460 research outputs found

    Concurrent Engineering of Robot Manipulators

    Get PDF

    Diagnostic and adaptive redundant robotic planning and control

    Get PDF
    Neural networks and fuzzy logic are combined into a hierarchical structure capable of planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world scenario. Throughout this work levels of this overall approach are demonstrated for a redundant robot and hand combination as it is commanded to approach, grasp, and successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable environment. Four levels of hierarchy are developed and demonstrated, from the lowest level upward: diagnostic individual motor control, optimal redundant joint allocation for trajectory planning, grasp planning with tip and slip control, and high level task planning for multiple arms and manipulated objects. Given the expectations of the user and of the constantly changing nature of processes, the robot hierarchy learns from its experiences in order to more efficiently execute the next related task, and allocate this knowledge to the appropriate levels of planning and control. The above approaches are then extended to automotive and space applications

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Fuzzy Controllers

    Get PDF
    Trying to meet the requirements in the field, present book treats different fuzzy control architectures both in terms of the theoretical design and in terms of comparative validation studies in various applications, numerically simulated or experimentally developed. Through the subject matter and through the inter and multidisciplinary content, this book is addressed mainly to the researchers, doctoral students and students interested in developing new applications of intelligent control, but also to the people who want to become familiar with the control concepts based on fuzzy techniques. Bibliographic resources used to perform the work includes books and articles of present interest in the field, published in prestigious journals and publishing houses, and websites dedicated to various applications of fuzzy control. Its structure and the presented studies include the book in the category of those who make a direct connection between theoretical developments and practical applications, thereby constituting a real support for the specialists in artificial intelligence, modelling and control fields

    Neuro-fuzzy modelling and control of robotic manipulators

    Get PDF
    The work reported in this thesis aims to design and develop a new neuro-fuzzy control system for robotic manipulators using Machine Learning Techniques, Fuzzy Logic Controllers, and Fuzzy Neural Networks. The main idea is to integrate these intelligent techniques to develop an adaptive position controller for robotic manipulators. This will finally lead to utilising one or two coordinated manipulators to perform upper-limb rehabilitation. The main target is to benefit from these intelligent techniques in a systematic way that leads to an efficient control and coordination system. The suggested control system possesses self-learning features so that it can maintain acceptable performance in the presence of uncertain loads. Simulation and modelling stages were performed using dynamical virtual reality programs to demonstrate the ideas of the control and coordination techniques. The first part of the thesis focuses on the development of neuro-fuzzy models that meet the above requirement of mimicking both kinematics and dynamics behaviour of the manipulator. For this purpose, an initial stage for data collection from the motion of the manipulator along random trajectories was performed. These data were then compacted with the help of inductive learning techniques into two sets of if-then rules that form approximation for both of the inverse kinematics and inverse dynamics of the manipulator. These rules were then used in fuzzy neural networks with differentiation characteristics to achieve online tuning of the network adjustable parameters. The second part of the thesis introduces the proposed adaptive neuro-fuzzy joint-based controller. To achieve this target, a feedback Fuzzy-Proportional-Integral-Derivative incremental controller was developed. This controller was then applied as a joint servo-controller for each robot link in addition to the main neuro-fuzzy feedforward controller used to compensate for the dynamics interactions between robot links. A feedback error learning scheme was applied to tune the feedforward neuro-fuzzy controller online using the error back-propagation algorithm. The third part of the thesis presents a neuro-fuzzy Cartesian internal model control system for robotic manipulators. The neuro-fuzzy inverse kinematics model of the manipulator was used in addition to the joint-based controller proposed and the forward mathematical model of the manipulator in an adaptive internal model controller structure. Feedback-error learning scheme was extended to tune both of the joint-based neuro-fuzzy controller and the neuro-fuzzy internal model controller online. The fourth part of the thesis suggests a simple fuzzy hysteresis coordination scheme for two position-controlled robot manipulators. The coordination scheme is based on maintaining certain kinematic relationships between the two manipulators using reference motion synchronisation without explicitly involving the hybrid position/force control or modifying the existing controller structure for either of the manipulators. The key to the success of the new method is to ensure that each manipulator is capable of tracking its own desired trajectory using its own position controller, while synchronizing its motion with the other manipulator motion so that the differential position error between the two manipulators is reduced to zero or kept within acceptable limits. A simplified test-bench emulating upper-limb rehabilitation was used to test the proposed coordination technique experimentally

    Inverse Kinematic Analysis of Robot Manipulators

    Get PDF
    An important part of industrial robot manipulators is to achieve desired position and orientation of end effector or tool so as to complete the pre-specified task. To achieve the above stated goal one should have the sound knowledge of inverse kinematic problem. The problem of getting inverse kinematic solution has been on the outline of various researchers and is deliberated as thorough researched and mature problem. There are many fields of applications of robot manipulators to execute the given tasks such as material handling, pick-n-place, planetary and undersea explorations, space manipulation, and hazardous field etc. Moreover, medical field robotics catches applications in rehabilitation and surgery that involve kinematic, dynamic and control operations. Therefore, industrial robot manipulators are required to have proper knowledge of its joint variables as well as understanding of kinematic parameters. The motion of the end effector or manipulator is controlled by their joint actuator and this produces the required motion in each joints. Therefore, the controller should always supply an accurate value of joint variables analogous to the end effector position. Even though industrial robots are in the advanced stage, some of the basic problems in kinematics are still unsolved and constitute an active focus for research. Among these unsolved problems, the direct kinematics problem for parallel mechanism and inverse kinematics for serial chains constitute a decent share of research domain. The forward kinematics of robot manipulator is simpler problem and it has unique or closed form solution. The forward kinematics can be given by the conversion of joint space to Cartesian space of the manipulator. On the other hand inverse kinematics can be determined by the conversion of Cartesian space to joint space. The inverse kinematic of the robot manipulator does not provide the closed form solution. Hence, industrial manipulator can achieve a desired task or end effector position in more than one configuration. Therefore, to achieve exact solution of the joint variables has been the main concern to the researchers. A brief introduction of industrial robot manipulators, evolution and classification is presented. The basic configurations of robot manipulator are demonstrated and their benefits and drawbacks are deliberated along with the applications. The difficulties to solve forward and inverse kinematics of robot manipulator are discussed and solution of inverse kinematic is introduced through conventional methods. In order to accomplish the desired objective of the work and attain the solution of inverse kinematic problem an efficient study of the existing tools and techniques has been done. A review of literature survey and various tools used to solve inverse kinematic problem on different aspects is discussed. The various approaches of inverse kinematic solution is categorized in four sections namely structural analysis of mechanism, conventional approaches, intelligence or soft computing approaches and optimization based approaches. A portion of important and more significant literatures are thoroughly discussed and brief investigation is made on conclusions and gaps with respect to the inverse kinematic solution of industrial robot manipulators. Based on the survey of tools and techniques used for the kinematic analysis the broad objective of the present research work is presented as; to carry out the kinematic analyses of different configurations of industrial robot manipulators. The mathematical modelling of selected robot manipulator using existing tools and techniques has to be made for the comparative study of proposed method. On the other hand, development of new algorithm and their mathematical modelling for the solution of inverse kinematic problem has to be made for the analysis of quality and efficiency of the obtained solutions. Therefore, the study of appropriate tools and techniques used for the solution of inverse kinematic problems and comparison with proposed method is considered. Moreover, recommendation of the appropriate method for the solution of inverse kinematic problem is presented in the work. Apart from the forward kinematic analysis, the inverse kinematic analysis is quite complex, due to its non-linear formulations and having multiple solutions. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network (ANN) can be gainfully used to yield the desired results. Therefore, in the present work several models of artificial neural network (ANN) are used for the solution of the inverse kinematic problem. This model of ANN does not rely on higher mathematical formulations and are adept to solve NP-hard, non-linear and higher degree of polynomial equations. Although intelligent approaches are not new in this field but some selected models of ANN and their hybridization has been presented for the comparative evaluation of inverse kinematic. The hybridization scheme of ANN and an investigation has been made on accuracies of adopted algorithms. On the other hand, any Optimization algorithms which are capable of solving various multimodal functions can be implemented to solve the inverse kinematic problem. To overcome the problem of conventional tool and intelligent based method the optimization based approach can be implemented. In general, the optimization based approaches are more stable and often converge to the global solution. The major problem of ANN based approaches are its slow convergence and often stuck in local optimum point. Therefore, in present work different optimization based approaches are considered. The formulation of the objective function and associated constrained are discussed thoroughly. The comparison of all adopted algorithms on the basis of number of solutions, mathematical operations and computational time has been presented. The thesis concludes the summary with contributions and scope of the future research work

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Fusion of Artificial Intelligence in Neuro-Rehabilitation Video Games

    Get PDF
    In this paper, an intuitive neuro-rehabilitation video game has been developed employing the fusion of artificial neural networks (ANNs), inverse kinematics (IK), and fuzzy logic (FL) algorithms. The embedded algorithms automatically adjust the game difficulty level based on the player’s interaction with the game. Moreover, it is manifested as an alternative approach for possible movements to improve incorrect positioning through real-time visual feedback on the screen; 52 participants volunteered to engage in the program. Motor assessment scale (MAS) was determined to assess the participants’ functional ability pre- and post-treatments. The system input is received via the Microsoft Kinect, a foot Pedal (Saitek), and the Thalmic Myo armband. The ANN classifier integrates the limb joints orientation, angular velocity, lower arms’ muscle activity, hand gestures, feet sole (plantar) pressure parameters, and the MAS scores to learn from data and predict the improvement following the intervention. The fuzzy input generates a crisp output and provides a personalized rehabilitation program with the potential to be integrated into clinical protocols. Experiments to obtain the input signals and desired outputs were conducted for the learning and validation of the network. The networks pattern recognition, self-organizing map, and non-linear auto-regression analysis performed using feed-forward and Levenberg–Marquardt backpropagation (LMBP) procedure. The results showed the effectiveness of the non-linear auto-regression using the optimized LMBP algorithm to classify and visualize the target categories. Furthermore, the state of the network demonstrates the prediction accuracy exceeding 94%. Clustering algorithm grouped the data based on the similarity. Self-organizing map trained the network to learn the topology of samples with high correlation, presented outputs with high achievement
    corecore