1,354 research outputs found

    A trifocal transfer based virtual microscope for robotic manipulation of MEMS components.

    No full text
    International audienceThe paper deals with the problem of imaging at the microscale. The trifocal transfer based novel view synthesis approach is developed and applied to the images from two photon microscopes mounted in a stereoscopic configuration and observing vertically the work scene. The final result is a lateral virtual microscope working up to 6 frames per second with a resolution up to that of the real microscopes. Visual feedback, accurate measurements and control have been performed with, showing it ability to be used for robotic manipulation of MEMS parts. Keywords: Novel view synthesis, trifocal tensor, photon microscope, microassembly, micromanipulation, MEMS

    Image Based View Synthesis

    Get PDF
    This dissertation deals with the image-based approach to synthesize a virtual scene using sparse images or a video sequence without the use of 3D models. In our scenario, a real dynamic or static scene is captured by a set of un-calibrated images from different viewpoints. After automatically recovering the geometric transformations between these images, a series of photo-realistic virtual views can be rendered and a virtual environment covered by these several static cameras can be synthesized. This image-based approach has applications in object recognition, object transfer, video synthesis and video compression. In this dissertation, I have contributed to several sub-problems related to image based view synthesis. Before image-based view synthesis can be performed, images need to be segmented into individual objects. Assuming that a scene can approximately be described by multiple planar regions, I have developed a robust and novel approach to automatically extract a set of affine or projective transformations induced by these regions, correctly detect the occlusion pixels over multiple consecutive frames, and accurately segment the scene into several motion layers. First, a number of seed regions using correspondences in two frames are determined, and the seed regions are expanded and outliers are rejected employing the graph cuts method integrated with level set representation. Next, these initial regions are merged into several initial layers according to the motion similarity. Third, the occlusion order constraints on multiple frames are explored, which guarantee that the occlusion area increases with the temporal order in a short period and effectively maintains segmentation consistency over multiple consecutive frames. Then the correct layer segmentation is obtained by using a graph cuts algorithm, and the occlusions between the overlapping layers are explicitly determined. Several experimental results are demonstrated to show that our approach is effective and robust. Recovering the geometrical transformations among images of a scene is a prerequisite step for image-based view synthesis. I have developed a wide baseline matching algorithm to identify the correspondences between two un-calibrated images, and to further determine the geometric relationship between images, such as epipolar geometry or projective transformation. In our approach, a set of salient features, edge-corners, are detected to provide robust and consistent matching primitives. Then, based on the Singular Value Decomposition (SVD) of an affine matrix, we effectively quantize the search space into two independent subspaces for rotation angle and scaling factor, and then we use a two-stage affine matching algorithm to obtain robust matches between these two frames. The experimental results on a number of wide baseline images strongly demonstrate that our matching method outperforms the state-of-art algorithms even under the significant camera motion, illumination variation, occlusion, and self-similarity. Given the wide baseline matches among images I have developed a novel method for Dynamic view morphing. Dynamic view morphing deals with the scenes containing moving objects in presence of camera motion. The objects can be rigid or non-rigid, each of them can move in any orientation or direction. The proposed method can generate a series of continuous and physically accurate intermediate views from only two reference images without any knowledge about 3D. The procedure consists of three steps: segmentation, morphing and post-warping. Given a boundary connection constraint, the source and target scenes are segmented into several layers for morphing. Based on the decomposition of affine transformation between corresponding points, we uniquely determine a physically correct path for post-warping by the least distortion method. I have successfully generalized the dynamic scene synthesis problem from the simple scene with only rotation to the dynamic scene containing non-rigid objects. My method can handle dynamic rigid or non-rigid objects, including complicated objects such as humans. Finally, I have also developed a novel algorithm for tri-view morphing. This is an efficient image-based method to navigate a scene based on only three wide-baseline un-calibrated images without the explicit use of a 3D model. After automatically recovering corresponding points between each pair of images using our wide baseline matching method, an accurate trifocal plane is extracted from the trifocal tensor implied in these three images. Next, employing a trinocular-stereo algorithm and barycentric blending technique, we generate an arbitrary novel view to navigate the scene in a 2D space. Furthermore, after self-calibration of the cameras, a 3D model can also be correctly augmented into this virtual environment synthesized by the tri-view morphing algorithm. We have applied our view morphing framework to several interesting applications: 4D video synthesis, automatic target recognition, multi-view morphing

    Virtual camera synthesis for soccer game replays

    Get PDF
    International audienceIn this paper, we present a set of tools developed during the creation of a platform that allows the automatic generation of virtual views in a live soccer game production. Observing the scene through a multi-camera system, a 3D approximation of the players is computed and used for the synthesis of virtual views. The system is suitable both for static scenes, to create bullet time effects, and for video applications, where the virtual camera moves as the game plays

    Multilinear methods for disentangling variations with applications to facial analysis

    Get PDF
    Several factors contribute to the appearance of an object in a visual scene, including pose, illumination, and deformation, among others. Each factor accounts for a source of variability in the data. It is assumed that the multiplicative interactions of these factors emulate the entangled variability, giving rise to the rich structure of visual object appearance. Disentangling such unobserved factors from visual data is a challenging task, especially when the data have been captured in uncontrolled recording conditions (also referred to as “in-the-wild”) and label information is not available. The work presented in this thesis focuses on disentangling the variations contained in visual data, in particular applied to 2D and 3D faces. The motivation behind this work lies in recent developments in the field, such as (i) the creation of large, visual databases for face analysis, with (ii) the need of extracting information without the use of labels and (iii) the need to deploy systems under demanding, real-world conditions. In the first part of this thesis, we present a method to synthesise plausible 3D expressions that preserve the identity of a target subject. This method is supervised as the model uses labels, in this case 3D facial meshes of people performing a defined set of facial expressions, to learn. The ability to synthesise an entire facial rig from a single neutral expression has a large range of applications both in computer graphics and computer vision, ranging from the ecient and cost-e↵ective creation of CG characters to scalable data generation for machine learning purposes. Unlike previous methods based on multilinear models, the proposed approach is capable to extrapolate well outside the sample pool, which allows it to accurately reproduce the identity of the target subject and create artefact-free expression shapes while requiring only a small input dataset. We introduce global-local multilinear models that leverage the strengths of expression-specific and identity-specific local models combined with coarse motion estimations from a global model. The expression-specific and identity-specific local models are built from di↵erent slices of the patch-wise local multilinear model. Experimental results show that we achieve high-quality, identity-preserving facial expression synthesis results that outperform existing methods both quantitatively and qualitatively. In the second part of this thesis, we investigate how the modes of variations from visual data can be extracted. Our assumption is that visual data has an underlying structure consisting of factors of variation and their interactions. Finding this structure and the factors is important as it would not only help us to better understand visual data but once obtained we can edit the factors for use in various applications. Shape from Shading and expression transfer are just two of the potential applications. To extract the factors of variation, several supervised methods have been proposed but they require both labels regarding the modes of variations and the same number of samples under all modes of variations. Therefore, their applicability is limited to well-organised data, usually captured in well-controlled conditions. We propose a novel general multilinear matrix decomposition method that discovers the multilinear structure of possibly incomplete sets of visual data in unsupervised setting. We demonstrate the applicability of the proposed method in several computer vision tasks, including Shape from Shading (SfS) (in the wild and with occlusion removal), expression transfer, and estimation of surface normals from images captured in the wild. Finally, leveraging the unsupervised multilinear method proposed as well as recent advances in deep learning, we propose a weakly supervised deep learning method for disentangling multiple latent factors of variation in face images captured in-the-wild. To this end, we propose a deep latent variable model, where we model the multiplicative interactions of multiple latent factors of variation explicitly as a multilinear structure. We demonstrate that the proposed approach indeed learns disentangled representations of facial expressions and pose, which can be used in various applications, including face editing, as well as 3D face reconstruction and classification of facial expression, identity and pose.Open Acces

    Super-resolution of 3-dimensional scenes

    Full text link
    Super-resolution is an image enhancement method that increases the resolution of images and video. Previously this technique could only be applied to 2D scenes. The super-resolution algorithm developed in this thesis creates high-resolution views of 3-dimensional scenes, using low-resolution images captured from varying, unknown positions
    • …
    corecore