716 research outputs found

    Accurate and efficient algorithms for boundary element methods in electromagnetic scattering: a tribute to the work of F. Olyslager

    Get PDF
    Boundary element methods (BEMs) are an increasingly popular approach to model electromagnetic scattering both by perfect conductors and dielectric objects. Several mathematical, numerical, and computational techniques pullulated from the research into BEMs, enhancing its efficiency and applicability. In designing a viable implementation of the BEM, both theoretical and practical aspects need to be taken into account. Theoretical aspects include the choice of an integral equation for the sought after current densities on the geometry's boundaries and the choice of a discretization strategy (i.e. a finite element space) for this equation. Practical aspects include efficient algorithms to execute the multiplication of the system matrix by a test vector (such as a fast multipole method) and the parallelization of this multiplication algorithm that allows the distribution of the computation and communication requirements between multiple computational nodes. In honor of our former colleague and mentor, F. Olyslager, an overview of the BEMs for large and complex EM problems developed within the Electromagnetics Group at Ghent University is presented. Recent results that ramified from F. Olyslager's scientific endeavors are included in the survey

    Compatible finite element methods for numerical weather prediction

    Full text link
    This article takes the form of a tutorial on the use of a particular class of mixed finite element methods, which can be thought of as the finite element extension of the C-grid staggered finite difference method. The class is often referred to as compatible finite elements, mimetic finite elements, discrete differential forms or finite element exterior calculus. We provide an elementary introduction in the case of the one-dimensional wave equation, before summarising recent results in applications to the rotating shallow water equations on the sphere, before taking an outlook towards applications in three-dimensional compressible dynamical cores.Comment: To appear in ECMWF Seminar proceedings 201

    Transformation Optics, Generalized Cloaking and Superlenses

    Full text link
    In this paper, transformation optics is presented together with a generalization of invisibility cloaking: instead of an empty region of space, an inhomogeneous structure is transformed via Pendry's map in order to give, to any object hidden in the central hole of the cloak, a completely arbitrary appearance. Other illusion devices based on superlenses considered from the point of view of transformation optics are also discussed.Comment: 7 pages (two columns), 9 figures, to appear in IEEE Trans. Mag., invited paper in Compumag 2009 (Florianopolis, Brasil), corresponding slides available on http://www.fresnel.fr/perso/nicolet

    Geometric Particle-in-Cell Simulations of the Vlasov-Maxwell System in Curvilinear Coordinates

    Get PDF

    A nonlinear Bloch model for Coulomb interaction in quantum dots

    Full text link
    In this paper we first derive a Coulomb Hamiltonian for electron--electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations when interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.Comment: 17 pages. Journal of Mathematical Physics (2014) \`a para\^itr

    An arbitrary-order Cell Method with block-diagonal mass-matrices for the time-dependent 2D Maxwell equations

    Full text link
    We introduce a new numerical method for the time-dependent Maxwell equations on unstructured meshes in two space dimensions. This relies on the introduction of a new mesh, which is the barycentric-dual cellular complex of the starting simplicial mesh, and on approximating two unknown fields with integral quantities on geometric entities of the two dual complexes. A careful choice of basis-functions yields cheaply invertible block-diagonal system matrices for the discrete time-stepping scheme. The main novelty of the present contribution lies in incorporating arbitrary polynomial degree in the approximating functional spaces, defined through a new reference cell. The presented method, albeit a kind of Discontinuous Galerkin approach, requires neither the introduction of user-tuned penalty parameters for the tangential jump of the fields, nor numerical dissipation to achieve stability. In fact an exact electromagnetic energy conservation law for the semi-discrete scheme is proved and it is shown on several numerical tests that the resulting algorithm provides spurious-free solutions with the expected order of convergence.Comment: 34 pages, 14 figures, submitte
    • …
    corecore