98 research outputs found

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    The Augmented Learner : The pivotal role of multimedia enhanced learning within a foresight-based learning model designed to accelerate the delivery of higher levels of learner creativity

    Get PDF
    The central theme for this dissertation lies at the intersection of multisensory technology enhanced learning, the field of foresight and transformative pedagogy and their role in helping to develop greater learner creativity. These skills will be key to meeting the needs of the projected growing role of the creative class within the emerging global workforce structure and the projected growth in R&D and the advancement of human-machine resource management. Over the past two decades, we have traversed from the Industrial Age through the Information Age into what we now call postnormal times, manifested partly in Industry 4.0. It is widely considered that the present education system in countries with developed economies is not optimised for delivering the much-needed creative skills, which are prominent amongst the critical 21st C skills required by the creative class, (also known as creatives), which will be increasingly dominant in terms of near future employability. Consequently, there will be a potential shortfall of creatives unless this issue is rapidly addressed. To ensure that the creative skills I aimed to enhance were relevant and aligned with emerging demands of the changing landscape, I deconstructed the critical dimensions, context, and concept of creativity in postnormal times as well as undertaking in-depth research on the potential future workscape and the future of education and learning, applying a comprehensive foresight approach to the latter using a 2030-2040 horizon. Based upon the outcomes of these studies I designed an experimental integrative learning system that I have applied, researched, and evolved over the past 4 years with over 150 students at PhD and master’s level. The system is aimed at generating higher levels of creative engagement and development through a focus on increased immersion and creativity-inducing approaches. The system, which I call the Living Learning System, is based upon eight integrated elements, supported by course development pillars aimed at optimizing learner future skill competencies and levels of creativity for which I apply severalevaluation techniques and metrics. Accordingly, as the central hypothesis of this dissertation, I argue that by integrating the critical elements of the Living Learning System, such as emerging multisensory technology enhanced learning coupled with optimised transformative and experiential learning approaches, framed within the field of foresight, with its futures focus and decentralised thinking approaches, students increase their ability to be creative. This increased ability is based on the student attaining a richer level of personal ambience through deeper immersion generated through higher incidence of self-direction, constructivism-based blended pedagogy, futures literacy, and a balance of decentralised and systems-based thinking, as well as cognitive and social platforms aimed at optimizing learner creative achievement. This dissertation demonstrates how the application of the combined elements of the Living Learning System, with its futures focus and its ensuing transdisciplinary curricula and courses, can provide a clear path towards significantly increased learner creativity. The findings of the quantitative, questionnaire-based research set out in detail in Chapter 9, together with the performance and creativity evaluation models applied against the selected case studies of student projects substantiate the validity of the hypothesis that the application of the Living Learning System with its futures focus leads to increased creativity in line with the needs of the postnormal era.publishedVersio

    A Game-based Psychotherapy Intervention Model for Memory Disorder: Model Validation Using EEG Neurofeedback Data

    Get PDF
    Game-based psychotherapy intervention is a promising alternative to non-pharmacological approaches in treating memory disorders. Nevertheless, the game-based approach is yet to be included systematically in existing intervention models for treating memory disorders. Hence, this article discusses how a proposed gamebased psychotherapy intervention is developed and validated using neurofeedback approach. The proposed model consists of nine exogenous and six instantaneous factors as the main components. To ensure its applicability, a validation procedure has been carried out through a series of psychotherapy experiments involving the elderly with memory disorder symptoms. Electroencephalogram (EEG) data captured from the experiments are thoroughly analysed to validate relationships among factors in the model. Experimental findings have proven that all relationships are successfully validated and supported except for the belief component with the cut-off point of 56.6%. The novelty of this study can be attributed to the integration of digital games and neurofeedback in psychotherapy for memory disorders. The model is believed to be a guideline in planning suitable cognitive training and rehabilitation for people with memory disorders towards improving the quality of the elderly life

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Constellations: A participatory, online application for research collaboration in higher education interdisciplinary courses

    Get PDF
    The research establishes a model for online learning centring on the needs of integrative knowledge practices. Through the metaphor of Constellations, the practice-based research explores the complexities of working within interdisciplinary learning contexts and the potential of tools such as the Folksonomy learning platform for providing necessary conceptual support

    Affective Computing for Emotion Detection using Vision and Wearable Sensors

    Get PDF
    The research explores the opportunities, challenges, limitations, and presents advancements in computing that relates to, arises from, or deliberately influences emotions (Picard, 1997). The field is referred to as Affective Computing (AC) and is expected to play a major role in the engineering and development of computationally and cognitively intelligent systems, processors and applications in the future. Today the field of AC is bolstered by the emergence of multiple sources of affective data and is fuelled on by developments under various Internet of Things (IoTs) projects and the fusion potential of multiple sensory affective data streams. The core focus of this thesis involves investigation into whether the sensitivity and specificity (predictive performance) of AC, based on the fusion of multi-sensor data streams, is fit for purpose? Can such AC powered technologies and techniques truly deliver increasingly accurate emotion predictions of subjects in the real world? The thesis begins by presenting a number of research justifications and AC research questions that are used to formulate the original thesis hypothesis and thesis objectives. As part of the research conducted, a detailed state of the art investigations explored many aspects of AC from both a scientific and technological perspective. The complexity of AC as a multi-sensor, multi-modality, data fusion problem unfolded during the state of the art research and this ultimately led to novel thinking and origination in the form of the creation of an AC conceptualised architecture that will act as a practical and theoretical foundation for the engineering of future AC platforms and solutions. The AC conceptual architecture developed as a result of this research, was applied to the engineering of a series of software artifacts that were combined to create a prototypical AC multi-sensor platform known as the Emotion Fusion Server (EFS) to be used in the thesis hypothesis AC experimentation phases of the research. The thesis research used the EFS platform to conduct a detailed series of AC experiments to investigate if the fusion of multiple sensory sources of affective data from sensory devices can significantly increase the accuracy of emotion prediction by computationally intelligent means. The research involved conducting numerous controlled experiments along with the statistical analysis of the performance of sensors for the purposes of AC, the findings of which serve to assess the feasibility of AC in various domains and points to future directions for the AC field. The AC experiments data investigations conducted in relation to the thesis hypothesis used applied statistical methods and techniques, and the results, analytics and evaluations are presented throughout the two thesis research volumes. The thesis concludes by providing a detailed set of formal findings, conclusions and decisions in relation to the overarching research hypothesis on the sensitivity and specificity of the fusion of vision and wearables sensor modalities and offers foresights and guidance into the many problems, challenges and projections for the AC field into the future

    THE DEVELOPMENT OF A MULTIMODAL NEUROADAPTIVE GAMING TECHNOLOGY TO DISTRACT FROM PAINFUL EXPERIENCES.

    Get PDF
    Painful experiences can be mitigated by distraction techniques such as video game distraction, due to limited available attentional resources. There are many benefits to using video games as a non-pharmacological intervention, including their cost-effectiveness and absence of side effects or withdrawal symptoms. However, video games cannot provide a distraction which is sufficient for pain management if they are not engaging. This work aims to discuss how and why video games capture attention and explore how modulating game factors can affect the response to pain. The aim of this work in its entirety is to develop a neuroadaptive game which is tailored to reorient attention away from a painful experience, and towards the distraction technique. The neuroadaptive element of this technology will enable a balance of challenge and skill which make a unique and playable game for each participant. The development of the neuroadaptive game was supported by two studies. Study One focused on the determination of optimal game difficulty level for pain distraction, and Study Two furthered this research, alongside determining optimal neurological sites for the monitoring of attention and attentional reorientation. Study 3 explored the use of a neuroadaptive gaming technology to distract from pain – a bespoke, real-time data processing pipeline was developed for this purpose. The limitations of the neuroadaptive game are discussed in detail with considerations for future work and development. The results of the three studies carried out during the course of this work indicate that real-time pre-processing and classification of fNIRS data to a good standard is possible. The studies also revealed that the montage for data collection and features used for data collection are crucial considerations for classification accuracy. This thesis also has implications for further work into neuroadaptive technologies and how these systems can be tested and verified. Statistical significance between a non-neuroadaptive game and a neuroadaptive game was not found throughout the course of this work, although the potential explanations and future considerations are discussed in detail. Overall, we were able to confirm that pain tolerance can be improved with the use of a distraction task, but that the balance of task difficulty and skill level is delicate and requires further exploration
    • …
    corecore