’s look into the historical efforts on this topic.

“software supply chain management” was firstly proposed by Jacqueline in 1995 [56] to

replace ‘system development life cycle’ to integrate with business. However, SSC was not

clearly defined explicitly, and did not draw much attention in software research domain. In

2003, Jack Greenfield investigated the concept of product line [53], claiming that software

components are created by software factories, and software supply chain is used to create

standards to ease the alignment and assembling process downstream. In 2005, Aparna [19]

proposed a research question (how to select from multiple suppliers) in software focused

supply chain. In 2010, Robert Ellison [40] reused SC concept, discussed several ways how

risks can be introduced in coding, control management, deployment and operations.

In short, we did not find much existing efforts on the investigation on SSC. Furthermore,

there is no definition of SSC contextualized for OSS where it may help with distributed

decision making, and there is no measurable definition of SSC proposed in before.

2.4 Define SSC

We decide to conceptualize SC concept in software domain. We define SSC by carefully

making analog of components in traditional SC. SSC has developers and groups (“compa-

nies”) , corporate backers supporting these developers or groups (“financing”), relationships
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among software projects or packages representing the “chain” of the flow, and changes to

source code (e.g. files, modules, frameworks, or entire distributions) representing products

or information.

2.5 Visibility and Transparency

Traditional SCM literature highlights the critical importance of Visibility and Transparency

for managing supply chains. The concept of transparency more specifically refers to the level

of detail that a willing individual can grasp in a certain entity or activity within the supply

chain. Generally speaking, the tenets of OSS postulate the need to have all decisions recorded

publicly via commits, online discussions, or issue trackers. Unlike traditional supply chains

where intermediaries may not care to reveal their upstream sources or business strategies,

OSS presumably has much more transparency. However, some important aspects, e.g. the

affiliation and the motivation of contributors may not be known. More importantly, the

transparency of continued support, that contracts in traditional supply chains provide, is

often completely absent in OSS.

In other words, transparency is defined as information that developers share with their

consumers about the inputs, processes, sources and practices used to bring the product to

the consumer. It is more outwardly focused and more from the consumer perspective than

visibility.

The second critical aspect of the SCM is visibility. This, in contrast to transparency,

reflects the ability of developers who are users of other software. It relates to the ability

of the user of a package, of a pull request, an issue, or of a potential collaborator to asses

the qualities of the object (or subject) to be used (engaged). Transparency and Visibility

are distinct concepts and increasing each may require different approaches. The massive

size of the OSS ecosystem makes it very difficult for any particular consumer to understand

the practices and qualities of every open source software and developer, no matter how

transparent the activities of all other projects and developers may be. We must therefore

increase visibility by making it easier for any specific stakeholder to discover and understand

the entities that are most relevant to them in a straightforward manner.
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In other words, visibility is defined as information that developers have about the inputs,

processes, sources and practices used to bring the product to consumers/market. This

includes complete supply chain visibility including traceability for the entire supply chain.

Visibility is, generally, inwardly/developer focused.

In summary, to increase transparency we must create general summaries or extract salient

properties of the nodes and links in the supply chain that are not directly reflected in the

operational data and need to be estimated via modeling or other exercises. To increase

visibility, however, it is necessary to enable potential users to find, assess, and use the

elements they may need. As the visibility and transparency increase in SSC networks, risks

in OSS community are mitigated.

In next chapter, we describe an research infrastructure, world of code (WoC), as a software

development data platform for measuring SSC.
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Chapter 3

Research Infrastructure
1

In this chapter, we present the work of constructing an research infrastructure to assist the

analysis of SSC and the implementation of related applications in OSS community. Open

source software (OSS) is essential for modern society and, while substantial research has

been done on individual (typically central) projects, only a limited understanding of the

periphery of the entire OSS ecosystem exists. For example, how are tens of millions of

projects in the periphery interconnected through technical dependencies, code sharing, or

knowledge flows? To answer such questions we a) create a very large and frequently updated

collection of version control data for FLOSS projects named World of Code (WoC) and b)

provide capabilities to efficiently correct, augment, query, and analyze that data. Our current

WoC implementation is capable of being updated on a monthly basis and contains over 24B

git objects. To make WoC more easily usable in a wide variety of research scenarios, we

have designed an architecture to help simplify, support, and evaluate the implementation of

research tasks.

1This chapter, in part, is a reprint of the material as it appears in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 143-154, titled “World of code: an infrastructure
for mining the universe of open source VCS data” (2019). Authors: Yuxing Ma, Audris Mockus, et al.
The dissertation author was the primary investigator and author of these two papers. Copyrights of both
papers are held by Yuxing Ma and Audris Mockus.
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3.1 Overview

Tens of millions of software projects hosted on GitHub and other forges attest to the

rapid growth and popularity of Free/Libre Open Source Software (FLOSS). These online

repositories include a variety of software projects ranging from classroom assignments to

components, libraries, and frameworks used by millions of other projects. Such large

collections of projects are currently archived in public version control systems, and, if made

available for analysis conveniently, would represent a unique opportunity to study FLOSS

at large and answer both theoretical and practical questions that rely on the availability

of the entirety of FLOSS data. In particular, this infrastructure, referred to as World of

Code (WoC) and described below, allows researchers to conduct a census of open source

software that would provide types and prevalence across projects, technologies, and practices

and serve as a guide to setting policies or creating innovative services. Our infrastructure

facilitates the discovery of key technical dependencies, code flow, and social networks that

provide the basis to understand the structure and evolution of the relationships that drive

FLOSS activities and innovation. Such a large database of software development activities

can serve as a basis for “natural experiments” that evaluate the effectiveness of different

software development approaches. If preserved, it will also facilitate future anthropological

studies of software development [30].

Our objective in the current study is to describe a prototype of an infrastructure that can

store the huge and growing amount of data in the entire FLOSS ecosystem and provide basic

capabilities to efficiently extract and analyze that data at that scale. Our primary focus is

on the types of analyses that require global reach across FLOSS projects. A good example

is a software supply chain where software developers correspond to the nodes or producers,

relationships among software projects or packages represent the “chain”, and changes to the

source code represent products or information (that flow along the chain) with corporate

backers representing “financing.”

Several formidable obstacles obstruct progress towards this vision. The traditional

approaches for obtaining the repository of a project or a small ecosystem does not scale

well and may require too many resources and too much effort for individual researchers or
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smaller research groups. Thus, the community needs a way to scale and share the data

and analytic capabilities. The underlying data are also lacking in context necessary for

meaningful analysis and are often incorrect or missing critical attributes [82]. Keeping such

large datasets up-to-date poses another formidable challenge.

In a nutshell, our approach is a software analysis pipeline starting from discovery and

retrieval of data, storage and updates, and transformations and data augmentation necessary

for analytic tasks downstream. Our engineering principles are focused on using the simplest

possible techniques and components for each specific task ranging from project discovery

to fitting large-scale models. The result is a conceptual implementation loosely following

the microservices architecture [85], where the design and performance of the loosely coupled

components can be independently evaluated, each service can utilize a database that is

optimal for its needs, and the most computationally-intensive components are extremely

portable to ensure they run on any high-performance platform. Specifically, our prototype

appears to capture almost the entirety of the publicly available source code in version control

systems and the latency of updates on the existing hardware platform does not exceed one

calendar month, which is pretty fast given the size of the dataset and the complexity of the

task (See Sections 3.3.1 and 3.3.2 for more details). Furthermore, we built a tool on top of

the infrastructure and provided two types of API to enable wide data access for users.

We begin with an overview of related work in Section 3.2. The architecture of the

prototype implementation of the infrastructure is discussed in Section 3.3. We facilitate

wide access to the large data collection by developing a tool on top of our infrastructure,

which is described in Section 3.4, along with an evaluation of query performance. We discuss

various ways of improving the existing infrastructure in Section 3.5, discuss a few existing

limitations in Section 3.6, and conclude our paper in Section 3.7.

3.2 Literature Review

While we are not aware of a complete census of FLOSS with an analysis engine, several

large-scale software mining efforts exist and may be roughly subdivided into attempts at

preservation, data sharing for research purposes, and construction of decision support tools.
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Software development is a novel cultural activity that warrants preservation as a cultural

heritage. The software source code, the only representation of software that contains human

readable knowledge, needs to be preserved to avoid permanent loss of knowledge [30].

Software Heritage [30] is a distributed system involved in collecting and storing large amount

of open source development data from various open source platforms and package hosts. It

currently has software from GitHub, GitLab, Debian, PyPI, etc., and contains 73M projects,

1.7B commits, and 15.6B source files. The main drawback of this particular effort is the

lack of focus on enabling applications to software analytics. The API provided allows for

quick query of every historical particle in a software project and meets the preservation

need, however, it does not grant the access to the full relationships (e.g., the set of projects

containing a given commit) among these particles across entire collection of software. Quick

access to these relationships is crucial in conducting software analytics such as identification

of dependencies among artifacts and authors as well as code spread in the open source

community.

One potential value of archiving software lies in the reuse of software artifacts. For

example, Nexus2 repository manager, allows developers to share software artifacts in a

standard way and provides support for building and provisioning tools (e.g. Maven) to

access necessary components such as libraries, frameworks and containers.

Commercial efforts, such as BlackDuck or FOSSID3 have proprietary collections they

use to determine if their clients have included open source software within their proprietary

software code. It is generally not clear how complete these collections are nor if the companies

involved might consider opening them for research purposes.

In addition to source code and binaries, large scale collection of other software

development resources could be integrated with the source code data. For example,

GHTorrent [50, 47, 48, 52, 51] attempts to record every event for each repository hosted

on GitHub and provides multiple approaches (SQL request and MongoDB data dump) for

data access. The primary limitation is that the collected metadata is specific to GitHub and

it does not include the underlying source code as well. Therefore, obtaining dependencies

2https://www.sonatype.com/nexus-repository-oss
3blackducksoftware.com,fossid.com
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encoded within the source code cannot be accomplished. FLOSSmole [58] collects open

source metadata from various forges as a base for academic research but only focuses on

software project metadata.

Another platform is Candoia [108, 107, 112, 113] which provides software development

data collections abstraction for building and sharing Mining Software Repository (MSR)

applications. In particular, Candoia contains many tools for artifact extraction from different

VCSs and bug databases and it also support projects written in different languages. On top

of these artifacts, Candoia created its general data abstraction for researchers to implement

ideas and build tools upon. This design increased portability and applicability for MSR tools

by enabling application on software repositories across hosting platforms, VCSs and bug

recording tools. The approach is focused on the design and benefits of creating a specialized

software repository mining language. While it abstracts a number of repository acquisition

tasks, it also makes it more difficult to handle operational data problems that tend to occur at

much lower levels of abstraction and tend to be too idiosyncratic for generalized abstraction.

The main drawbacks of Candoia are that it only supports limited programming language (JS

and Java) based projects, and ecosystem-wide research might be difficult to implement since

Candoia relies on users to provide software related data (e.g., targeted software repository

URL) and eco-system wide compliance is generally low.

Other platforms are aimed at improving reproducibility by providing a repository of

datasets for researchers to share their data. These include PROMISE Repository [99], Black

Duck OpenHub4, and SourcererDB [88]. PROMISE Repository is a collection of donated

software engineering data. It was created to facilitate generations of repeatable and verifiable

results as well as to provide an opportunity for researchers to extend their ideas to a variety

of software systems. Black Duck OpenHub is a platform that discovers open source projects,

tracks the development and provides the functionality of comparison between softwares.

Currently, it is tracking 1.1M repositories, connecting 4.2M developers and indexing 0.4M

projects. SourcererDB is an aggregated repository of 3K open source Java projects that

are statically analyzed and cross-linked through code sharing and dependency. On top of

4https://www.openhub.net/
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providing datasets, it also provides a framework for users to create custom datasets using

their projects.

Apart from providing datasets (repository) for potential users, platforms such as

Moose [32], RepoGrams [95], Kenyon [12], Sourcerer [7], and Alitheia Core [49] are more

focused on facilitating building and sharing MSR tools. Moose is a platform that eases

reusing and combining data mining tools. RepoGrams is a tool for comparing and contrasting

of source code repositories over a set of software metrics and assists researchers in filtering

candidate software projects. Kenyon is a data platform for software evolution tools. It is

restricted to supporting only software evolution analysis. Sourcerer is an infrastructure for

large scale collection of open source code where both meta data and source code are stored in

a relational database. It provides data through SQL query to researchers and tool builders

but is only focused on Java projects. Alitheia Core is a platform with a highly extensible

framework and various plug-ins for analyzing software on a large database of open source

projects’ source code, bug records, and mailing lists.

Furthermore, there were efforts to standardize software mining data description for

enhanced reproducibility [65]. None of the listed platforms focus on both collection and

analysis of the dependencies of the entirety of FLOSS source code version control data.

Further, they contain either limited collections (e.g. only GitHub, no source code, have only

donated data, or do not contain an analysis engine). For example, it is not possible to answer

simple questions such as “In which projects has a file been used?”, “What projects/codes

depend on a specific module?”, “What changes has a specific author made?” etc.

Some large companies have devoted substantial effort to develop software analysis

platforms for the entire enterprise, aiming to improve the quality of software they build and

to help the enterprise achieve its business goals by providing recommendations to software

development organizations/teams, monitoring software development trends, and prioritizing

research areas. For example, Avaya, a telecommunications company, built a platform [54],

which collects software development related data from most of its software development

teams and third parties and enabled systematic measurements and assessments of the state

of software. CodeMine [24], is a software platform developed by Microsoft that collects a

variety of source code related artifacts for each software repository inside Microsoft. It is
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designed to support developer decisions and provide data for empirical research. We hope

that similar benefits can be realized with the WoC platform targeted to the entire FLOSS

community.

Large scale software mining efforts also include domain specific languages. Robert Dyer

et al. developed Boa [34, 37, 33, 89, 36, 35], both as a domain specific language and as an

infrastructure, to ease open source-related research over large scale software repositories. The

approach is focused on the design and benefits of an infrastructure and language combination.

However, the lack of explicit tools to deal with operational data problems make it of limited

use to achieve our aims. Their collection procedures -discovery, retrieval, storage, update,

and completeness issues (for example, only certain languages are supported)- are not the

primary focus of this effort. The tools to deal with operational data problems common in

version control data are also lacking in Boa.

The system described in this paper is loosely modeled after a system described a decade

ago [81, 79]. In comparison, at that time, git was just beginning to emerge as a popular

version control system, but now it dominates the FLOSS project landscape. The number

of software forges and individually hosted projects was much larger then in contrast to the

consolidation of forges and the overwhelming dominance of GitHub. Furthermore, the scale

of the FLOSS ecosystem is more than an order of magnitude larger now and it continues

to experience very rapid growth. WoC could not, therefore, reproduce that design closely

and, instead, is focused on preserving the original git objects and on creating a design that

enables both efficient updating of this huge database and ways to cross-reference it so that

the complete network of relationships among code and people is readily available.

3.3 Architectural Considerations

The process of mining individual git repositories is complex to begin with [14], but becomes

even more difficult on a large scale [45]. More specifically, using operational data from

software repositories requires resolution to three major problems [82]: the lack of context,

missing attributes or observations, and incorrect data. This makes critical tasks such as

debugging and testing complex and time consuming. To cope with these big data challenges
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we employed both vertical and horizontal prototyping [93, 2, 71, 15]. Most big data systems

use the layered data approach where initial layers approximate raw data and later layers

include cleaned/augmented data.

In this section we present a prototype WoC implementation. It has four stages: project

discovery, data retrieval, correction, and reorganization as shown in Figure 3.1.

Figure 3.1: Overarching data flow

3.3.1 Project Discovery

Millions of projects are developed publicly on popular collaborative platforms/forges such as

GitHub, Bitbucket, GitLab, and SourceForge. Some of the FLOSS projects can be identified

from the registries maintained by various package managers (e.g., CRAN, NPM) and Linux

distributions (e.g., Debian, Fedora). Other project repositories, however, are hosted in

personal or project-specific sites. A complete list of FLOSS repositories is, therefore, difficult

to compile and maintain since new projects and forges are created and older forges disappear.

There is a tendency for the FLOSS repositories to migrate to (or be mirrored on) several

very large forges [74]. A number of older forges provide convenient approaches to migrate

repositories to other viable forges before being shut down. This consolidation has alleviated

some of the challenge of discovering all FLOSS projects [81], though the task remains
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nontrivial. We discuss several approaches to project discovery below. To package our project

discovery procedure we have created a docker container5 that has the necessary scripts.

Using Search API: Some APIs may also be used to discover the complete collection of

public code repositories within a forge. The APIs are specific to each forge and come with

different caveats. Most APIs tend to be rate limited (for user or IP address) and the retrieval

can be sped up by pooling the IDs of multiple users.

Using Search Engine: Search engines (e.g., Google or Bing) can supplement the discovery

of FLOSS project repositories on collaborative forges when the forge does not provide an API,

or when the API is broken. The primary drawback is the incompleteness of the repositories

discovered.

Keyword Search: Some forges provide keyword based search of public repositories, which

is a complementary approach when a forge does not provide APIs for the enumeration of

repositories and the results returned from search engines are lacking.

Using these and other opportunistic approaches helps ensure that they complement each

other in approximating the publicly available set of repositories though it does not guarantee

the completeness. We expected that various ways of crowdsourcing the discovery (with

incentives to share a project’s git URL) would help increase the coverage in the future.

3.3.2 Project Retrieval

This data retrieval task can be done in parallel on a very large number of servers but

requires a substantial amount of network bandwidth and storage. The simplest approach is

to create a local copy of the remote repositories via git clone command. As of December

2018, we estimate over 62M unique repositories (excluding GitHub repositories marked as

forks, repositories with no content and private repositories). A single thread shell process

on a typical server CPU (we used Intel E5-2670) with no limitations on network bandwidth

clones randomly selected 20K to 50K repositories (the time varies dramatically with the size

of a repository and the forge) in 24 hours. To clone 60M repositories in one week would,

therefore, require from two to four hundred servers. We do not possess dedicated resources

of such size and, therefore, optimize the retrieval by running multiple threads per server

5https://github.com/ssc-oscar/gather
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and retrieving a small subset of the repositories that have changed since the last retrieval.

Specifically, we use five Data Transfer Nodes of a cluster computing platform6.

3.3.3 Data Extraction

Code changes are organized into commits that typically change one or more source code files

within the project. Once the repository is cloned as described above, we extract Git objects7

from each repository and store these git objects in a single database.

Data Model

Git [18] is a content-addressable filesystem containing four types of objects. The reference

to these objects is a SHA18 [38] calculated based on the content of that object. commit is

a string including the SHA1’s of commit parent(s) (if any), the folder (tree object), author

ID and timestamp, committer ID and timestamp, and the commit message. tree: A tree

object is a list that contains SHA1’s of files (blobs) and subfolders (other trees) contained

in that folder with their associated mode, type, and name. blob: A blob is the compressed

version of the file content (the source code) of a file. tag: A tag is the string (tag) used to

associate readable names with specific versions of the repository.

Fig. 3.2 illustrates relationships among objects described above. The snapshot at any

entry point (commit) is constructed by following the arrows from left side to right side.

Object Extraction

While a standard Git client allows extraction of raw git objects, it displays them for manual

inspection. For the bulk extraction need, first we list all objects within the git database,

categorize them, and create bulk extractor based on a portable pure C implementation of

libgit2 9. We run listing and extraction using 16 threads on each of the 16-CPU node on

6No. node: 300, Bandwidth up to 56 Gb/s
7https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
8https://en.wikipedia.org/wiki/SHA-1
9https://libgit2.org/
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Figure 3.2: Git objects

a cluster10. The process takes approximately two hours for a single node to process 50K

repositories. The extraction procedure represents a microservice.

3.3.4 Data Storage

The collection of public Git repositories as a whole replicate the same git object hundreds of

times [81]. Without removing this redundancy, the required storage for the entire collection

exceeds 1.5PB, and it also makes analytics tasks virtually impossible without extremely

powerful hardware. Many reasons for this redundancy exist, such as pull-based development,

usage of identical tools or libraries, and copying of code.

To avoid redundancy of git object among repositories, we store all git objects into a

single database. The database is organized into four parts corresponding to each type of git

object. Each part is further separated into a cache and content. The cache is used to rapidly

determine if the specific object is already stored in our database and is necessary for data

extraction described above. Furthermore, the cache helps determine if a specific repository

needs to be cloned. If the heads (the latest commits in each branch in .git/refs/heads) of a

repository are already in our database, there is no need to clone the repository altogether.

10CPU: E5-2670, No. node: 36, No. core: 16, Mem size: 256 GB
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Cache database is a key-valued database, with the twenty byte Git object SHA1 being

the key and the packed integer (indexing the location of the object in the corresponding

value database) being the value. The value database consists of an offset lookup table that

provides the offset and the size of the compressed git object in a binary file (containing

concatenated compressed git objects). While this storage allows for a fast sweep over the

entire database, it is not optimal for random lookups needed, for example, when calculating

diffs associated with each commit. For commits and trees, therefore, we also create a key

value database where key is SHA1 of the git object and value is the compressed content of

the said object. Cache performance is relatively fast: a single thread on Intel E5-2623 is

capable of querying of 1M git objects in under 6 seconds, or over 170K git objects per second

per thread. This can be multi-threaded and run on multiple hosts, thus reaching any desired

speeds with expanded hardware.

Needless to say, with 12B objects occupying over 80TB we need to use parallel processing

to do virtually anything. Thankfully, we can use SHA1 itself to split the database into pieces

of similar size. We, therefore, split each of the database into 128 slices based on the first

seven bits of Git object SHA1. This results in 128 key-offset cache databases for all four

types of objects, 128 content databases as flat files for the four types of objects, and 128 key

value databases for commits and trees: 128*(4+4+2) databases with each capable of being

placed on a separate server to speed up parallel tasks. The individual databases containing

content range from 20MB for tags up to over 0.5TB for blobs. The largest individual cache

databases are over 2Gb for tree object SHA1s.

Databases are fragile and may get corrupted due to hardware malfunction, internet

attack, pollution/loss by unrecoverable operation, etc. To enhance the robustness and

reliability and to avoid permanent data loss, we maintain three copies of the databases: two

copies on two separate running servers and one copy on a workstation that is not permanently

connected to Internet. In the future, we will consider keeping a copy using a commercial

cloud service.

Furthermore, due to the size of the data and complexity of the pipeline, some of the

objects may have been missed or have been retrieved but are not identical to originals.

Techniques to validate the integrity of the data at every stage of the process are necessary.
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We therefore, include numerous tests to ensure that only valid data gets propagated to the

next stage.

In particular, the errors when listing and extracting objects are captured and the

operation is repeated in case a problem occurs. The extracted objects are validated to

ensure that they are not corrupt and also to ensure that they are not going to damage

the database or the analytics layer. To validate correctness, the object is extracted per git

specifications and recreated from scratch. The SHA1 signature is compared to ensure it

matches that of the original object. A substantial number of historic objects have issues due

to a bug in git that has since been fixed. Furthermore, a much smaller number of objects

also had issues that we assume are either caused by problematic implementations of git or

problems in operation (zero-size objects that may be occasionally created when git runs out

of disk space during a transaction).

Despite the scrubbing and validation efforts, some of the data may still be problematic or

missing, therefore a continuous process of checking the database for missing or incorrect data

is needed. We plan to add missing object recovery service that identifies missing commits,

blobs, and trees, and retrieves and stores them (in case they are still available online).

3.3.5 Update

The process of cloning all GitHub repositories takes an increasing amount of time with the

growth in size of existing repositories and the emergence of new ones, given fixed hardware.

Currently, to clone all git repositories (over 90M including forks), we estimate the total time

to require six hundred single-thread servers running for a week and the result would occupy

over 1.5PB of disk space. Fortunately, git objects are immutable and we can leverage that

to simplify and speed up the updates. More generally, to get acceptable update times, we

use a combination of two approaches:

• Identify new repositories, clone and extract Git objects

• Identify updated repository and retrieve only newly added Git objects

The work flow is illustrated in Fig. 3.3.
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Figure 3.3: Update workflow

In fact, only approximately three million new projects were created and an additional

two million updated during Dec, 2018.

Procedures for new repositories

Forge-specific APIs are utilized to obtain the complete list of public repositories as described

above. A comparison with prior extract yields new repositories. The list may include

renamed repositories and forks. We can exclude forks for GitHub, since it is an attribute

returned by GitHub API. Other forges contain fewer repositories, so the forks are not large

enough to be a concern.

Procedures for updated repositories

First we need to identify updated repositories from the complete list of repositories. Since

we are not sure how GitHub determines the latest update time for a repository, we use a

forge-agnostic way of identifying updated repositories. We modified the libgit2 library so
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that we can directly obtain the latest commit of each branch in a Git repository for an

arbitrary Git repository URL, without the need to clone the repository. If any of the heads

contain a commit that is not already in our database, the repository must have had updates

and needs to be obtained.

Figure 3.4: Incremental commits

Figure 3.5: Future workflow

We are working on a strategy to reduce the amount of bandwidth needed to do the

updates. Instead of cloning an updated repository, we’d like to retrieve only incremental

Git objects (see Fig. 3.4) that are generated during the time gap between two consecutive

updates. This can be easily done via git fetch for a git repository, but since we do not keep

the original git repository and it is time consuming to prepopulate it with git objects, we

plan to customize git fetch protocol by inserting additional logic in order to use our database

backend that comprises git objects from all repositories. The procedure consists of two steps:
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1. Customize git fetch protocol11 to work without git’s native database.

2. Keep track of the heads for each project that we have in our database so that we can

identify latest commits to the modified git fetch.

For the second step, the database backend will use the project name as input and provide

the list of heads for the project. These heads are then sent to the remote so that the set

of latest commits (and related trees/blobs) will be calculated out and transferred back as

illustrated in Figure 3.5. By following this strategy, we could drastically speed-up mining

incremental Git objects from repositories in each update.

3.3.6 Data Reorganization for Analytics

Objects in Git are organized in a way for fast reconstruction of a repository at each

commit/revision. In fact even the seemingly simple operation of identifying what files

changed in a commit is computationally intensive. Furthermore, there is no consideration

for the projects, files, or authors as first-class objects. This limits the usability of the git

object store for research and suggests the need for an alternative data design. Since our

objective is to obtain relationships among projects, developers, and files, we have created

an alternative database that allows both a rapid lookup of these associations and sweeps

through the entire database that make calculations based on such relationships.

Analytic Database

The scale of the desired database limits our choices. For example, a graph database 12 like

neo4j would be extremely useful for storing and querying relationships, including transitive

relationships. However, it is not capable (at least on the hardware that we have access

to) of handling hundred’s of billions of relationships that exist within the entire FLOSS.

In addition to neo4j, we have experimented with more traditional database choices. We

evaluated common relational databases MySQL and PostgreSQL and key value databases

or NoSQL [69] databases MongoDB, Redis, and Cassandra. SQL like all centralized

11git fetch downloads only new objects from the remote repository
12a database that uses graph structures for semantic queries with nodes, edges and properties to represent

and store data
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databases [1] has limitations handling petabyte datasets [97, 72]. We, threfore, focus on

NoSQL databases [83] that are designed for large scale data storage and for massively parallel

data processing across a large number of commodity servers [83].

For the specific needs of the cache database and for key value stores for the analytics

maps we use a C database library called TokyoCabinet (similar to berkeley db) using a

hash-indexed as described above, to provide approximately ten times faster read query

performance than a variety of common key value databases such as MongoDB or Cassandra.

Much faster speed and extreme portability lead us to use it instead of more full-featured

NoSQL databases.

Maps

Apart for the general requirement to be able to represent global relationships among code,

people, and projects, we also consider the basic patterns of data access for several specific

research tasks as use cases in order to design a database suitable for accomplishing research

tasks within a reasonable time frame. The specific use cases are:

1. Software ecosystem research would need the entire set of repositories belonging to a

specific FLOSS sub-ecosystem, e.g., the set of all repositories that use Python language.

2. Developer behavior research would need to identify all projects that a specific developer

worked on, the files they authored, and software technologies they used.

3. Code reuse research would need to identify all projects where a specific piece of code

occurs and determine how it got there.

To support the first task, a mapping from file names to project names would be necessary.

The second task would require author to project, file, and to content of the versions of the file

authored by that developer (in order to access the source code and identify what components

or libraries were employed). The last task would require a map between blobs (that contain

snippets of code) and projects. It would also require a map between blobs and commits in

order to identify the time when the specific piece of code was introduced.

We have identified a number of objects and attributes of interest here: projects, commits,

blobs, authors, files, and time. The complete set of possible direct maps for an arbitrary
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pair is 30. Since author and time are properties of the commit and are not properties of

projects, blobs, or files, it makes sense to place commit at the center of this network database.

The author-to-file map can then be constructed as a composition of author-to-commit and

commit-to-file maps; and author-to-project map can be constructed via author-to-commit

and commit-to-project maps. We also need to associate file names with the corresponding

blobs since a single commit may create multiple files. Out of the 12 maps13, only 10 need to

be instantiated because commit-to-author and commit-to-time maps are embedded as the

properties of the commit object.

In addition to having the commit at the center, for certain tasks we also needed to have

a blob-to-file map as well. For example, we want to identify module use in Python language

files. First, we need to identify relevant files via suitable extension (e.g., .py), then we can

determine all the associated commits via file to commit map. These commits, however, may

involve other files and if we use commit to blob map to identify associated blobs, we would

get blobs not just for python, but also for all files that were modified in commits that touched

at least one python file. The file-to-blob map allows us to reduce the number of blobs that

need to be analyzed dramatically.

In addition to these basic maps we create additional maps, such as the author ID to author

ID map for IDs that have been established to belong to the same person (see Section 4.3),

and project to project maps to adjust for the influence of forking. Project-to-project maps

are based on the transitive closure of the links induced between two projects by a shared

commit. Explicit forks that can be obtained as a GitHub project property do not generalize

to other forges and, even on GitHub, represent only a fraction of all repositories that have

been cloned from each other and then developed independently. Project-to-project map also

handles instances where repositories exist on multiple forges or when they are renamed.

As with the original data we utilize multiple databases and use compressed files for sweep

operations and TokyoCabinet for random lookup. We separate maps into 32 instead of 128

databases we use for the raw objects since maps tend to be much smaller in size than, for

example, blobs. For commits and blobs we use the first character of SHA1 for database

13bidirectional maps between the commit and five objects/attributes and between file and blob
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identification. For authors, files, and projects, we use the first byte of FNV-1a Hash 14.

Both approaches yield quite uniform distribution over bins.

As noted above, the maps from commit to meta data are not difficult to achieve because

meta data are part of the content of a commit object. However, git blobs introduced or

removed by a commit are not directly related to the commit and need to be calculated by

recursively traversing trees of the commit and its parent(s). A Git commit represents the

repository at the-state-of-world and contains all the trees (folders) and blobs (files). To

calculate the difference between a commit and its parent commit, i.e., the new blobs, we

start individually from the root tree that is in the commit object, traverse over each subtree

and extract each blob. By comparing two sets of blobs of each commit, we obtain the new

blobs for the child commit. This step requires substantial computational resources, but

the map from the commit to the blobs authored in a commit is used in numerous research

scenarios and, therefore, is necessary. On average, it takes approximately one minute to

obtain changed files and blobs for 10K commits in a single thread. With 1.5B commits,

the overall time for a single thread would take 104 days, but it needs to be done only on

approximately 20-40M new commits generated each month.

3.4 Architecture for research workflows

To make WoC more easily usable in a wide variety of research scenarios, we have designed

an architecture to help simplify, support, and evaluate the implementation of research tasks.

This section describes that architecture, along with critical performance benchmarks to

inform the users on the computational tasks for alternative implementations.

3.4.1 Architecture

The research workflow architecture is illustrated in Figure 3.6. The figure shows the

application layer, built on top of the three lower layers:

Application Layer: This layer is where the research tasks are implemented by use of WoC.

We provide a library of applications to illustrates various types of research analyses that can

14http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-1a
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Figure 3.6: Architecture of the Tool

be implemented using WoC.

API Layer: The applications may use Shell or Python API, or may reuse or modify Perl

files (used to support Shell API) to access and process the WoC data. A more detailed

description of the Shell and Python APIs can be found in Section 3.4.2.

Data Layer:

As described above, to be able to identify the relationships rapidly we constructed several

types of relationships (or basemaps) that cross-reference the git objects and other properties.

In particular, we treat project, commit, blob, author, file name as the first class objects

and map them to their properties (e.g., time, parent commit, head commit, child commit,

etc.). In addition to these basemaps, we also construct technical dependencies that are

derived from importing external dependencies for several languages (Language Maps). These

dependencies are calculated based on each version of a file. The data is described in more

detail in Section 3.4.3.

Storage Layer All the data are hosted on six servers, which are connected to each other

through NFS (network file system). Users can login to any of the servers (da0 to da5) and

and run their applications on multiple servers.
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3.4.2 API

We support three primary APIs for WoC users to access the dataset: Shell, Python, and

Perl. Presently, running an application requires being logged in to one of the hosting servers.

Shell API

For the lowest level access we provide Shell API that is modeled after core philosophy of

Unix15: have a set of specialized commands that are connected in a workflow through their

standard input and output and via creation of files, E.g., according to Doug McIlroy: “Make

each program do one thing well. To do a new job, build afresh rather than complicate

old programs by adding new features”. The entire application workflow can be built using

exclusively shell and standard Unix utilities such as ‘join’, ‘sort’, ‘cut’, ‘uniq’, ‘sed’, and

‘wc’ with added specialized commands to extract data from key-value databases. The key

information for this API is the knowledge of how to use shell and standard Unix command

and the description of the databases. To enable this approach we also provide all databases

as key-sorted (and compressed) text files that can be used with ‘grep’, ‘join’, or ‘sort’ to

produce any desired queries. We also add a random lookup operation getValue mapname

to access values of a key object in the provided mapname. In addition, we add the command

showCnt type to access the content of each git object given in the standard input where

type is one of tag, tree, commit, blob. A few examples are listed below:

• Checking the content of a Git object given a SHA:

1 # (on da3) e.g., show a commit SHA’s content:

2 echo e4af89166a17785c1d741b8b1d5775f3223f510f | showCnt commit

3 # Output Formatting:

4 # Commit SHA;Tree SHA;Parent Commit SHA;Author;Committer;Author Time;

Commit Time

5 e4af89166a17785c1d741b8b1d5775f3223f510f;

f1b66dcca490b5c4455af319bc961a34f69c72c2;

c19ff598808b181f1ab2383ff0214520cb3ec659;Audris Mockus <audris@utk.

edu>;Audris Mockus <audris@utk.edu>;1410029988 -0400;1410029988 -0400

15https://en.wikipedia.org/wiki/Unix philosophy
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• Given an object, check its related objects:

1 # (on da3) e.g., show the names of the projects associated with a given

commit SHA:

2 # ‘‘getValue" command takes a database name as an argument and keys

presented as standard input and produces key-value pairs as output.

3 echo e4af89166a17785c1d741b8b1d5775f3223f510f | getValue /da0_data/

basemaps/c2pFullP

4 # Output Formatting: Commit SHA;ProjectNames

5 e4af89166a17785c1d741b8b1d5775f3223f510f;W4D3_news;chumekaboom_news;

fdac15_news;fdac_syllabus;igorwiese_syllabus;jaredmichaelsmith_news;

jking018_news;milanjpatel_news;rroper1_news;tapjdey_news;taurytang_

syllabus;tennisjohn21_news

Python API

At the top level of abstraction, we provide Python API via package oscar16 that implements

the key notions of author, file, project, commit, blob, and tree as the corresponding classes.

The enumeration below describes Python classes that were created by wrapping up data

objects 3.1. Each of the classes has a couple of methods attached to access corresponding

properties. For the methods that contain slash(/), the method before slash returns actual

data in string, while the one after return a generator of corresponding python instances. E.g.

Author.commit shas() returns a list of the SHAs of commits that the person authored;

Author.commits() returns a generator of Commit objects built from those SHAs.

1. Author(‘...’) - initialized with a combination of name and email, e.g. “Albert Krawczyk

<pro-logic@optusnet.com.au>”

• .commit shas/commits - all commits by this author

• .project names - all projects this author has committed to

16https://github.com/ssc-oscar/oscar.py
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2. Blob(‘...’) - initialized with SHA of blob

• .commit shas/commits - commits creating or modifying (but not removing) this

blob

3. Commit(‘...’) - initialized with SHA of commit

• .blob shas/blobs - all blobs in the commit

• .child shas/children - the commit that follows this commit

• .changed file names/files changed

• .parent shas/parents - the commit that this commit follows

• .project names/projects - projects this commit appears in

4. Commit info(‘...’) - initialized like Commit()

• .head

• .time author - the commit time and its author

5. File(‘...’) - initialized with a path, starting from a commit root tree. This represents

a filename, regardless of content or repository; e.g. File(“.gitignore”) represents all

.gitignore files in all repositories.

• .commit shas/commits - All commits that include a file with this name

6. Project(‘...’) - initialized with project name/URI

• .author names - all author names in this project

• .commit shas/commits - all commits in this project

Perl APIs

While the Python API provides high level of abstraction, it is not very computationally

efficient. In order to provide an intermediate level of efficiency between that of Python and

Shell APIs, we also provide a way to implement applications or their components in Perl

language. For example, the shell commands getValue and showCnt are both implemented
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in Perl. The Perl API instead of creating classes of objects as in Python, it handles the maps

directly. To support writing WoC workflows in Perl we provide a variety of utility functions

in package ‘WoC.pm.’ We also have, over the course of evolving WoC, created a number of

applications that can be used as templates and modified by the users for their needs. For

example, we can parse the content of the commit to obtain its tree, parent commit, author,

and time:

1 use WoC;

2 my ($tree, $parent, $authName, $authEmail) = ("","","","");

3 my ($pre, @rest) = split(/\n\n/, $code, -1);

4 for my $l (split(/\n/, $pre, -1)){

5 $tree = $1 if ($l =~ m/^tree (.*)$/);

6 $parent .= ":$1" if ($l =~ m/^parent (.*)$/);

7 ($authName, $authEmail) = gitSignatureParse($1) if ($l =~ m/^author (.*)$/);

8 }

9 ($auth, $ta) = ($1, $2) if ($auth =~m/^(.*)\s(-?[0-9]+\s+[\+\-]*\d+)$/);

10 $parent =~ s/^:// if defined $parent;

We also have examples on how to parse, for example, a python source code to obtain the

dependencies defined by the import statements (a segment is shown below):

1 for my $l (split(/\n/, $code, -1)){

2 if ($l =~ m/^\s*import\s+(.*)/) {

3 my $rest = $1;

4 $rest =~ s/\s+as\s+.*//;

5 my @mds = $rest =~ m/(\w[\w.]*[\,\s]*)*/;

6 for my $m (@mds) { $matches{$m}++ if defined $m};

7 }

8 if ($l =~ m/^\s*from\s+(\w[\w.]*)\s+import\s+(\w*)/) {

9 if ($2 ne ""){ $matches{"$1.$2"} = 1; }

10 else{ $matches{$1} = 1; }

11 }

12 }
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For more detail please refer to the tutorial page of our repository17.

3.4.3 Description of the WoC Data

We use abbreviated object names for WoC data and basemaps as shown in Table 3.1. As

noted above, types of basemaps are created to represent relationships among these objects,

which are illustrated in Figure 3.7. Notice that some maps are missing in Figure 3.7, because

initially we built maps with commit being the core, and other maps were built as certain

research tasks the users were attempting to do would benefit from them. The basemaps are

stored in TokyoCabinet databases for random queries and key-sorted compressed text files

of these basemaps are also created to enable quick sweeps over the whole dataset and to

enable the shell API.

In addition to the basemaps, programming language based maps are created to enable

language oriented analytic and applications. These contain mappings that list repositories,

and the modules they depended on, at a given UNIX timestamp under a specific commit.

The format of each entry in these maps are like the following, where module1;module2;...

represent the modules that repository depended on at the time of that commit:

commit;repository_name;timestamp;author;blob;module1;module2;...

So far, 12 maps are ready including C, C#, Java, JavaScript, Python, R, Rust, Go, Swift,

Scala, and Fortran. It is likely that more language maps will be added in the future.

Table 3.1: Objects Terminology

Object Abbreviation Annotation Entity Type

a author string
b blob SHA
c commit SHA
f file name string
p project string

17https://bitbucket.org/swsc/lookup/src/master/
18‘File’ in this figure refers to ‘File name’
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Figure 3.7: Maps between primary objects18(Basemaps)

3.4.4 Performance Benchmark

The anticipated workflow of a specific research task involves a set of queries that proceed

from selecting an initial sample of interest such as a set of files related to a specific language,

a set of projects or authors with certain properties or other collection. This is typically

followed up by one or more network operation such as identifying blobs associated with

the selected files, projects associated with the initial set of developers and so on. These

tasks can typically be implemented in numerous ways, each leading to different computer

memory, disk IO, and computational overheads. To help users decide upon the the best way

to proceed and, more generally, to gauge the time needed for their desired workflow, we set

up experiments to test our WoC infrastructure performance on such queries. Our existing

basemaps should meet users’ need in most cases by a query of a single map (e.g. author to

commit). However, in cases where a map is not ready (e.g. file to project in Figure 3.7),

users might need to combine/join two or more maps to achieve their goal. We, therefore,

tested the performance of both single map queries and combined map queries, and present

the results below.
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Since the file19 to project map is not pre-computed, we can start from the file to commit

map to test single map query performance and then join the results with the commit to

project map to test the combined map query. We randomly selected 100, 1K, 10K, 100K,

and 1M file names from our dataset, and used the Python and Shell APIs without any

other task being run on the server to find the corresponding commits in which the files were

modified and the projects those commits belong to. We collected the time it took to run

each test and show them in Figure 3.8 for the single map queries, and Figure 3.9 for the

combined map queries.

Figure 3.8: Single Map Query Performance

From Figures 3.8 and 3.9, we see that the run time increases linearly as the task size

increased, highlighting the scalability of the WoC infrastructure. We also found Shell API to

be three to four times faster than Python API (Figure 3.8 and right part of Figure 3.9), for

the same query. One hypothesis is the interpreted nature of Python. Specifically, the data

access parts of Shell API are implemented in Perl. While Perl is an interpreted language just

19By file, we refer to the file name (including folder path) in the rest of our paper.
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Figure 3.9: Combined Maps Query Performance

as Python, many of the functions are implemented natively in C language, while in Python

more performance-critical code is interpreted.

It is worth noting that the x-axis on Figure 3.9 represents the number of queries, which

in this scenario is the sum of the number of file to commit queries and the number of commit

to project queries.

We tested the performance of the tool for 100 to 1M queries. If a research workflow

involves the initial sample of objects for a very large part of the WoC database, we recommend

leveraging the database in the form of compressed text for key-value basemaps instead,

because as the number of random access queries increases, it exceeds the time it takes to

sweep the entire database using efficient shell commands such as grep. In fact, a single sweep

of the file to commit compressed data only takes 38 hours while 1M queries of the file to

commit basemap takes 56 hours using Shell API.

3.5 Future work

To have an impact on research practice, the WoC prototype needs to be exposed via reliable

services that help with research and do not overwhelm the platform. Currently, we only
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have Python and Perl API available. However, more languages will be supported in the

future. Comparatively small pre-extracted relations will be stored into relational database

to extend our accessibility to users who are used to SQL. WoC should also accommodate

additional data and computational procedures needed for discovering, correcting, cleaning,

augmenting, and modeling the underlying data. Processing hundreds of terabytes of data on

powerful clusters may be out of reach for most research groups. Therefore, to accommodate

massive queries WoC would require more powerful hardware. Such hardware can be obtained

from cloud vendors, but the costs of hosting and analyzing data on these platforms might

be high. An alternative might be a few high-throughput services that work on the hardware

we currently employ.

The differentiating features of WoC are the completeness of the collection and access to

global relationships. Specifically, two basic services would be difficult to replicate outside

WoC, yet be capable of high throughput on the limited hardware. First, a reporting service

that considers prevalence of certain features, such as languages, tools, and other technologies

as well as the information about contributors might provide services akin to those provided

by a population census. The second basic service would focus on identifying all entities

linked to a specific entity, such as files modified by a developer, all repositories containing a

specific code, or all files that use a specific module or technology. These two capabilities, in

conjunction with MSR technology already in use, would provide both, population-level data

and complete links within entire FLOSS ecosystem. It would then be up to researchers to

retrieve additional data on individual projects based on the stratified samples from the first

service or derived from the relationships obtained from the second service.

3.6 Limitations

We tried to make the assumptions and rationale for specific decisions clear within each

section but it is important to reiterate at least some of the limitations. Despite a large size

(the collection contains over 1.45B commits), there is no guarantee it closely approximates

the entirety of public version control systems as the project discovery procedure is only an

approximation. Our focus on git (due to the simplified global representation) excludes older
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version control systems that have not been converted to git yet. We regularly identify issues

with data being incomplete due to collection, cleaning, or processing and we are working on

an approach to continuously validate and correct it. The particular design decisions were

focused on the particular computing capabilities that were available to us at the time and

could/should be revisited as the prototype evolves. The entirety of research tasks that WoC

provides is not exhausted by the few examples we have investigated and certain tasks may

require different solutions. We do, however, think that the micro-services approach allows

for simpler addition/extension/replacement of components as needs or opportunities arise

than would be possible with a more monolithic architecture.

How to reliably clean, correct, integrate, and augment the collected data so that the

resulting analyses accurately reflect the modeled phenomena is a concern. To ensure the

performance of the analytics layer certain objects are filtered from it. For example, some

of the public repositories are created to test the performance/capabilities of git and contain

many millions of files/blobs in a single commit. Such commits are excluded from the analytics

layer to speed-up the commit-to-file and commit-to-blob maps. The nature of the data may

also create performance problems. For example, the most common blob is an empty file.

Mapping such blobs to all commits that create them or to all files does not make sense,

since there are millions of commits that have created empty files. These performance-related

modifications may affect some arguably superficial analyses, e.g., what are the commits with

the largest number of files? We explicitly highlight these modification in the WoC code to

minimize potential confusion.

Reproducibility may pose an issue in a constantly updated database. Since git objects

are added incrementally and order in which they are stored is preserved, we can reconstruct

any past version of the object store. For the analytic layer, which depends on the set of git

objects available at the time, we create versions, where each of the maps described above is

tagged with a version identifying the state of git object store. Preserving these past versions

ensures reproducibility of the results obtained from them.
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3.7 Conclusions

We introduce WoC: a prototype of an updatable and expandable infrastructure to support

research and tools that rely on version control data from the entirety of open source projects.

We discuss how we address some of the data scale and quality challenges related to data

discovery, retrieval, and storage. We enable wide data access to collected data source by

providing a tool built on top of the infrastructure, which scales well with completion to

query in linear time. Furthermore, we implement ways to make this large dataset usable

for a number of research tasks by doing targeted data correction and augmentation and by

creating data structures derived from the raw data that permit accomplishing these research

tasks quickly, despite the vastness of the underlying data. In summary, WoC can provide

support for diverse research tasks that would be otherwise out of reach for most researchers.

Its focus on global properties of all public source code will enable research that could not

be previously done and help to address highly relevant challenges of open source ecosystem

sustainability and of risks posed by this global software supply chain. Transforming the WoC

prototype into a widely accessible platform is, therefore, our immediate priority.

All source codes can be found in a public repository.20

20https://github.com/ssc-oscar/Analytics
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Chapter 4

New Insights and Analysis from SSC
1

4.1 Overview

In this chapter, we evaluate SSC by investigating the new insights and analysis derived.

More specifically, we conducted two types of studies on top of SSC using WoC infrastructure

to verify if our infrastructure is capable of supporting research tasks in SSC, and to see what

new insights and analysis can be implemented in SSC.

To achieve this, we implemented several basic research tasks that require the entirety

of FLOSS data as a part of the investigation. Furthermore, we recruited three researchers

external to our group to either conduct investigations of their own utilizing WoC and SSC, or

to provide us with their research problems that can only be solved by using WoC. We found

that the combination of SSC and WoC infrastructure can enable and efficiently support

various domain specific and cross-ecosystem researches. Furthermore, we plan to move our

services to cloud platform to attract more users, and many more promising insights and

analysis would be expected in the future.

1This chapter, in part, is a reprint of the material as it appears in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp. 143-154, titled “World of code: an infrastructure
for mining the universe of open source VCS data” (2019), and also in 2018 IEEE/ACM 40th International
Conference on Software Engineering: Companion (ICSE-Companion), pp. 458-459, titled “Constructing
supply chains in open source software” (2018). Authors: Yuxing Ma and Audris Mockus. The dissertation
author was the primary investigator and author of these two papers. Copyrights of both papers are held by
Yuxing Ma and Audris Mockus.

49



Below we report both the experiences and results from these experiments. To providing

further assistance to WoC users, we exemplify the usage of WoC by actually implementing a

specific analysis through API calls. In the end, we describe a couple of ways to operationalize

SSC networks and present a number of network graphs for illustration.

4.2 Use of programming languages

Language popularity may influence developers decisions as it may affect the market for

their software as well as their job prospects. For example: What language-specific API

should developer provide for their component? What language should the developer use to

implement their product?

To plot, for example, Java language use trend we use WoC to identify all files with .java

extension. Then, via file-to-commit map, obtain the complete set of commits authoring these

files. Commit dates are used to plot the time trends of language-specific commits, authors

(property of a commit), projects (via commit to project map) and, if desired, lines of code

changed. The entire process is highly parallelizable since each map is separated into 32

instances and can be processed independently. The entire calculation, while not interactive

on our hardware, can be performed in tens of minutes. For illustration, we show the ratio of

the number of commits over the number of developers (a measure of productivity) each year

in Fig. 4.1. The ratio decreases for most languages, perhaps because as a language becomes

more popular, the less experienced contributors join and lower the average productivity.

4.3 Correcting Developer Identity Errors

One of the particularly troubling data quality issues with version control systems is developer

name disambiguation. Often, names and emails of developers are missing, incomplete,

misspelled or duplicate [43, 13]. Performance of any disambiguation algorithm depends

on the distribution of the actual misspellings in the underlying data. In order to design

and evaluate corrective algorithms, it is important to study a large collection of actual data

and unearth patterns of irregularities that compromise data quality. WoC contains a nearly
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Figure 4.1: Productivity by Language
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complete collection of git author ids (name and email combinations) and is, thus, more

representative of such irregularities than any specific project.

To obtain author IDs we use author-to-commit map containing roughly 30 million distinct

author IDs. Common error patterns include organizational ids and emails (Mozilla, Linux,

Google etc), names of tools and projects (OpenStack, Jenkins, Travis CI), roles such as

(admin, guest, root etc.) and words that preserve anonymity (student, nobody, anonymous

etc) as a part of their credentials. We also found a large number developer IDs to be

misspelled.

Traditional identity correction approaches rely on the misspelling patterns of author ID

(the full name and email) [13, 117, 118]. With WoC data, we can enhance the traditional

string matching with behavioural comparison, by creating similarity measures between

author IDs using files modified by developers, time patterns of commits, and writing styles

in commit messages. For illustration — two author IDs that modify a similar set of files may

suggest that these IDs belong to the same developer. To implement file-based similarity, we

used author to commit and commit to file maps to obtain the set of files modified by a single

author ID. Then file-to-commit and commit-to-author maps were used to calculate similarity

using weighted Jaccard measure. Commit message text was used to fit a Doc2Vec [68] model

to associate each author ID with their writing style. Traditional and behavioural similarities

were used to train highly accurate machine-learning model [3].

This experiment demonstrates the utility of WoC data for designing tools to solve common

and vexing data quality problems when constructing developer networks.

It is also an example of how WoC can be enhanced by incorporating such techniques and

providing corrected data to researchers.

4.4 Cross-ecosystem comparison studies

A second research group used the database to gather comparative statistics about different

software ecosystems. The purpose was to supplement other comparative data about those

ecosystems in support of a study of how ecosystem tools and practices influence development

behavior. The ecosystem study involved a survey, interviews, and data mining over 18
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ecosystems whose repositories listed more than 1.2M packages. Some questions about

ecosystem practices could be mined from metadata available elsewhere; for example detailed

information about dependencies, release frequency, and version numbering practices can be

easily extracted from libraries.io2. However deeper questions about project content would

have been out of reach without WoC; independently building the mechanism to collect all

of these projects, building a database of blobs, files, projects, and authors, and comparing

them using various metrics would have been too much work for too little gain without the

availability of this research platform.

4.4.1 File cloning across ecosystems

One such statistic is rate of file cloning. It was theorized that in ecosystems with more

flexible support for dependencies and a tolerance for the risk of breaking changes, developers

would be more likely to use dependency management tools to make use of functionality from

other projects, rather than copying those files in directly; hence in such ecosystems we should

find relatively few commits adding a blob that already exists in any other project available

through the ecosystem’s dependency management system.

Using WoC, this analysis was straightforwardly accomplished by joining blob-to-commit

and commit-to-project mappings, filtering for blobs that appeared in multiple projects, and

identifying pairs with one commit in the time frame, and at least one older commit. Such

blobs were discarded when the files were very small (since these often turned out to be empty

or trivial files duplicated by chance or by tools) resulting in a set of duplicates that, on visual

inspection of a sample, did appear to represent genuine examples of reuse-by-cloning.

Contrary to our expectations, the ecosystem with the most propensity for cloning was

the one with the modern and flexible dependency system: npm. Despite the strengths of

npm’s dependency management system, there is a strong tradition of copying dependencies

like jQuery into projects rather than letting npm retrieve them. Figure 4.2 summarizes the

findings for a selection of ecosystems.

2https://libraries.io/
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Figure 4.2: Proportion of repository packages that added at least one cloned code file
over 1kb in 2016.
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4.4.2 Developer migration across ecosystems

Another metric of interest was developer overlap between ecosystems. Our ecosystem

comparison had included a survey of values and practices in the 18 ecosystems of interest,

and we hypothesized that ecosystems might be similar if many developers were actually

working in both ecosystems, or had migrated from one to the other.

This question was answered by joining author-to-commit and commit-to-project data for

the 1.2M projects in our study, and relying on the identity matching technique described in

Sec 4.3.

Over all pairs of ecosystems, we found a sizable correlation between similarity of

average responses on ecosystem practice questions (things like frequency of updating,

collaboration with other projects, means of finding out about breaking changes), and overlap

in committers to those ecosystems (Spearman ρ = 0.341, p < .00001, n = 16 ecosystems).

Interestingly, perceived values of the ecosystem (such as a preference for stability, innovation,

or replicability) do not seem to align with developer overlap (ρ = −0.05, p = 0.44). While

more research is needed, we hypothesize that developers may carry practices over from other

languages and platforms they have used in the past, in a sometimes cargo-cult-like way,

despite recognizing that a new ecosystem is designed to accomplish different ends.

In our very large-scale, wide-ranging study, these questions of developer migration and

cloning were of great interest, but would likely have been too expensive to pursue alongside

other lower-hanging fruit, absent WoC’s prepared set of precomputed maps between files,

blobs, authors, projects, and timestamps. The dataset with its analytical maps was not

designed with these particular ecosystem comparison in mind, but its design happens to

make such ecosystem questions relatively easy to answer.

4.5 Python ecosystem analysis

An external researcher wanted to use WoC to investigate open source sustainability by

identifying source code repositories for packages in PyPI ecosystem and to measure package

usage directly. While over 90% of npm packages provide repository URLs, less than 65% of

Python Package Index (PyPI) packages do.
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The researcher obtained all packages from PyPi and calculated blob SHA1s for setup.py

file of the first PyPI releases of each package. We filter out resulting 101584 blobs to exclude

empty or uninformative blobs (blobs that appear in more than one commit using blob-to-

commit map). The 54218 informative blobs are then mapped to 54062 unique commits

and commits to 51924 unique projects (adjusted for forking as described in Section 3.3.6).

Repositories were recovered for 96% of the 54218 original packages in approximately 20

minutes of computation. To ensure that these repositories are, in fact, used to version

control corresponding packages, they can be matched via additional blobs for setup.py and

other files obtained from PyPi for that package.

Another problem being solved by this researcher was identifying which of the seemingly

abandoned projects may be “feature complete,” i.e. already have the intended scope and do

not require further maintenance [21]. Feature complete projects should be widely used in

contrast to abandoned projects. Proxies of project usage, e.g., GitHub stars or forks can be

used to identify such projects [21]. WoC, however, lets us measure the extent of use directly.

As described in Section 4.2, all commits modifying Python files are identified (file-to-commit

map) and the resulting commits are mapped to projects (commit-to-project map).

Blobs associated with these commits (commit-to-blob map) are then used to extract

imports from these files.

The entire procedure could be completed in approximately four hours using the

parallelism of the analytic maps (32 databases) and blob content maps (128 databases).

The reported usage was compared to project development activity, i.e the total number

of adoptions versus the total number of commits. In some cases, usage was not accurately

reflected in the number of commits. Common examples are packages providing console

scripts and CMS-like projects. In the former case, packages are not reused in programmatic

code and thus don’t get into statistics. In the latter case, website builders often do not

publish their code and thus such usage remains unobserved. Therefore, while the number of

public reuses provides some extra information about package use, it should be adjusted for

package type.
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4.6 Repository filtering tool

Millions of repositories on GitHub and other forges also include projects that are completely

unrelated to software development. GitHub is widely used for education and other tasks

such as backing up text files, images, or other data. Researchers investigating education

may need to focus on tutorials, while other researchers may need a sample of actual

software development projects. Furthermore, a way to select specific subsets of software

development projects in order to conduct, for example, ”natural experiments” would also

be highly beneficial. WoC can support such project segmentation tasks in a variety of

ways. An external education researcher wanted to understand the impact of self-administered

programming tutorials. To do that, WoC was used to identify developers who participated

in tutorials by searching the set of projects in WoC via keywords related to education:

“assignment”, “course”, “homework”, “class”, “lesson”, “tutorial”, “syllabus”, “mooc”,

“udacity”. The search yields over 1M projects. While it is only a small fraction of all

projects in WoC but it represents a large sample in absolute terms. Further filtering was

needed to find developers who also worked on actual software projects to measure the impact

of self-administered tutorials. The project-to-commit map identified 605K users of tutorials

and, when these users were mapped to all projects they participated in, we determine that

only half of them contribute to non-tutorial projects. These 300K individuals are potential

subjects of tutorial-impact study. Further information (such as their commit activity and

project participation) can be obtained from WoC and combined other data, be used in

this research. WoC can be extended with other approaches to segment projects3. For

example, identification of projects with sound software engineering practices [84] relies on a

combination of factors easily obtainable in WoC, such as history, license, and unit tests.

4.7 Other Applications

A number of research publications have utilized the WoC database, including:

3Section 4.3 shows how WoC can also be used to improve them
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• The relationship between dependencies of NPM packages, collected using the WoC

infrastructure, and their popularity was discussed in [29].

• The effort contribution and demand patterns of the contributors to the NPM ecosystem

was discussed in [28].

4.8 Archetypical Usage of WoC

To increase the utility of this project to a wider research community, we would like to

prioritize easy access to the World of Code to other interested parties. In this section,

we provide a brief introduction and an overview of the World of Code and how to use it.

Moreover, there are some resources already in place that were designed to assist in this

process, which can be found in a public repository4.

After describing WoC and its applications, in this section we demonstrate how to actually

use WoC to implement a specific analysis. A couple of approaches presented here leverage

the WoC tool to implement the Java language trend analysis, as described in Section 4.2.

1. Identify Java files based on ‘.java’ extension, collect commits that changed these files,

and deduplicate the commits. Now we have all commits where one or more java files

were created/modified. The source code of the custom lsort command is presented

in Appendix C.

1 #start from basemap dump(‘‘file to commit" dump, P represents version),

2 for i in {0..31}; do zcat /da0_data/basemaps/gz/f2cFullP.$i.s | awk -F ";

" "/.java;/{print $2 }" done | ~audris/bin/lsort 10G -u | gzip >

JavaCommits.gz

2. For each commit in commit collection, we can use either Python or Perl API to find

related author and commit time, and then calculate the number of authors and commits

by year – the trend

1 # Using Python

4https://github.com/ssc-oscar/lookup
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2 import gzip

3 from datetime import datetime

4 from collections import defaultdict

5

6 year2commit_count = {}

7 year2commit_count = defaultdict(lambda: 0, year2commit_count)

8 year2author_count = defaultdict(set)

9 java_commits = gzip.open("JavaCommits.gz", "r")

10 for commit in java_commits:

11 time, author = Commit_info(commit).time_author

12 year = datetime.fromtimestamp(int(time)).year

13 year2commit_count[year] += 1

14 year2author_count[year].add(author)

15 print(year2commit_count)

16 for year, authors in year2author_count.items():

17 print("Year: "+ str(year) + "# of authors: " + str(len(authors)))

1 # Using Perl

2 # we can run /da3_data/lookup/showCmt.perl on every commit and extract

author and time info from there

3 # A simpler way is to utilize basemap c2taFullP.{0..31}.tch (i.e., the

basemap from commit to author and commit time) by calling Cmt2ATShow.

perl (see source code in Appendix B)

4 zcat JavaCommits.gz | perl Cmt2ATShow.perl | gzip > JavaYearAuthor.gz

5 # count records for each year, we get the number of commits by year. E.g

., for year 2014:

6 zcat JavaYearAuthor.gz | grep "^2014;" | wc -l

7 # after deduplication, count records for each year and we get the number

of authors by year. E.g., for year 2014:

8 zcat JavaYearAuthor.gz | sort -u | grep "^2014;" | wc -l
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In fact, directly using language maps is more efficient when implementing this analysis,

since language specific information have already been extracted from base maps and stored

as language maps for use.

1 # Alternatively, we use language map: c2bPtaPkgPjava, which consists of commit,

blob, project name, time, author, etc.

2 zcat c2bPtaPkgPjava.{0..31}.gz | cut -d\; -f3,4 | gzip > JavaYearAuthor.gz

3 # now follow the similar approach in Perl example shown above to get the final

result

4.9 Operationalize SSC Networks

To best of our knowledge, no prior research have been conducted on constructing and

analyzing SSC, nor approach has been raised to operationalize SSC. Therefore, we propose

our approach to operationalize SSC.

In software domain, especially in FLOSS, the basic product is source code. Source code

is produced by a group of software developer in repositories and purchased and used by other

developers to fulfill a need in their projects freely under particular licenses[94]. Based on

granularity size, we divide source code into different categories: the smallest source code is a

piece of code snippet that occupies one part of a file; the moderate source code is a file that

usually serves as a component in implementing specific functionality; the large source code

is a project or package that provides a complete solution to meet a pre-defined need. We

refer the above three categories of source code as code snippet, file, project in this thesis.

The second type of entity in SSC, the producer, is software developer. In FLOSS,

especially for those hosted on open-source platforms, global software developers join together

and each of them devote his/her wisdom and contribute code snippet to a software project.

During producing process, software developers may incorporate source code from other

projects, e.g., a developer may reuse some of his source code from one of his own projects

or others projects, hence, product flows from one producer to another, from one project to

another one.
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Another type of entity that is hidden inside source code is tacit knowledge[90]. It refers

to the kind of knowledge that is difficult to transfer to another person by means of writing it

down or verbalizing it. When new software developers join a project, he/she needs to learn

at least part of source code in that project before being able to make contribution, which

is sometimes referred to as overheads. During this learning process, new developers may

gain insights from the source code on design pattern, components structure, interactions of

components and so on. These insights require a significant amount of time being spent on

source code before being obtained, understood and transferred. We refer to these types of

knowledge as tacit knowledge in this paper.

Based on these entities, our next step is to construct SSC networks to show an overarching

view of FLOSS ecosystem, to illustrate complicated interactions among same and different

types of entities, and to seek solutions for various kinds of problems being faced in software

domain. We propose three types of SSC networks: dependency network, code reuse network

and knowledge network.

• In dependency network, every node is a project. A link represents the dependency

relationship from one project or package to another package. When a project imports

or installs a package to leverage some of its functions, a dependency/link is formed

between these two nodes.

• In code reuse network, every node is a project. A link is a file that is used by multiple

projects. When a file in a project is reused by another project to fulfill similar need, a

code reuse link is formed between these two nodes.

• In knowledge flow network, every node is a developer. A link represents the knowledge

flowing from one developer to another one. When a developer joins a project,

understands its source code, and contributes new piece of code, he or she gains

knowledge. The code made by this developer may be read and understood by

subsequent developers, along which knowledge flows from that previous developer to

subsequent developers.

These SSC networks provide great values in managing software risks, tracing vulnerabil-

ities and detecting developers’ relations. For example, when a vulnerability is discovered, a
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basic question raised to minimize its potential damage is to determine its effect damage areas,

i.e., what software projects are or may be in danger. If the vulnerability lies in a package, we

can quickly find all influenced packages and projects by marking all its direct and indirect

dependencies (downstreams) through dependency network. If the vulnerability is discovered

in a specific file, we can identify affected projects by seeking them in code reuse network

where that file is used. Moreover, if taking developer into consideration, a more complete

approach is to find authors of this file and find all projects where these authors contributed

since these authors may introduce this vulnerability to other projects they participate, and

this approach utilizes knowledge flow network.

4.10 Examples of SSC Networks for Illustration

4.10.1 Dependency Network in R CRAN Ecosystem

We start constructing the dependency network by exploring R CRAN ecosystem. R package

list is scraped down from R CRAN official website which contains around 11K packages. We

used data from METACRAN5 which provides the latest R CRAN metadata containing the

dependency information. There are five types6 of dependency keywords in R CRAN and we

considered ‘imports’ and ‘depends’ as dependency, because packages listed in ‘imports’ must

be installed in advance and ‘depends’7 is the old name for ‘imports’.

By creating a link from individual package to each dependency in its ‘imports’ and

‘depends’, we construct a dependency network for R CRAN in Fig 4.3. Packages with

degree less than 20 are removed which ends up with 421 (1.9%) nodes and 3235 (6.6%) edges

in Fig 4.3. Node size is proportional to its betweenness centrality value, and the color is

based on modularization algorithm8 of gephi.

5METACRAN is a collection of services around the CRAN repository of R packages. https://www.r-
pkg.org/about

6http://r-pkgs.had.co.nz/description.html
7Prior to the rollout of namespaces in R 2.14.0, Depends was the only way to ‘depend” on another

package. Now, despite the name, you should almost always use Imports, not Depends.
8https://github.com/gephi/gephi/wiki/Modularity

62

http://r-pkgs.had.co.nz/description.html


Figure 4.3: R CRAN dependency network.
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As we can see (you might need to zoom in) from Fig 4.3, ggplot2, Hmisc, reshape2,

stringr, Rcpp and rgl are core packages based on betweenness centrality. These packages

provide different functionalities in R:

• ggplot2 and rgl are tools to draw 2D and 3D graphics.

• Hmisc9 is like a grocery store which contains many functions useful for data analysis,

high-level graphics, utility operations, variable clustering, etc.

• reshape2 facilitates data transforming between wide and long formats.

• stringr provides a full set of functions dealing with string/character processing.

• Rcpp10 offers a seamless integration of R and C++ by enabling maps between R objects

and C++ equivalents.

4.10.2 Knowledge Network in Emberjs Ecosystem

We begin constructing the knowledge flow network by investigating the expertise flow in a

popular web front side framework – emberjs. Web front side framework has been attractive

for a number of years and many open source developers already participated in to contribute

their expertise which makes emberjs an ideal software to illustrate how complicated a

knowledge flow network could be. In Fig 4.411, the productive developers are marked out

with a string of author name and email separated by a bar.

4.10.3 Code Reuse Network in Emberjs Ecosystem

We start the construction of the code reuse network by mining code reuse pattern of

emberjs. We collected all the blobs(git object preserving the content of a file) for emberjs12,

searched for projects that share blob(source file) with emberjs and investigated blobs that

9https://cran.r-project.org/web/packages/Hmisc/index.html
10https://cran.r-project.org/web/packages/Rcpp/index.html
11Node size and color are set in the same way with Fig 4.3. Note that several labels have been adjusted

to fit in page
12https://github.com/emberjs/ember.js
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Figure 4.4: Knowledge Flow Network for Emberjs
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span multiple projects. These projects were gathered and categorized into different groups

indicating different code reuse patterns:

• Build tools: rake – make file for Ruby on Rails.

• Testing: qunit – a testing framework.

• Runtime: jQuery – a JavaScript library.

• Framework: epf – emberjs Persistence Foundation.

• Prior incarnations: SproutCore/Amber.js – early name for the emberjs project.

• Hard forks: innoarch/bricks.ui – a hard fork of emberjs that was then developed as a

separate project.

• Tutorials: cookbooks/nodjs: – early code examples.

• Package manager: package.json – a file for NPM package manager.
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Chapter 5

Risk Mitigation from SSC
1

5.1 Overview

Various researches in software domain are enabled and enhanced by leveraging the joining

power from SSC concept and WOC infrastructure. We introduced a group of applications

in Chapter 4. In this chapter, we evaluate SSC from the perspective of risks, i.e., if SSC is

helpful in mitigating risks in OSS community. To exemplify the benefit of SSC on reducing

risks, we look into a specific research domain, the analysis of software technologies adoption

among developers, and show how the findings can reduce the risk of abandonment from the

perspective of a user downstream and the risk of low adoption from the perspective of the

producer upstream.

A brief summary of the content in this chapter is presented below:

• Motivation: The question of what combination of attributes drives the adoption of

a particular software technology is critical to developers. It determines both those

technologies that receive wide support from the community and those which may be

abandoned, thus rendering developers’ investments worthless.

1This chapter, in part, is a reprint of the material as it appears in IEEE Transactions on Software
Engineering, titled “ A Methodology for Analyzing Uptake of SoftwareTechnologies Among Developers”
(2020). Authors: Yuxing Ma, Audris Mockus, et al. The dissertation author was the primary investigator
and author of these two papers. Copyrights of both papers are held by Yuxing Ma and Audris Mockus.
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• Aim and Context: We model software technology adoption by developers and provide

insights on specific technology attributes that are associated with better visibility

among alternative technologies. Thus, our findings have practical value for developers

seeking to increase the adoption rate of their products.

• Approach: We leverage social contagion theory and statistical modeling to identify,

define, and test empirically measures that are likely to affect software adoption. More

specifically, we leverage a large collection of open source version control repositories

(containing over 4 billion unique versions) to construct a software dependency chain

for a specific set of R language source-code files. We formulate logistic regression

models, where developers’ software library choices are modeled, to investigate the

combination of technological attributes that drive adoption among competing data

frame (a core concept for a data science languages) implementations in the R language:

tidy and data.table. To describe each technology, we quantify key project attributes

that might affect adoption (e.g., response times to raised issues, overall deployments,

number of open defects, knowledge base) and also characteristics of developers making

the selection (performance needs, scale, and their social network).

• Results: We find that a quick response to raised issues, a larger number of overall

deployments, and a larger number of high-score StackExchange questions are associated

with higher adoption. Decision makers tend to adopt the technology that is closer

to them in the technical dependency network and in author collaborations networks

while meeting their performance needs. To gauge the generalizability of the proposed

methodology, we investigate the spread of two popular web JavaScript frameworks

Angular and React, and discuss the results.

• Future work: We hope that our methodology encompassing social contagion that

captures both rational and irrational preferences and the elucidation of key measures

from large collections of version control data provides a general path toward increasing

visibility, driving better informed decisions, and producing more sustainable and widely

adopted software.
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5.2 Introduction

Open source has revolutionized software development by creating and enabling both a

culture and practice of reuse, where developers can leverage a massive number of software

languages, frameworks, libraries, and tools (we refer to these as software technologies) to

implement their ideas. Open source allows developers, by building on the existing work of

others, to focus on their own innovation [114, 115, 66, 116], potentially reducing lead times

and effort. This approach, however, is not absent of risks. For example, if a particular

technology chosen by a developer is later supplanted by another, incompatible technology,

the support for the supplanted technology is likely to diminish. Reductions in support for

the supplanted technology result in increased effort on the part of the developer to either

provide fixes upstream or to create workarounds in their software. Furthermore, the value of

the developer’s creation to new downstream projects may diminish in favor of the now more

popular alternative technology. As a consequence, both the importance of a developer’s

product and their reputation may suffer. To remedy these two risks, developers must

understand how attributes of their software products may be perceived among potential

and actual downstream adopters (consumers of the technology), especially in relation to

alternative, competing technologies these adopters may have. It is natural, therefore, to

adopt the position that open source software development should be investigated from a

supply chain perspective, which also pertains to distributed decision and supply networks

among different stakeholders. We refer to the collection of developers and groups (software

projects) producing updates (patches and new versions) of the source code as a Software

Supply Chain (SSC) [56, 41]. The upstream and downstream links from project to project

are represented by the source code dependencies, sharing of the source code, and by the

contributions via patches, issues, and exchange of information. While the product adoption

in supply chains has been well studied [59, 61, 96, 20], little is known or understood about

how developers choose what components to use in their own software projects.

As a complex dynamical system, every player in the open source ecosystem may have their

specific set of preferences or biases, which can affect the ultimate outcome of wide (or narrow)

adoption and/or entire abandonment of formerly popular technologies. These decisions are
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not only based on technical merit but the availability and accessibility of relevant information

along with the tastes of consumers(adopters). Furthermore, these SSC networks may severely

limit developer choices at the particular point in time when they need to make decisions on

which components or technologies to use based on what components they are aware of and

how much time or inclination they have to investigate the relative merits of the possible

choices. This suggest the potentially strong influence of default choice well documented in

behavioural economics. Hence, in contrast to common conventions, we should not simply

model the preferences of individual developers but must also take into account the complexity

of the supply networks and their specific position within them.

We want to address this major gap in knowledge empirically by using a very large data

source comprising version control data of millions of software projects. Our methodology

involves using this data to construct software supply chain networks, identifying software

technology choices, theorizing about factors that characterize the developer and the

technologies they chose, and finally fitting and interpreting the models for specific technology

choices and, thus, characterizing the implicit primary factors (social, behavioural, and

rational) they may use to make their decision.

Despite the practical and theoretical importance of the question how developers make

technology choices, the extant literature does not offer theoretical guidance on this subject.

We, therefore, leverage social contagion theory, which has been effective, among other

things, in clarifying key aspects of organizational adoption of technology [6, 98]. Social

contagion theory mimics models of the spread of contagious diseases but apply them in the

behavioral/social context instead of the physiological one. The first key concept is exposure

or how widespread the infectious agent is in the population. In our case the agent is a specific

technology and the population is the entire collection of FLOSS repositories. Exposure is

critical in epidemiology because without exposure a disease can not spread. This brings us

to

RQ1: Does the exposure to a technology, such as the number of FLOSS repositories in

existence, the rate at which new repositories are adopting this technology, or the number of

high-score questions on StackExchange affect the decisions of the developers to adopt that

technology?
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The second key concept is infectiousness: a highly virulent agent is more likely to spread

in a population. We deal with technologies (groups of packages), so in our case we would

like to establish:

RQ2: Will extremely attractive technology (with few open issues, short response times to

issues or pull requests, heavy activity and many authors), be more likely to be adopted?

The final concept is proximity: some infectious agents may not survive the travel through

air or physical barriers, thus halting their spread. In our case, the distance from a developer

to a technology is not physical, but it may be represented by the technological constraints

(lack of compatibility with other technologies the developer already uses), need for certain

performance characteristics, or a social distance to collaborators who are working with other

developers already exposed to the technology or a related one. Hence:

RQ3: Will proximity of a developer or a project to a technology increase the rate of

adoption? More specifically, RQ3a: will the proximity of a developer to a related technology

used by a developer increase the chances of adoption; RQ3b: will the proximity of a

developer to collaborators who already use the technology or a related one increase the

chances of adoption?; RQ3c: will the performance requirements of the project a developer is

working on increase the chances of adoption of a technology that has the desired performance

attribute?.

To answer RQs, we need to collect data on the actual choices made by developers,

operationalize key theory-based measures, and reconstruct the past states (historical states

before adoption) of all public software projects that may choose the technology under study.

For example, for a project that chooses Technology A in January 2014, we need to establish

how many other projects have used A before that date (exposure), what average response

time to issues the project had at that time (infectiousness), and what actions the developer

making the choice to add the dependence had prior to that point in time, including her social

network, technology network, etc.

To exemplify the proposed methodology, we investigate the rapidly growing data-science

software ecosystem centered around the R language. One of the key technology choices in this

area are the data structures used to store data (in the data-science sense). R has two major
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competing technologies implemented in packages2 data.table and tidy. (a more detailed

introduction of these two packages is given in Sec. 5.5). To gauge the generalizability of the

proposed methodology, we applied3 our approach to investigate the spread of two modern

popular web JavaScript frameworks Angular and React.

Our research provides several theoretical and practical innovations. From the theoretical

standpoint, the novelty of our contribution first lies in introducing social contagion theory

that provides first-principles based methods to construct hypotheses and to determine

measures that should affect technology adoption. The second novelty is the context in

which we investigate technology choices, i.e., a complete SSC [19, 40], not restricted to a set

of projects or ecosystems. Third, we use regression models to understand how macro trends

at the scale of the entire SSC emerge from actual decisions the individual developers make

to select a specific software technology. More specifically, as a result of contextualizing social

contagion theory through SSCs, our approach provides novel measures, such as proximity in a

dependency network and authorship network, questions and answers with high score in Q&A,

performance needs, and total deployments, that strongly affect the spread of technology and

that were not used in prior work on library migration.

From the practical standpoint, our contribution consists of proposing a method to explain

and predict the spread of technologies, to suggest which technologies are more likely to spread

in the future, and suggest steps that developers could take to make the technologies they

produce more popular. Developers can, therefore, reduce risks by choosing technology that

is likely to be widely adopted. The supporters of open source software could use such

information to focus on and properly allocate limited resources on projects that either

need help or are likely to become a popular infrastructure. In essence, our approach

unveils previously unknown critical aspects of technology spread and, through that, makes

developers, organizations, and communities more effective.

In Sec. 5.3 we introduce the diffusion of innovation, social contagion, and the application

of choice models. In Sec. 5.4, we describe the dataset and how we operationalize software

supply chain. Choice model theory and our candidate technology are introduced in Sec. 5.4.4

2We use ‘package’ in the rest of our paper as a synonym for ‘technology’, since most software technologies
are implemented in package format for use and ‘package’ is more appropriate to use in analysis.

3Source code and result are provided in https://github.com/ssc-oscar/PackageAdoptionAnslysis
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and Sec. 5.5.1 respectively. In Sec. 5.5, operationalization of attributes of choice model is

illustrated. Sec. 5.6 describes and interprets the result of applying the choice model. Related

work is discussed in Sec. 5.8 and major limitations are considered in Sec. 5.7. We summarize

our conclusions and contribution in Sec. 5.9.

5.3 Conceptual background

We draw on methodologies from a diverse set disciplines. The phenomena we are

investigating is often called adoption [10] or diffusion of innovation [92]. Both theoretical

approaches model how products or ideas become popular or get abandoned. We would like

to fit such models and, in order to do so, find relevant set of predictors that have theoretical

justification. Fichman [42] considered how internal factors such as resources and organization

predict innovations in commercial enterprises, and DiMaggio [31] included the factor of

environment as well. The adopters of the technology may influence non-adopters over time.

Angst et al. [6], use the concept of social contagion [16], which consists of observation,

information transmission, and learning to study spread of electronic health records. These

concepts are familiar to any open source developer. More specifically, in addition to purely

social contagion, we also have technical dependencies that act as strong constraints on

developer actions. The signaling theory applied for social coding platforms [25, 110] provides

some specific guidance as to what may motivate developers to chose one project over another.

Many of the actions developers take on GitHub are focused on building or maintaining their

reputation, hence they pay a particular attention to measures such as activity, numbers of

participants, or “stars”4.

The basic premise of social contagion theory is that developers may observe the actions

and decisions of others, communicate them, and learn to emulate them over time. This

premise implies that groups and individuals who are in social and spatial proximity to

prior adopters are more susceptible to the influence of prior adopters of technology. This

susceptibility (synonymous with potency or infectiousness of influence) is likely to result

4placing a star on a GitHub repository allows a developer to keep track of projects they find interesting
and to discover similar projects in their news feed.
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in an increased likelihood to adopt the same technology [6]. Notice, that the susceptible

to influence of prior adopters represents non-rational behaviour. Rational behaviour would

require developer to choose the best technology irrespective of social influences. It may

also represent cognitive bias of the default choice. The developer may not know about the

alternatives if their social or technical networks do not present them with an encounter

with alternatives. This would represent the irrational bias toward default choice. These

precursors of spread, if measured and calibrated with the actual level of technology spread,

would provide the relative importance of each factor in driving the adoption and provide

the understanding to help developers choose technologies wisely and provide hints on how to

make their own technology more widely adopted. Fortunately, the mathematical adoption

models have been developed and refined over time. A variation of multinomial regression

models also called choice models[75] can be used to describe the behavior of a decision

maker given a set of alternatives. Choice models have been used successfully in the fields of

marketing [62, 55, 103, 44] and economics [76, 11, 100] to understand how consumers make

choices. Adapting and applying these regression models to technology adoption, we focus on

a developer, or more precisely, a software project as a decision maker. The actual decision

is operationalized as the first among the alternative technologies that a project in a commit

modifying one of the files within a repository. As with the social contagion theory, two types

of predictors can be included: properties of the choice (i.e., the technology) and properties

of a decision maker (i.e., the project or individual developer).

Equipped with this theoretical and modeling framework, we set out to address RQ1 and

RQ2 by empirically characterizing the spread of software technology through analysis of a

very large collection of version control data introduced in [73] which is referred to as WOC-

DATA in this paper. WOC-DATA is used to construct the SSC [53, 70] by determining

dependencies among software projects and developers, then by characterizing these projects

according to their technical characteristics and supply chains. The social contagion and

signaling theories allow us to select meaningful measures for the decision makers and for

their choices.
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5.4 Constructing software supply chains

We utilize all Git objects (1.1 billion commits and 4 billion of blobs and trees) from WOC-

DATA to construct the relevant supply chain, social, and adoption measures. For our analysis

we create mappings among these objects and their attributes, e.g., filename to associated

blobs.

5.4.1 Measuring the dependency network

While many types of static dependencies exist, here we focus on explicit specification of

the dependency in the source code. For example, ‘import’ statements in Java or Python,

‘use’ statements in Perl, ‘include’ statements in C, or, as is the case for our study, ‘library’

statements for the R language.

We analyze the entire set of 4 billion blobs existing in the database at the time of the

analysis using following steps:

1. Use file to commit map to obtain a list of commits (and files) for all R language files

by looking for the filename extension ‘.[rR]$’

2. Use filename to blob map to obtain the content for all versions of the R-language files

obtained in Step 1

3. Analyze the resulting set of blobs to find a statement indicating an install or a use of

a package:

• install\.packages\(.*"PACKAGE".*\)

• library\(.*[\"’]*?PACKAGE[\"’]*?.*\)

• require\(.*[\"’]*?PACKAGE[\"’]*?.*\)

4. Use blob to commit map to obtain all commits that produced these blobs and then

use the commit to determine the date that the blob was created

5. Use commit to project map to gather all projects that installed the relevant set of

packages
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Figure 5.1: Project discovery
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These steps are illustrated in a flowchart in Fig. 5.1. In Fig. 5.1, the rectangular boxes

represent inputs and outputs, and ovals represent maps or dictionaries we utilized in this

study. f2b stands for filename-To-blob map, b2cnt stands for blob-To-content map, b2cmt

stands for blob-To-commit map, and cmt2prj for commit-To-project map. The number on

the left side represents the unique number of corresponding objects.

A similar approach can be applied to other languages with suitable modification in the

dependency extraction procedures, since different package managers or different languages

might require alternative approaches to identify dependencies or the instances of use.

In addition to dependencies, we also need to obtain measures that describe various aspects

of social relationships among developers because the theories of adoption, such as social

contagion theory we employ, need measures of information flows among individuals as an

important factor driving the rate of adoption.

5.4.2 Measuring the authorship network

The authorship network can be viewed as the process of developers working with other

developers either by implicitly learning skills from other’s contribution (source code) or by

explicitly communicating through emails or discussion platforms. Here we focus on the

former mode of communication since the bulk of direct communication may be private. We

consider two types of links among developers. A weak link exists between a pair of developers

if they commit in at least one project that is common between them and a strong link exists

if they change at least one file in common.

5.4.3 StackExchange

StackExchange is a popular question answer website related to programming. When people

search for information there they may notice answers that suggest the use of either tidy or

data.table (discussion about choosing these packages is in Sec. 5.5.1) and, consequently,

might be inclined to incorporate one of these packages into their own code. The latest (2017-

12-08) StackExchange data dump including 57GB of posts was imported into MongoDB, out

of which 6k questions (excluding answers) were found to be related to either data.table or
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tidy by searching for these two terms in the title or the content of the post. We operationalize

two measures: one counts the total number of posts while another measure counts only

questions that have a score above 20 to gauge the amount of high-score content that is likely

to be referred to from search engines.

5.4.4 The Choice Model

The choice set (set of alternatives) needs to exhibit three characteristics to be able to fit

a discrete choice model. First, the alternatives need to be mutually exclusive from the

perspective of decision maker, i.e., choosing one alternative means not choosing any other

alternative. Second, the choice set must be exhaustive meaning all alternatives need to be

included. Third, the number of alternatives must be finite. The last two conditions can

be easily met in our case: Our choice set consists of two packages - data.table and tidy;

Decision makers are restricted into the group of projects in our collection where either of

those two packages is installed. To ensure the choices are mutually exclusive we model the

choice of the first technology selected.

In this paper we applied the mixed logit model to study developers’ choice over analogous

R packages (data.table v.s. tidy). While many variations of choice models exist, the mixed

logit model has the fewest assumptions on the distribution of the choice. Here we are not

trying to solve the classical choice model which, for example, assumes a complete knowledge

about the alternatives and produces implicit utility function. Instead, we simply look for

factors that strongly affect the decisions developers make, whether these factors may be

rational or related to cognitive or social biases.

5.4.5 Issues

It is reasonable to believe that the number of issues and how an issue is solved during the

development of a software package may affect a developer’s choice. This factor belongs to a

set of rational choices. To measure it we collect the issues reported during the development

of data.table and tidy packages. Since both packages are hosted on GitHub, we use
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GitHub API to scrape all issues5 reported for both packages. We collected 2.6k issues for

the data.table and 1.6k issues for the tidy.

5.5 Case study

5.5.1 Selecting candidates for study of adoption

We chose software technologies from the data science ecosystem of projects using the

R language because several of the co-authors are knowledgeable and have decades of

development experience in R, and we, therefore, do not need to seek external experts

to provide interpretations of the findings. As with most language-based ecosystems, the

core language provides only basic functionality with most of the external packages being

maintained in CRAN and Bioconductor distributions. Each package can be thought as

presenting a technology choice. Since the technologies of storing and managing data are

crucial in data science, we selected two widely used such technologies: data.table and

tidy.

Apart from the dataframe package that is a part of core R language, data.table and

tidy* are the two other most popular packages for data manipulation6. More specifically,

tidy* represents a list of packages that share an underlying design philosophy, grammar, and

data structures that are built for data science in R. Hadley Wickham, the Chief Scientist at

RStudio and the main developer of tidy*, developed a family of packages called tidyverse

to facilitate the usage of tidy* packages by assembling them into one meta package. We

extract a set of packages from tidy* that share similar functionalities with data.table

and refer to all of them here as the tidy package. This includes tidyr, tibble and readr

packages.

data.table was written by Matt Dowle in 2008 and is known for its speed and the

ability to handle large data sets. It’s an extension of base R’s data.frame with syntax and

feature enhancements for ease of use, convenience and programming speed. It’s built to

5Notice that GitHub API treats pull requests as issues (https://developer.github.com/v3/issues/), and
we dropped the pull requests from all collected issues.

6Based on WOC-DATA in https://bitbucket.org/swsc/overview/src/master/deps/README.md

79

https://bitbucket.org/swsc/overview/src/master/deps/README.md


be a comprehensive, efficient, self-contained package, to be fast in data manipulation, and

it has a succinct DSL (domain-specific language). Conversely, tidy focuses on the beauty

of function composition and data layer abstraction which enable users to pull data from

different databases using the same syntax.

In addition to the case study in R domain, we selected another case study focusing on

the Javascript ecosystem. JavaScript7 is the most popular programming language and has

been commonly used in developing web applications, where one or more web frameworks

were involved. Among all successful web frameworks, Angular and React are two of the

most successful and widely supported by big technology companies (Google8, Facebook9).

Together, the massive amounts of adoption data, similar functionalities and corporate

support from leading companies, make Angular and React a suitable comparison group

for the investigation of technology adoption. The selection of the second case study was

based on concerns about the generalizability of the findings from the R domain to other

ecosystems. We, therefore, attempted to find a case that is radically different in a number

of dimensions. We contrast the domain, scale, and governance principles in the second case

study. Specifically, the mundane data management tasks supported by data.table/tidy

and the need to create an engaging user interface in Angular/React contrast not only

the domain of application, but also the types of functionality that is being implemented.

Regarding scale, the R ecosystem is used by a relatively small number (a few thousand) of

data analysts, while the Angular/React ecosystems are used by tens of thousands of web

developers. Both tidy and data.table follow the community development model. Angular

and React, in contrast, are primarily funded by corporate sponsors.

5.5.2 Data collection

We leveraged both WOC-DATA and WOC [73] infrastructure for data collection and filtering.

According to [73], WOC-DATA approximates the entirety of public version control and

includes major forges such as GitHub, BitBucket, GitLab, Bioconductor, SourceForge, the

7https://stackify.com/popular-programming-languages-2018/
8https://en.wikipedia.org/wiki/Angular˙(web˙framework)
9https://en.wikipedia.org/wiki/React˙(web˙framework)
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now defunct Googlecode, and many others and contained over 46M projects at the time

of analysis. WOC-DATA production involves discovering [74] and cloning the projects,

extracting Git objects from each repository, and then storing these objects in a scalable

key-value database.

WOC is an open source data mining infrastructure 10 [73], which provides not only

APIs for extraction of development data on various levels for open source projects, but also

offers intermediate collections and results which are extremely useful for studying domain

knowledge. In particular, as illustrated in Fig. 5.1 and Sec. 5.4.1, we used the collection

of all R file names and maps of file-to-blob, blob-to-content, blob-to-commit and commit-

to-project to discover our targeted projects. Meanwhile, for each project, we found the

first commit in which data.table or tidy was imported by sorting the commit time. By

querying the content for this first commit, we learned the author of the commit, the commit

message, etc. We set this first commit time as the end point of our analysis for each project,

as it is at this time that the developer’s choice between data.table or tidy becomes clear.

For every targeted project, we evaluate explanatory behavior, activities, and relationships

as computed before this end point, so that the analysis considers all factors as they were at

the time the choice was made.

We further refined the list of projects because a large fraction involved forks of other

projects. One of the most typical ways to make contributions to the development of a

project on GitHub is by creating a fork of the project, making changes to this clone, and

then sending a pull request to the original project. As a result, a popular project may have

hundreds of forks that share a large portion of the source code and commit history. These

forks are not equivalent to the original projects from which these forks were created and,

therefore, were removed from consideration. To detect and delete these forks, we classify

projects based on common commits, i.e., a pair of projects are linked if they have at least

one commit in common. Based on these links, a transitive closure produces disjoint clusters.

Each cluster represents a single observation in our study. The date when the first blob

containing the focal technology was created is used as the technology adoption date for this

cluster.

10https://github.com/ssc-oscar/Analytics
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The extraction of the supply chain data for these two packages started from 1.4M R files

in the entire WOC-DATA collection, with 70K blobs (versions of these files) that contained

information pointing to the installation of either package. As a result, fewer than 20K

commits were found that produced these 70K blobs. Then by using the commit-to-project

map in WOC, we identified around 24K projects (7K for tidy and 17K for data.table) that

installed either data.table or tidy between June, 2009 and January, 2018. After removing

forks, we were left with a total of 8,303 projects (2,660 for tidy and 5,643 for data.table).

Furthermore, we removed 4,961 data.table adoptions occurring prior to June 16, 2014, the

date when tidy was first introduced. Thus, while data.table predates the introduction of

tidy, our analysis focuses on the period of time when both choices are available.

We applied a series of similar procedures (as described above for data.table and tidy)

on Angular and React, and found the list of projects, which at some point in the past have

adopted either Angular or React. The only difference in the Angular and React case is that

Javascript projects (deployed via NPM) usually record dependency information in a specific

file named ‘package.json’, and we went through all of the versions of the ‘package.json’ file in

WOC to identify projects that adopted either Angular or React. In summary, we identified

292494 projects (100894 for Angular, 191600 for React) that adopted either Angular or

React.

5.5.3 Operationalizing Attributes for Regression Models

In this section, we define and justify the variables that quantify the key attributes pertaining

to the set of software choices available to developers, as well as the characteristics of the

developers making the choices. To this end, we propose 11 variables that seek to capture

the key factors that may have influenced developers’ choice of data.table or tidy, Angular

or React. To streamline the presentation of the operationalizations of the variables in both

studies, we only describe the operationalization for the R domain and note differences, if any.

All of these attributes apply to the Javascript domain as well. These variables are listed in

Table 5.1 and described in more detail below.

# commits and authors (Cmts & Aths) are the number of commits and authors,

respectively, and aim to capture the size of a project, as project size which may affect package
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Table 5.1: Independent variables

Independent variables Annotation Category Property type Data source

CumNum the total number of projects that deployed the package exposure choice related WOC
RplGp the time gap until the first reply to an issue infectiousness choice related GitHub API
Unrslvd the number of open issues over the number of all issues infectiousness choice related GitHub API
StckExch the number of questions with score above 20 related to either package exposure choice related StackExchange dump
C boolean, indicating whether a project contains C file proximity decision maker WOC
Cmts the number of commits infectiousness decision maker WOC
Aths the number of authors/developers infectiousness decision maker WOC
Prx2TD the proximity to tidy through dependency network proximity decision maker WOC
Prx2DT the proximity to data.table through dependency network proximity decision maker WOC
AthPrx2TD the proximity to tidy through authorship network proximity decision maker WOC
AthPrx2DT the proximity to data.table through authorship network proximity decision maker WOC

adoption. Larger projects, for example, may prefer less controversial, more conservative

package choices. This is a quality of the choice, so it would most closely fit under the

“infectiousness” category according to the social contagion theory. We chose not to use lines

of code (LOC) as a measure of size, since it has a less stable distribution than the number

of commits, while, at the same time, being highly correlated with it. Operationally, for a

particular adopter, we collected all commits prior to the end point (i.e., the first adoption

of one of the two targeted packages) by applying the project-to-commit map followed by a

time point filtering. We extracted the authors of these commits and counted the number of

unique authors.

# projects of deployments (CumNum) is the overall number of project deployments

of tidy or data.table. A larger CumNum should increase the chance that a developer

would be aware of, and get exposed to, a particular package and may influence the developer’s

package adoption decision. This measure falls within the “exposure” category of contagion,

because it quantifies the chances that a developer may become a user of the technology. This

is characterized as a factor that is not rational, as the project is hypothesized to be biased

towards technology that they are more likely to encounter, not necessarily technology that

would be optimal for that project. To assess CumNum for a given package, we counted the

number of projects that adopted data.table and tidy, respectively, before a decision was

made by the developers of the package under evaluation.

# open issues over all issues (Unrslvd) can be an indicator of package quality. A

higher fraction of unresolved issues may indicate that the package has a significant number

of problems, which, like a bad review, may undermine people’s confidence in it. This is a

quality of the choice, so we hypothesize that it relates to the “infectiousness” aspect of the
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social contagion paradigm. To measure this quantity, we leveraged GitHub API to collect

all issues for data.table and tidy packages and filtered issues raised before the decision

end point for each adopting project. We count the number of unresolved issues (issues that

are still open) and normalize it over all issues raised before end point, because in general a

project tends to have more issues and unresolved ones as its age grows, and we believe the

averaged rate of unresolved issues is more reflective of a package’s maintenance and quality.

Association of c code with a project (C) is used as a proxy for the requirement for

high performance. Typically, computations that are too slow for the interpreted R language

are implemented in C to improve performance. This is a requirement of the decision maker

that would most closely fit under the “infectiousness” category because it likely indicates

a strong preference for higher performance embodied by the data.table choice. This is a

good example of a factor that may represent a rational choice for some decision makers. To

measure this aspect, we applied commit-to-file map on every commit prior to end point for

each project and filtered files with suffix ‘.[cC]’.

# related questions on StackExchange with high score (StckExch) is a proxy

for the popularity of each package. It counts the number of highly ranked (score > 20)

questions related to each package. Developers often search for answers to issues they face

and may stumble upon one of these packages presented as a solution to a problem they

are facing, thus increasing the chances that they may adopt that technology. From a social

contagion perspective this would increase “exposure”. We avoid counting the total number

of questions because most of the questions tend to be of low score11 and the search engines

may avoid including links to them, thus they do not increase “exposure.” According to

personal experience of all authors, search engines tend to avoid including links to questions

with low score if questions of higher ranks are available. This factor may be interpreted from

a rational perspective (leveraging experience of others when lacking other information), but

more appropriately, it is a great example of social bias since the developer did not engage

in due diligence, instead relying on social cues to make a technical choice. StckExch was

obtained by selecting all relevant posts in the StackExchange dump (2017-12-08), which have

11In total, only 131/1666 data.table related questions and 162/1785 tidy related questions have score larger
than 20
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data.table and tidy in the post’s title and body (including code snippet if any). Manual

inspection found that posts without R-language tag ‘<r>’ tag in the ‘Tags’ field were not

relevant and we excluded them. Furthermore, we only selected posts with score above 20.

Again, we counted posts created prior to the end point for each adopter project.

Project proximity to data.table and tidy in dependency network

(Prx2DT/Prx2TD) measure dependency networks and can be understood from the

perspective of software supply chain networks. Based on the characteristics of the software

domain, especially the open source software community, dependency networks can be viewed

as technologies (library/package) spreading from upstream (original package) to downstream

(packages where the original package was installed) and, in turn, to further downstream

packages.

We consider all downstream packages of data.table and tidy, e.g. those in the

data.table and tidy clusters respectively. We hypothesize that if a project installed a

package within the data.table cluster, then the project is more likely to install data.table

than tidy. The rationale of such a hypothesis is that if developers installed a package because

of 1)preferences for some of its functionalities or features inherited from an upstream package

or 2) the way such a package works, which is sometimes influenced by or derived from an

upstream package, then it is more likely that these developers will gravitate toward the

upstream package over other alternatives.

Based on the dependencies of R CRAN packages, the clusters of data.table and tidy

are easily constructed. More specifically, we used the METCRAN12 API and scraped meta

data for more than 11K R CRAN packages for which dependency information is available.

Table 5.2 summarizes basic information on the networks that were constructed and more

detailed information on the methodology follows.

Each downstream package in the data.table/tidy dependency network needs to be

weighted before calculating proximity of an adopting package to both data.table and

tidy. We suggest that the algorithm used to determine the weights be based on several

key principles:

12https://www.r-pkg.org/about
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Table 5.2: Network characteristics

Characteristics data.table tidy

# downstream packages 813 2203
# downstream layers 5 5
# of packages in common 636
overlap ratio 0.78 0.28

• for each downstream package, only the relative weight to the root package (

data.table/tidy) matters

• for each downstream package, the sum of its weights to both root packages is a constant

• the closer to a root package, the higher the weight that a downstream package gets

relative to that root package

We assume that each package has a weight of 1 in total. Let’s denote the packages set in

the data.table downstream network as Sd, that in tidy as St, the weight of package a

to data.table as Wad and that to tidy as Wat, the depth of package a in the data.table

network as Dad and that in the tidy network as Dat, then based on principles mentioned

above, the weights of package a are determined as follows:

• Wad = 1,Wat = 0 if a ∈ Sd & a /∈ St

• Wad = 0,Wat = 1 if a ∈ St & a /∈ Sd

• otherwise, Wad = Dat/(Dad +Dat), Wat = Dad/(Dad +Dat)

The next step is to extract the list of packages installed in each observation/project, after

which we can aggregate the weights of these packages to compute the proximity of each

project.

As we have mentioned in Sec. 5.4, various maps among Git objects have been created.

By utilizing maps of project-To-commit, commit-To-blob, and blob-To-content in sequence

and selecting the install statements in blob content via regular expressions similar to those

mentioned in Sec. 5.4.1, we get the list of packages installed in each project. From this set,

we obtain projects that are either in data.table or in tidy clusters.
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For a project p, denote the list of packages obtained in last step as Lp and denote a

package in that list as a. Then the proximity of a project p to data.table, denoted as Ppd,

and to tidy as Ppt, can be computed:

Ppd = ΣLp
a Wad

Ppt = ΣLp
a Wat

(5.1)

To summarize the process described above, we first measured the weight of each

downstream package in either data.table or tidy by leveraging the R package dependency

networks and the formulas above. Secondly, by following a similar flow in Fig. 5.1, we

extracted all R packages that were adopted in the commits prior to end point where one of

the focal packages was first adopted. Finally, we calculated the proximity to data.table

and tidy by summing up the weights of all downstream packages for each project. Notice

that a project’s downstream packages that were not in data.table or tidy downstream set

were dropped.

Project proximity to data.table and tidy in authorship network

(AthPrx2DT/AthPrx2TD) represents the proximity of a developer to a focal project as

measured through their author network. It can be explained from the perspective of social

contagion. Social contagion refers to the propensity for a certain behavior to be copied by

others. Consider the fact that developers in GitHub are linked through common projects

they are devoted to, where information and ideas are shared and transmitted from one to

others, an underlying social network emerges. Organizational actions are deeply influenced

by those of other referent entities within a given social system, according to DiMaggio [31]:

non-adopters are influenced by adopters over time, and they influence the behavior of other

non-adopters after their own adoption [6] if thinking of our case as package adoption. In

short, the adoption of data.table/tidy is a temporal process of social contagion.

We attempt to look for developers that are exposed to contagious packages —

data.table/tidy. These developers include not only the authors of each package

who are directly exposed inherently, but also developers who cooperate with directly-

exposed authors in other projects. Authors of other projects that are directly exposed
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to authors of data.table/tidy, are identified by applying a project-To-author map to

both data.table/tidy packages separately and indirectly-exposed authors are obtained

by combining the map of author-To-project and the map of project-To-author serially and

then applying it on each directly-exposed author.

We classify authors exposed to data.table into the data.table author cluster and those

exposed to tidy into the tidy author cluster. Projects/observations may have authors who

are in either of these two clusters and these authors may influence the choice of data frame

technology, i.e., (data.table vs. tidy). In order to estimate the impact of every author in

each cluster, we use the following weights,

• Wbd = 1,Wbt = 0 if b ∈ Cd & b /∈ Ct

• Wbd = 0,Wbt = 1 if b ∈ Ct & b /∈ Cd

• otherwise, Wbd = Dbt/(Dbd +Dbt), Wbt = Dbd/(Dbd +Dbt)

where b represents an author in a project; Cd/Ct stands for author cluster of data.table/

tidy; Dbd/Dbt refers to the distances from author b to data.table/tidy, i.e., author b’s

depths in the author cluster of data.table/tidy, 1 for directly-exposed author and 2

for indirectly-exposed author; Wbd/Wbt is the proximity of author b to data.table/tidy,

indicating author b’s impact on choosing data.table/tidy. Note that these measures are

similar to the ones used in calculating Prx2DT/Prx2TD and are based on similar principles.

After estimating each exposed author’s influence, the overall exposed authors’ influence

in project p can be measured as follows:


PApd =

Σ
Ap

b Wbd

Np

PApt =
Σ

Ap

b Wbt

Np

(5.2)

where Ap is the set of authors of project p who are in either of data.table/tidy author

cluster; Wbd/Wbt is the proximity of author b to data.table/tidy calculated in previous

step; Np is the number of authors in project p; PApd/PApt, i.e., AthPrx2DT/AthPrx2TD, is

the overall influence of exposed authors on a project p. Notice that AthPrx2DT/AthPrx2TD
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is calculated through aggregating the influence of each exposed author and being normalized

over the total number of authors in that project. The rationale for normalization is that

a project tends to have more exposed authors if it contains more authors, resulting in a

higher value for AthPrx2DT/AthPrx2TD. By normalization we remove this bias induced by

the difference in the number of authors for different projects. This factor falls clearly within

a realm of a social bias. It may also be partially explained as cognitive bias if the developer

is not aware of alternative choices.

To summarize the computation of proximity through authorship network, we started by

measuring the weight of each author who was either a co-author of data.table/tidy or had

cooperated with at least one of the authors of data.table/tidy, which was detailed above.

Then we summed up the weight of every author of a project and normalized it over the total

number of authors in this project. Again, here we applied end point filter on every step in

calculation.

Time gap between the raise of an issue and the first reply (RplGp) measures

how fast developers or maintainers of a package respond once an issue has been raised.

The timeliness of this response reflects the efficiency of package maintenance and can be

attributed to the ‘infectiousness’ category of social contagion theory and could clearly be of

interest for those deciding on which package to adopt.

The calculation of reply gap is worth discussing. We are interested in understanding how

long it takes for an issue to get its first reply after being reported. For each individual in

the study, we focus on the time period just before the key commit that includes the choice

of focal package (data.table/tidy). However, several additional obstacles that needed to

be addressed in order to measure the reply gap :

1. It is rare that an issue was raised simultaneously with the key commit (inside which

either thedata.table/tidy package is installed).

2. The timeliness of replying to an issue may vary drastically during the development of a

package, hence taking the closest issue’s reply-time as a representative is not reasonable
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3. For some issues, it took a significant amount of time to get a reply and in some cases

no reply was ever made to an issue, thus, averaging reply-time to previous issues is

problematic due to long right-censored cases.

This is a case where statistical models for survival(time-to-event) are appropriate. In this

scenario, an issue can be viewed like a patient under study with the first reply analogous

to conclusion of the medical issue or death of the patient. We aim to model the time

until reply to the reported issue, i.e., the survival time of the issue, with shorter lifetimes

indicating a more interactive development team. Irrespective of package, for each issue,

we record the time that it was submitted (timestamp recorded when the issue is raised)

and use survival analysis to model the distribution of the issue lifetimes for each package

(data.table/tidy) using the R package ‘survival’ [102]. Predictions for the reply time for

each project (observation) can be made based on data collected before the key commit. The

RplGp for a project is simply the median issue lifetime for an issue generated before a key

commit. This factor appears to be clearly related to rational choice factors as the delays in

response may cause real problems.

In practice, we extracted all issues of data.table/tidy from GitHub and measured

difference between the time an issue is first raised and the first response time. As described

above, we trained a survival model to estimate the distribution of the delay until first response

delay. The model was trained using all issues that had been raised before the current package

key commit. Those issues that had not been responded to yet were right censored in the

model fitting. The reply gap represents the median value of response times.

In summary, we note that for each project that eventually adopts one of the two focal

packages (data.table/tidy), all of the variables described in this section are calculated

dynamically using only data that occurs before the key commit. In addition, for each

observation, every predictor with choice property (Table 5.1) needs to be calculated for

both packages, e.g., Unrslvd needs to be calculated for both data.table and tidy. These

will end up being denoted as Unrslvd.datatable and Unrslvd.tidy.
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5.6 Results

5.6.1 Result of data.table VS. tidy

Table 5.3 summarizes basic statistics for independent variables analyzed in the model. We

use the R package ‘mlogit’13 [23] to fit the model using the 11 predictor variables defined

above with the response being an indicator of the package chosen.

Very high correlations among predictors (above 0.9) occurred between Prx2DT and

Prx2TD. High correlations may lead to unstable and difficult to interpret models and need

to be addressed. Since we do not have any a priori theory-derived reasoning for removing

one or the other variable, we removed Prx2DT. The modeling results remain stable if this

approach is reversed. Table 5.4 presents the resulting model fit.

Table 5.3: Summary Statistics for Independent variables (data.table VS. tidy)

Variable median mean std.dev

Cmts 3 46.83 645.68
Aths 1 2.13 8.23
C (boolean) 0 9.79e-03 9.85e-02
Prx2DT 0 0.15 0.95
Prx2TD 0 0.62 2.79
AthPrx2DT 0 6.99e-2 0.17
AthPrx2TD 0 0.11 0.24
CumNum.datatable 2.72e+03 2.66e+03 1.87e+03
CumNum.tidy 305 8.44e+02 9.12e+02
RplGp.datatable 2.09 2.16 0.33
RplGp.tidy 3.03 2.95 0.53
Unrslvd.datatable 0.29 0.28 3.23e-02
Unrslvd.tidy 0.20 0.16 7.7e-02
StckExch.datatable 130 125.76 6.53
StchExch.tidy 158 152.57 10.14

Below we summarize findings for each predictor variable separately.

# related questions on StackExchange with high score (StckExch): the

coefficient is 0.2, indicates that the number of high score questions on StackExchange is

associated with the likelihood that a project would adopt the respective technology. The

association is positive, holding other factors equal. For illustration, if the number of high

score questions increases by 6 questions (1 std. dev.) from a median value of 130 for

13https://cran.r-project.org/web/packages/mlogit/vignettes/mlogit.pdf
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Table 5.4: The Fitted Coefficients. (data.table VS. tidy)
McFadden[75] R2 = 0.14 n = 7k

Variable Estimate Std. Error p-val

tidy:(intercept) -6.07 0.28 2.20e-16
CumNum 1.56e-04 1.44e-05 2.20e-16
Unrslvd 2.45 0.78 1.59e-03
RplGp -0.38 4.88e-02 5.11e-15
StckExch 0.27 1.26e-02 2.20e-16
tidy:Cmts -3.95e-04 2.22e-04 7.54e-02
tidy:Aths -3.02e-04 7.12e-03 0.97
tidy:C -0.67 0.28 1.82e-02
tidy:Prx2TD 0.17 2.87e-02 6.79e-10
tidy:AthPrx2TD 1.27 0.14 2.20e-16
tidy:AthPrx2DT -7.06e-02 0.19 0.72

data.table, the estimated probability of choosing data.table increases from 0.58 to 0.87,

while holding all other predictors at their median values.

This result aligns well with the social contagion theory that posits that increased adoption

is a consequence of increased exposure. Surprisingly, including an additional predictor that

counts the total number of questions (of high and low score), shows no statistical significance.

It appears to be counter-intuitive as more exposure should increase adoption. However, when

developers want to solve an issue related to the functionality of the R data.frame, they

often may not search on StackExchange, but use a general search engine and follow links to

StackExchange. The total number of posts, therefore, may be not visible to developers, only

the set of posts that the search engine deems to be of sufficiently high score. The number

of posts (questions), may, therefore, not be a good proxy of exposure. As such, the total

number of posts of low-score questions, in fact, appear to discourage developers from using

a package.�

�

�

�

Finding 1: We found that exposure measured via the total number

of questions on StackExchange had no impact on adoption, while the

number of high score questions has a strong and positive correlation with

increased adoption.

# open issues over all issues (Unrslvd): the coefficient is 2.5, indicating that the

higher the ratio of unresolved issues a package has, the more likely it would be adopted.

While it appears to be counter-intuitive from the perspective that unresolved issues may
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indicate a lack of attention from maintainers. However, the causal relationship may go

the other way: the increased interest from users when a package becomes popular among

developers, may lead to more contributions in the form of issues, and may exceed packages

developers’ processing capacity, which results in a larger ratio of open(unresolved) issues.

In short, the ratio of unresolved issues over all issues might indicate high rates of adoption

especially in the early stages of the projects when the total number of issues is low.�




�

	

Finding 2: We found that infectiousness of a package as measured via

the fraction of unresolved issues, is associated with a higher adoption rate

for that package.

Project proximity to tidy in authorship network (AthPrx2TD): the coefficient is

1.3, indicating that the closer a project is to authors of the package tidy vis-a-vis the author

network, the more likely they are to choose tidy over data.table. If the proximity to tidy

in the author network increases by one standard deviation of 0.24 from a median value of

0 (e.g., a project that has four authors and one of them cooperates with tidy’s developers,

but not with any of data.table’s developers), the estimated probability of choosing tidy

increases seven percent from 0.42 to 0.49. This finding supports the basic premise of the

social contagion hypothesis that developers’ choices are affected by the environment they

are in. �




�

	

Finding 3: Proximity as measured by the fraction of authors who are

either developers of the package to be adopted or who work with at least

one developer of that package, increase the chances of adoption.

This may be a consequence of authors who have direct expeience or are familiar through

word-of-mouth. However, Project proximity to data.table in authorship network

(AthPrx2DT) is not statistically significant. One reason may be that data.table is a

more widely deployed package and the deployments may play a larger role than the social

connections. Also, each community of users and developers may be different. For example,

the tidy community may have more social interactions than the data.table community.

Furthermore, the exposure in the tidy community may come from a much larger set of

93



packages in the tidyverse, while data.table does not have an equivalent brand that

involves a wider variety of tools beyond data handling.

Association of c code with a project (C): the coefficient is -0.6, indicating that a

project containing at least one C file is less likely to choose tidy. The estimated chances

of choosing data.table increase by 15 percent from 0.58 to 0.73. The finding is consistent

with our hypothesis that if an R project has a need for performance, as evidenced by the use

of functionality being developed natively in the C language, then it is more likely to choose

the higher performance of data.table.�




�

	

Finding 4: Proximity, as measured by the project’s need for

performance, is associated with adoption of packages that emphasize high

performance

Time gap between the raise of an issue and the first reply (RplGp): the

coefficient is around -0.4, indicating that the more quickly a package’s issue gets a response,

the more likely that this package will be chosen. If the number of days until first response to

an issue increases by 0.21 days (1 std. dev.) from a median value of 1.4 for data.table, the

estimated chances of a project choosing data.table decrease by two percent from 0.58 to

0.56 assuming all other variables remain at their median values. The time until first response

is not as readily visible to developers as most other measures that we used, so developers may

not be able to observe it when making a choice. However, it appears to be a reasonable proxy

for project’s reactions to external requests that could be easily gleaned by reading through

some of issues on the issue tracker. A well maintained package is more likely to respond

to new issues quickly and thoroughly, leaving a good impression and, thus, increasing the

likelihood of being adopted. This has implications for designing project dashboards intended

to make key project attributes more visible.�
�

�
�

Finding 5: Infectiousness of a package as measured by speed of response

to issues is associated with a higher adoption rate for that package.

Project proximity to tidy in dependency network (Prx2TD): the coefficient is

0.2, indicating that the closer (through a dependency network) a project is to the package

tidy, the more likely its authors are to choose tidy over data.table. If proximity to
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tidy in dependency network increases by one standard deviation of 2.8 from a median value

of 0 (e.g., a project installs/uses three packages that are in first layer downstream from

tidy), the chances of choosing tidy go up by 12 percent from 0.42 to 0.54. It supports our

hypothesis that the supply chain influences projects’ choices. A project tends to install a

specific package if it has already installed other packages that also depend on it, i.e., if a

project uses downstream dependencies of a package, it is more likely to use the package itself

rather than other alternatives. Being familiar with downstream packages may reduce the

overhead or learning curve required for an upstream package, leading to an advantage over

other choices.�
�

�
�

Finding 6: Proximity to a package as measured via technical

dependency networks is associated with a higher adoption rate.

# projects of deployments (CumNum): the coefficient is 1.4e-4, indicating that

a larger number of deployments of a package in the past will make it more likely to be

adopted. If the number of deployments increases by one standard deviation, 1870 projects,

from a median value of 2660 projects for data.table, the estimated chances of choosing

data.table go up by seven percent from 0.58 to 0.65 for a project holding all other values

at the median. A larger number of overall deployments, on one hand, increases the chance

for a package to be known by adopters. On the other hand, from the perspective of adopters,

more deployments usually insinuate a stable and mature product (though it is not clear if

the number of deployments is visible to a developer), and enhances adopters’ confidence in

this package. Either of these reasons justifies adoption of the widely deployed package as

predicted by the social contagion theory.�
�

�
�

Finding 7: Exposure to a package that is widely deployed is associated

with a higher adoption rate.

We also find that the number of authors in the adopting project does not affect the choice

of technologies. Social contagion theory does not suggest that this predictor should have an

effect, but it could be that project activity (which has a substantial correlation with the

number of authors), may already account for the differences in propensity to chose tidy

over data.table making the variation in the number of authors statistically insignificant.
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Finding 8: We did not find statistically significant association between

infectiousness as measured via the number of commits and adoption

propensity.

We achieved a McFadden14 R2 of 0.14, which is a good fit according to McFadden[75].

(Notice that the R package ‘mlogit’ use McFadden R2 instead of R2 to estimate fitness of

the model because logit models do not generate the sums-of-squares needed for standard R2

calculation.)

Regression models are explanatory, but we can also use them to do prediction. The 10-

fold cross-validation done by randomly splitting projects into 10 parts and fitting the model

with predictors listed in Table 5.4 on nine parts and predicting on the remaining part yielded

a reasonable AUC of 73%. Average accuracy was 70% with balanced Type I and II errors

(obtained by choosing predicted probability cutoff of 0.49).

Finally, it is worth noting that out of six predictors that were statistically significant,

only CumNum, RplGp, and C were clearly grouped into predictors that would support

rational choice. The remaining three predictors primarily reflect a mixture of social and

cognitive biases associated with social preference or default choice when alternatives are not

known. If we include the effort needed to obtain the necessary information into the utility

function, these social and cognitive biases can, of course, be explained rationally as well.

Based on the findings mentioned above, we derived a list of recommendations for package

developers and users: To increase the popularity of a package, package developers should

maintain quick response to users’ questions and concerns such as raised issues on development

platform; package development team should involve active developers, especially authors

of existing packages, to have a broad author network; package developers should choose

popular packages among alternatives (when there is a need) to use. To choose a popular

(right) package among alternatives, users should choose the package with more high score

questions on Q&A website such as StackExchange; users should choose the package with

better maintenance such as response speed to raised issues and questions on development

platform; users should choose the package that is more widely used. Counter-intuitively,

14https://stats.stackexchange.com/questions/82105/mcfaddens-pseudo-r2-interpretation
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packages with a large number of outstanding issues should also be preferred as they might

command a more active or larger contributor community.

5.6.2 Result of Angular VS. React

The basic statistics are shown in Table 5.5. We fitted the same model on this dataset and

show the result in Table 5.6. (Notice that we use abbreviation ‘AG’ for Angular and ‘RT’

for React)

Table 5.5: Summary Statistics for Independent variables (Angular VS. React)

Variable median mean std.dev

Cmts 1 13.23 315.07
Aths 1 1.21 3.12
C (boolean) 0 8.81e-04 2.96e-02
Prx2AG 0 7.54e-05 1.22e-02
Prx2RT 0 2.19e-04 1.65e-02
AthPrx2angular 0 0.14 0.25
AthPrx2react 0 0.14 0.25
CumNum.angular 1.0e+05 7.66e+04 3.35e+04
CumNum.react 5.05e+04 6.85e+04 6.27e+04
RplGp.angular 0.47 0.49 0.12
RplGp.react 0.44 0.44 4.83e-02
Unrslvd.angular 5.77e-02 7.42e-02 3.37e-02
Unrslvd.react 7.83e-02 9.19e-02 5.04e-02
StckExch.angular 3272 3.03e+03 4.65e+02
StchExch.react 1213 1.05e+03 2.91e+02

Table 5.6: The Fitted Coefficients. (Angular VS. React)
McFadden[75] R2 = 0.45 n = 292k

Variable Estimate Std. Error p-val

react:(intercept) -12.68 0.10 2.20e-16
CumNum 2.02 1.08e-02 2.20e-16
Unrslvd -27.28 0.39 2.20e-16
RplGp -0.50 5.92e-02 2.20e-16
StckExch -7.27e-03 4.95e-05 2.20e-16
react:Cmts 2.05e-04 2.73e-05 6.48e-14
react:Aths -3.94e-02 3.24e-03 2.20e-16
react:C -0.24 0.19 0.21
react:Prx2RT -1.67 0.32 3.04e-07
react:AthPrx2RT 1.37 3.03e-02 2.20e-16
react:AthPrx2AG 0.18 2.83e-02 7.32e-11

Below our findings are briefly summarized.
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CumNum (total number of projects using the package), RplGp (time it takes to

respond to user issues) are both significant and have coefficients pointing in the same

direction as the tidy and data.table study.

Unrslvd (# open issues over all issue) is significant but the coefficient is negative,

which indicates that unlike in the case of tidy and data.table, developers prefer to adopt

a technology with the lower fraction of unresolved issues. The reason such difference is

exhibited may be due to the fact that both packages have strong commercial backing, so the

developers may take this as a signal that a company is not as supportive of the product. In

R ecosystem, data.table is a completely volunteer-supported operation, hence developers

may be more forgiving to the limitations of the maintainers.

StckExch (the number of related questions on StackExchangewith high score) is

significant but, unlike in R ecosystem, has a negative coefficient. Developers in Javascript

domain may believe that a technology with more posts on StackExchange may be harder to

use or more complex. Developers in different domains may have different opinions regarding

the ‘exposure’ on StackExchange and further research on these differences would be needed

to better understand this.

From Table 5.6, we can also find that a project with larger numbers of commits and

fewer contributors are more likely to adopt React than Angular. One explanation could be

that productive developers may prefer React over Angular; thus, a more productive project

(commits count over contributor count) will be more likely to adopt React. These differences

may also reflect the different nature of projects adopting each framework that we have not

been able to capture using existing variables.

Among the four ‘proximity’ measures, only the proximity to React through author

network is statistically significant. Given the complexity of the dependencies in JavaScript

domain, the large size and the independent nature of the packages, the dependency network

may not be as important when making a choice.

5.6.3 Generalizability between the Javascript and R domains

The two case studies were intended to test the generalizability of social contagion models

in two distinct contexts that varied in terms of domain functionality, user base, scale, and
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primary governance styles. By comparing Table 5.6 with Table 5.4, we can conclude that

despite these radical differences in context there are substantial similarities.

CumNum (total number of projects using the package), and RplGp (time it takes to

respond to user issues) have the same and expected impact on adoption: more exposure from

wider past adoptions and higher infectiousness from better response rates were associated

with increased rates of adoption in both case studies.

However, Unrslvd (the ratio of unresolved to all issues at the time of adoption) had an

expected negative effect in the data.table/tidy study, but had a counter-intuitive positive

effect in the Angular/React study. Similarly, StckExch (the number of related questions on

StackExchange with high score) switched from having a positive impact to having a negative

impact on the chances of adoption.

Our conjecture is that the operationalization of project quality (infectiousness) as

expressed by the fraction of unresolved issues and the exposure to StackExchange high-score

questions may have limitations. Specifically, Angular/React have experienced a spectacular

growth over the considered period. We presume that this growth was fueled by a heavy

commercial involvement, which, in turn, motivated the adoption and created an inflow of

issues that could not be resolved on a timely basis.

Similarly, the rapid adoption was not matched by the corresponding increase in the

number of high-score questions on StackExchange, resulting in the negative coefficient.

Furthermore, it may be the case that the developers in the Angular/React (Javascript)

domain may believe that a technology with more posts on StackExchange may be harder to

use or more complex, unlike the developers in the data science domain where users expect

a fair amount of esoteric and quirky functionality; thus, good questions on StackExchange

are helpful and necessary even when faced with relatively common tasks. This suggests

that further investigations are needed on how developers in different domains may react to

‘exposure’ on StackExchange.

These differences suggest that the social contagion models may need to be adjusted

for cases where the adoption is primarily driven by the commercial involvement that may

manifest itself in directly funding developers, providing better training, or even by dangling

good job opportunities. Specifically, large companies, may create direct signals driving
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adoption that do not propagate via social and technical networks and may lead to counter-

intuitive values of the model coefficients.

The remaining variables represent the characteristics of the adopter, and cannot be

directly compared between the studies. Interpreting them, however, is instructive for

potential applications related to understanding the adopter base.

Specifically, while larger projects (measured by the number of commits Cmts) prefer

data.table, presumably due to its stability and ability to handle larger data sets, in the

User Interface domain, larger projects tend to use React, presumably because it is, according

to opinions of knowledgeable developers we have consulted, designed to support large projects

and applications. We had a separate predictor C indicating the need for performance in the

R ecosystem, and, as expected, it had no effect in the Javascript domain where C language

is not used to improve performance via native methods as is common for R domain.

From the perspective of the technical network Prx2TD/RT, the proximity to tidy

increases the chances of adoption, presumably due to the rich functionality of the tidyverse

framework that can be exploited for tasks other than simply doing data management.

data.table, in contrast, does not have as wide an ecosystem of its own, thus proximity

in the technical network does not appear to bring any distinct advantages. The case of

React vs. Angular is unusual as the proximity of projects to each of these frameworks is

highly correlated, ρ = 0.9. That is, if the proximity in the technical network is high for one

of these frameworks it is also high for another. This may reflect the possibility that each

of these frameworks are fairly comprehensive for the intended functionality and, therefore,

the proximity is based on other JavaScript technologies that may, in fact, be more closely

aligned with the Angular ecosystem. It is, therefore, important to note that the proximity

in the technical network may not always fully reflect the actual interdependencies between

the technologies and future work is needed to explore how general this relationship may be.

Another possible scenario is that this negative relationship is simply an artifact indicating

that React’s adoption may have been more strongly influenced by direct marketing signals

(such as job opportunities) and the technical networks did not co-evolve at the same rate as

the adoption.
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From the perspective of social networks AthPrx2TD/RT, the proximity to tidy

increases the chances of adoption, presumably due to the charismatic leadership of the

founder and lead developer who also contributes to many other data science projects. The

founder of data.table, in contrast, does not have as commanding a presence and social

following in the community. The proximity to React within a social network increases the

chances of adoption while the proximity to Angular decreases the adoption of Angular.

There is some anecdotal evidence that React gets more positive testimonials from its users,

see, e.g, “Is React killing Angular?” from Quora15. In such a case, knowing someone who

actually uses Angular and can testify to the potential complexities and effort needed to

use it fluently, may discourage adopters from trying it. If the React users are much more

positive in their testimonial, this would explain the power of the social contagion model to

discriminate between such differences.

Further considerations on the generalizability and other limitations of our approach are

discussed in the next section.

5.7 Limitations

Empirical studies must be interpreted carefully due to a number of inherent limitations.

Here we highlight some of the potential issues and how we tried to address them.

5.7.1 Limitations to Internal Validity

To obtain an unbiased, representative characterization of technology spread, we examined

a very large collection of projects. While large, our sample however is not complete, as

many projects do not publish their code and our data collection process may have missed

even some of the public projects. The sample we have limits the findings of this study to

projects that share their version control data on one of the many forges, such as GitHub,

BitBucket, GitLab, Bioconductor, SourceForge, etc. However, our project repository may

not be representative of the entire universe of projects, especially projects that do not publish

their version control data.

15https://www.quora.com/Is-React-killing-Angular
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We have selected only projects with extension [rR], but some older projects may use

extension [sS], indicating the historic name for R language, or some other source code

without any (known) extension. Regular expressions that we used to identify instances of

package usage or installation can capture most of the install statement in the .r/R file,

however, in some cases the install statement may be missed due to a dynamic specification

in the installation such as in the case below,

1 ipak <- function(pkg){

2 new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]

3 if (length(new.pkg)) install.packages(new.pkg, dependencies = TRUE)

4 sapply(pkg, require, character.only = TRUE)

5 }

6 # usage

7 packages <- c("ggplot2", "plyr", "reshape2", "RColorBrewer", "scales", "grid")

8 ipak(packages)

Also, multiple packages may be wrapped into a variable before calling the install function:

1 load.lib<-c("EIAdata", "gdata", ...,"stringr","XLConnect",

2 "xlsReadWrite","zipcode")

3 install.packages(lib,dependences=TRUE)

Moreover, regular expressions may occasionally falsely capture an install statement,

e.g., install statements that are commented out may, in rare cases, be captured by regular

expressions. Files that are contained in a project but not used may also contain installment

statements that are captured by regular expressions. To alleviate this potential issue, we

used the R language requirement to have a comment character ’#’ on each line and ensured

that the matched install is never preceded by the comment character.

Another threat to validity is that the import of a package may not always indicate that

the package was actually used. In some cases, a project may only contain package import

statements without any calls to package API. For example, a developer may have dropped all

actual API calls in the code without removing the corresponding package import statement.

Alternatively, a developer may only add an import statement as a place holder for future
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usage. One approach to mitigate such potential inaccuracies is to identify if any package

APIs were called in the project. However, this approach may not cover all possible cases.

One such scenario can be that multiple packages may contain one or several common APIs

(e.g., the predict API in R exists in multiple packages) and it is generally not possible to

automatically identify with precision which package an API belongs to.

We used keyword filtering on both tag field and on the text of the post itself to find

the relevant posts from StackExchange dump. We emphasize that a manual inspection was

needed as a followup step to ensure the relevance of the posts. While we did a manual

inspection of our data, the approach we used may require a lot of manual effort to check the

relevance if extremely popular technologies are investigated.

These potential limitations may affect the dependency networks we construct and result

in an imprecise count of the number of projects using our two focal packages. Moreover,

developer identities may not be consistent across our data sources, which may affect the

author network [13]. We have tried to address these and other issues encountered when

dealing with operational data from software repositories and big data in accordance with

guidelines provided in the literature [82, 80, 46].

It is important to note that the particular operationalizations of the concepts from social

contagion theory represent only one possible approach. Measures are not entirely orthogonal,

i.e., each measure may capture the aspects of other dimensions beyond the one it is intended

to measure. The correlations among predictors may lead to unstable models that are hard

to interpret. We address this limitation by carefully considering various interpretations of

the measures, conducting exploratory analyses of the obtained measures, selecting a subset

that does not pose threats to model stability, and investigating compliance with model

assumptions including inspection of outliers, non-homogeneous variance, and performing

general model diagnostics. We also model the first choice, but it is also reasonable to model

the full set of choices made. In the latter case, we would need to include the third option, i.e.,

projects choosing both packages: tidy and data.table. We fitted a variety of alternatives

models to ensure that the reported results are not affected by these variations in the approach.

We only present here the results for two alternatives due to space considerations, but we

have applied our choice model to several other R packages as well.
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5.7.2 Limitations to External Validity

We demonstrate how to use social contagion modeling with version control data to evaluate

developer behaviour when choosing software packages. The particular results we obtained for

R and the two focal packages may not, therefore, generalize beyond this specific context. We

evaluated the generalizability of the results in the JavaScript domain in section 5.6 and found

some variations to the finding in R ecosystem in JavaScript ecosystem. The framework we

provided, however, allows future researches to investigate the nuances of developer behaviour

in much greater detail and apply it to other contexts.

5.8 Literature Review

The closest related work involves studies of use and migration of software libraries. A number

of metrics and approaches were proposed to mine and explore usage and migration trends. A

software library encapsulates certain functionality that is then used by applications (or other

libraries). The application may benefit from extra functionality or performance in the new

libraries that may be created later, but switching to a new library (library migration) involves

some recoding of the application[57, 78, 22, 67, 86]. Most prior work, therefore, focused on

costs and benefits of library migration [60, 106, 27, 105, 9, 109, 26, 77]. Similarly to that

work we ask why developers chose a new library. In contrast to prior work, we construct

new predictors of adoption (e.g., technical and author dependency networks, breadth of

deployment, exposure of techniques on StackExchange, quality of support measured through

issue number and response times) that are based on sound theoretical foundations and we

use choice models to understand how macro trends at the scale of the entire SSC emerge

from actual decisions the individual developers make to select a specific software technology.

Approaches to detect library usage include issue report analysis [60]. As in prior work we

detect usage by searching for library statements in source files of projects [106]. De la Mora

et al. [27] introduce an interface to help developers choose among the libraries by displaying

their popularity, release frequency, and recency. While building on this research, we add

novel network, deployment, and quality measures that would inform developer choice. More

importantly, we radically improve the ability of developers’ to make informed decisions by
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providing a statistical model that explains which of these measures matter and how they

affect the choice.

Prior studies that examined technology choices have used a variety of approaches ranging

from surveying developer preferences [5] and reasons [119] behind, to mining version control

and issue tracking repositories [60, 106, 27]. Similarly, we mine version control data, but at

a larger scale of all projects with public version control data that include R language files.

This allows us to construct complete software supply chains that depict end-to-end technical

and social dependencies.

5.9 Conclusions

Integrating software supply chain concepts and models to operationalize key variables from

social contagion theory to investigate software technology adoption appears to have provided

a number of potentially useful insights in the present case study of two data manipulation

technologies within R language. More specifically, the methodology was able to identify

factors that were influential in decision-makers’ choices between software technologies and

demonstrate the need to account, not only for the properties of the choice, but also of the

chooser and of the importance of the supply chain dependencies and information flows. It

also validates the measures deemed to be the drivers of technology adoption by the social

contagion theory.

This study introduces the concept of two types of software supply chains (based on

technical dependencies and on the relationships among developers induced by projects they

have worked on) and demonstrates how software supply chains for the entire open source

ecosystem can be reconstructed as they have existed at any point in the past from public

version control systems. Additionally, by taking a social contagion perspective and employing

the logistic regression models, we explicate a parsimonious model that is capable of modeling

software technology choices. The findings of this study have wide reaching implications for

the software engineering community as well as those who study traditional supply chains.

For example, the ability to model and understand which aspects of a network of software

supply chain or physical supply chain partners and affiliates influence uptake and spread of a
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given artifact (e.g., technology or product) might help contributors adjust their contributions

in a way to maximize their reach, while also extending the viability and propagation of a

core technology or product. This notion is consistent with our findings that a number of

characteristics of a developer and properties of technology are found to be important in

the choice between major alternatives. More specifically, technologies with large number of

overall adopters, higher responsiveness to new issues, and more high-score stack exchange

questions are more likely to be chosen. Furthermore, from the perspective of a project’s

decision-makers, their technical features and proximity to a technology in both the technical

dependency network and author collaboration network increase the probability of adoption.

On a more speculative side, we find that half of the significant predictors do not appear to

be related to a traditional rational choice, but are likely a reflection of social and cognitive

biases or, in plain language, shortcuts people take. Developers, at least in the context of

technical decisions regarding which technology to use, do not appear to be immune from

these biases.

Source code and data for this study is publicly available 16 to facilitate reproducibility

and wider adoption of the proposed methodology.
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Chapter 6

Overview, Discussion and Conclusions

6.1 Overview

The objective of this work “Software Supply Chain Development and Application” is to

propose a novel approach to understand the development of software, especially OSSs, reveal

the complicated interactions and relations among software developers distributed all of the

world, capture the entirety of OSS communities, so as to mitigate the risks in software

development.

We integrated the concept of supply chains with OSS development and leveraged the

existing knowledge on traditional supply chains, big data, and data science that lead to a

more comprehensive understanding, the formulation of new research problems, and practical

applications. We started by defining SSC and their types for OSS, outline ways to construct

valid SSCs, and give examples of new insights, research questions, and applications of this

approach.

We proposed a prototype of an updatable and expandable infrastructure, WoC, to support

research and tools that rely on version control data from the entirety of open source projects,

and discuss how we address some of the data scale and quality challenges related to data

discovery, retrieval, and storage. We enable wide data access to collected data source by

providing a tool built on top of the infrastructure, which scales well with completion to

query in linear time. Furthermore, we implemented ways to make this large dataset usable

for a number of research tasks by doing targeted data correction and augmentation and by
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creating data structures derived from the raw data that permit accomplishing these research

tasks quickly, despite the vastness of the underlying data.

We reported various researches and applications in software domain that are enabled and

enhanced by leveraging the joining power from SSC concept and WOC infrastructure. In

particular, we looked into the phenomenon of software technologies spread, and investigated

what combination of attributes are driving the adoption of a particular software technology,

and hope that developers seeking to increase the adoption rate of their products can benefit

from our findings.

6.2 Discussion: Primary Findings

In this section we discuss the primary findings of this thesis by answering each research

question.

1. (RQ1) How to define SSC? After an exploration of existing SSC related works, we

found that there was no definition of SSC contextualized for OSS where it may help with

distributed decision making, and there was no measurable definition of SSC. We define

SSC by making analog of components in traditional SC. SSC has developers and groups

(companies), corporate backers supporting these developers or groups (”financing”),

relationships among software projects or packages representing the ”chain” of the flow,

and changes to source code (e.g. files, modules, frameworks, or entire distributions)

representing products or information.

2. (RQ2) How to measure SSC for OSS? In order to measure SSC, we proposed and

created WoC, an infrastructure for mining OSS development data in large from various

open source platforms, which loosely follows the microservices architecture [85], where

the design and performance of the loosely coupled components can be independently

evaluated, each service can utilize a database that is optimal for its needs, and the

most computationally-intensive components are extremely portable to ensure they run

on any high-performance platform. Our engineering principles are focused on using

the simplest possible techniques and components for each specific task ranging from
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project discovery to fitting large-scale models. Our current WoC implementation is

capable of being updated on a monthly basis and contains over 24B git objects. Various

APIs and sample guidance are published to meet users with different backgrounds and

preferences.

3. (RQ3) What can we learn about SSC in OSS? After various researches and

applications being successfully implemented by our team and researchers outside, we

conclude that SSC and WoC enable and support both domain focused researches and

crossing-ecosystem ones. We also developed various approaches to operationalize SSC

networks to represent and reveal the relationships among software developers and

projects in OSS community.

4. (RQ4) How can we reduce the risks through SSC in OSS? To exemplify

the value od SSC in mitigating risks in OSSs, we looked into the phenomenon of

software technology adoption among developers and investigated what combination of

attributes drives the adoption of a particular software technology. After investigating

two competing technologies (data.table Vs.tidy) in R, We found that a quick response

to raised issues, a larger number of overall deployments, and a larger number of high-

score StackExchange questions are associated with higher adoption. Decision makers

tend to adopt the technology that is closer to them in the technical dependency network

and in author collaborations networks while meeting their performance needs. We

further extended our method on two JavaScript frameworks (React Vs. Angular) and

achieved a similar result. Based on these findings, we provide suggestions for developers

on how to mitigate risks of abandonment from the perspective of a user downstream

and the risk of low adoption from the perspective of the producer upstream.

6.3 Contributions

The concept of software supply chain provides a unique perspective that helps understand the

highly interconnected nature of open source software and leads to new research questions and

practical applications. The key commodity of the OSS is the actions and effort of developers
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that, if applied in proper amounts, to the right projects, by skilled developers, and in a

timely manner, would make OSS more predictable and, in turn, attract more innovation.

SSCs define the relationships among the projects and developers that are necessary for

this vision to succeed. Ways to measure the SSCs would increase the transparency of the

activities and qualities of projects and people, and the global coverage and the ability to

match producers and consumers would increase the visibility for the open source users on

where to source their knowledge or software and for producers it would increase the visibility

of users and their needs.

We summarize our contributions in the following:

Firstly, we developed an approach (SSC) to enable systematic analysis of open source

community, revealing underlying complicated relations among software projects and devel-

opers. As the transparency and visibility increase in SSC, software developers are enabled

to have a more comprehensive knowledge and estimation of other software projects, make

wise decisions when choosing from other software projects to integrate (as downstream

components) through the evaluation of a combination of developer reputation and software

project maintenance. Furthermore, risks in software development can be mitigated by

an early detection of bug/vulnerability propagation in source code snippets (code reuse

network), downstream packages (dependency network), and submissions from inexperienced

or malware developers (knowledge flow/authorship network).

Secondly, we built an infrastructure(WoC) to provide broad data access and facilitate

SSC network construction and related analysis. We enable wide data access to collected

data source by providing a tool built on top of the infrastructure, which scales well with

completion to query in linear time. Furthermore, we implement ways to make this large

dataset usable for a number of research tasks by implementing targeted data correction

and augmentation and by creating data structures derived from the raw data that permit

accomplishing these research tasks quickly, despite the vastness of the underlying data. In a

nutshell, WoC can provide support for diverse research tasks that would be otherwise out of

reach for most researchers. Its focus on global properties of all public source code will enable

research that could not be previously done and help to address highly relevant challenges of

open source ecosystem sustainability and of risks posed by this global software supply chain.
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Lastly, by leveraging SSC networks, we investigated the adoption of technologies in

software domain, discovered factors that are influential to decision makers and provide

suggestions to software developers on making one’s product popular. The contribution

consists of proposing a method to explain and predict the spread of technologies, to suggest

which technologies are more likely to spread in the future, and suggest steps that developers

could take to make the technologies they produce more popular. Developers can, therefore,

reduce risks by choosing technology that is likely to be widely adopted. The supporters of

open source software could use such information to focus on and properly allocate limited

resources on projects that either need help or are likely to become a popular infrastructure.

In essence, our approach unveils previously unknown critical aspects of technology spread

and, through that, makes developers, organizations, and communities more effective.
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B Source Code for Cmt2ATShow.perl

1 #!/usr/bin/perl -I /home/audris/lib64/perl5 -I /home/audris/lib/x86_64-linux-gnu/

perl

2 use strict;

3 use warnings;

4 use Error qw(:try);

5 use TokyoCabinet;

6 use Compress::LZF;

7

8 sub toHex {

9 return unpack "H*", $_[0];

10 }

11 sub fromHex {

12 return pack "H*", $_[0];

13 }

14

15 my $split = 1;

16 $split = $ARGV[1] + 0 if defined $ARGV[1];

17

18 my %c2at;

19 for my $sec (0..($split-1)){

20 my $fname = "$ARGV[0].$sec.tch";

21 $fname = $ARGV[0] if ($split == 1);

22 tie %{$c2at{$sec}}, "TokyoCabinet::HDB", "$fname", TokyoCabinet::HDB::OREADER,

23 16777213, -1, -1, TokyoCabinet::TDB::TLARGE, 100000

24 or die "cant open $fname\n";

25 }

26

27 while (<STDIN>){

28 chop ();

29 my $c = fromHex($_);
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30 my $ss = pack ’H*’, substr ($_, 0, 2);

31 my $sec = (unpack "C", $ss)%$split;

32 if (defined $c2at{$sec}{$c}) {

33 my ($time, $author) = split(/;/, $c2at{$sec}{$c});

34 my @parts = localtime($time);

35 my $year= $parts[5] + 1900;

36 print $year.";".$author."\n";

37 }

38 }

39 for my $sec (0..($split-1)){

40 untie %{$c2at{$sec}};

41 }
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C Source Code for the custom lsort command in

tutorial

1 #!/bin/bash

2 export LC_ALL=C

3 export LANG=C

4 sz=${1:-10G}

5 shift

6 sort -T. -S $sz --compress-program=gzip $@
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