501 research outputs found

    Unified Inverse Depth Parametrization for Monocular SLAM

    No full text

    RGBDTAM: A Cost-Effective and Accurate RGB-D Tracking and Mapping System

    Full text link
    Simultaneous Localization and Mapping using RGB-D cameras has been a fertile research topic in the latest decade, due to the suitability of such sensors for indoor robotics. In this paper we propose a direct RGB-D SLAM algorithm with state-of-the-art accuracy and robustness at a los cost. Our experiments in the RGB-D TUM dataset [34] effectively show a better accuracy and robustness in CPU real time than direct RGB-D SLAM systems that make use of the GPU. The key ingredients of our approach are mainly two. Firstly, the combination of a semi-dense photometric and dense geometric error for the pose tracking (see Figure 1), which we demonstrate to be the most accurate alternative. And secondly, a model of the multi-view constraints and their errors in the mapping and tracking threads, which adds extra information over other approaches. We release the open-source implementation of our approach 1 . The reader is referred to a video with our results 2 for a more illustrative visualization of its performance

    Visual 3-D SLAM from UAVs

    Get PDF
    The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs

    RT-SLAM: A Generic and Real-Time Visual SLAM Implementation

    Full text link
    This article presents a new open-source C++ implementation to solve the SLAM problem, which is focused on genericity, versatility and high execution speed. It is based on an original object oriented architecture, that allows the combination of numerous sensors and landmark types, and the integration of various approaches proposed in the literature. The system capacities are illustrated by the presentation of an inertial/vision SLAM approach, for which several improvements over existing methods have been introduced, and that copes with very high dynamic motions. Results with a hand-held camera are presented.Comment: 10 page

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    ParallaxBA: Bundle adjustment using parallax angle feature parametrization

    Full text link
    ©The Author(s) 2015. The main contribution of this paper is a novel feature parametrization based on parallax angles for bundle adjustment (BA) in structure and motion estimation from monocular images. It is demonstrated that under certain conditions, describing feature locations using their Euclidean XYZ coordinates or using inverse depth in BA leads to ill-conditioned normal equations as well as objective functions that have very small gradients with respect to some of the parameters describing feature locations. The proposed parallax angle feature parametrization in BA (ParallaxBA) avoids both of the above problems leading to better convergence properties and more accurate motion and structure estimates. Simulation and experimental datasets are used to demonstrate the impact of different feature parametrizations on BA, and the improved convergence, efficiency and accuracy of the proposed ParallaxBA algorithm when compared with some existing BA packages such as SBA, sSBA and g2o. The C/C++ source code of ParallaxBA is available on OpenSLAM (https://openslam.org/)
    • …
    corecore