2,924 research outputs found

    On-demand warehousing: Main features and business models

    Get PDF
    none4Tornese F.; Unnu K.; Gnoni M.G.; Pazour J.A.Tornese, F.; Unnu, K.; Gnoni, M. G.; Pazour, J. A

    Research on factors affecting Thai manufacturer deal with supply chain disruption toward decentralization

    Get PDF

    Warehouse Selection and Inventory Optimization

    Get PDF

    Designing a supply network for a startup company

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 86-88).Our thesis introduces a supply chain framework catered for startup companies. Startup companies face unique circumstances such as constraints on financial and human resources, and greater uncertainty in demand. From our work with XL Hybrids, a startup company that hybridizes aftermarket vehicles, as well as interviews and literature review, we have attempted to distill supply chain strategies that can be applied to startup companies. To plan XL Hybrids' supply chain, we developed models for the following aspects of their supply chain: production scheduling, capacity planning, inventory policy, and component distribution. By running different demand and pricing scenarios, we gained an understanding of the impact of these variables on the four aspects of XL Hybrid's supply chain. Based on the scenario analysis and supply chain framework that we developed, we recommend that XL Hybrids be conservative with capacity expansion while strategically sourcing key components after considering volume discounts and different distribution methods.by Marcus S. Causton and Jianmin Wu.M.Eng.in Logistic

    Logistics real estate markets: indicators of structural change, linking land use and freight transport

    Get PDF
    The system of physical distribution that comprises transport and logistics, warehousing and wholesale, is an ideal indicator of structural change. Distribution and logistics have developed dynamically, with respect to new technologies, corporate restructuring, and a changing market environment. Whereas traditional logistics were characterized primarily by the demand of manufacturing customers for the shipment of bulk-commodities, modern production and service systems require frequent deliveries over great distances, with high inventory turnovers instead of storage. As a consequence, the locational profiles of distribution firms have changed as well, both at a large-scale level and within metropolitan regions. Based on recent findings of the European Warehousing Index, the paper points out how the European system of goods movement has changed in terms of regional distribution markets and warehousing location. Secondly, the consequences of locational dynamics within metropolitan regions are considered. The dominance of the truck and the suburbanisation of large distribution centres raise serious concern about logistics management, traffic reduction and locational policy. Referring to selected places such as the Ruhr Area, Hamburg or Berlin-Brandenburg, the paper demonstrates how critical the relationship between cities and goods distribution is becoming, with regard both to the regional economy and the urban environment. Is there a chance for regional, spatially oriented management of supply chains? In the case of the Ruhr Area, it is also questioned whether a certain 'knowledge milieu' (logistics research, applied sciences) may contribute to this goal. The particular benefits of investigating logistics real estate markets are fourfold: - They allow for a precise insight into regionally differentiated developments. - They connect the system of 'flows' with material 'space'. - They demonstrate that structural change is by no means neutral for the environment, regarding specific transport and land use implications of distribution. - They represent the emergence of new players in land use planning and policy (i.e. developers), thus shaping the system of political regulation.

    CANON: A Circular Economy Business Model Case

    Get PDF
    This report presents the case study of Canonโ€™s EMEA business for Document Solutions (DS), with a focus on the business model for remanufacturing and refurbishment. It was chosen as it provided an example of a mature remanufacturing model, as well as potential for further circularity and business benefit through expansion of refurbishment activities. Canon EMEA has also been growing services such as Managed Print Service (MPS) โ€“ a service-based model for providing printer copiers โ€“ which, while not a focus of the case study, provides opportunities for both remanufacturing and refurbishment. Canon operates in a market which is currently in decline, with vendors competing intensely for market share. This is creating a stark contrast between a business model driven by new product sales, and one that emphasises the cultivation and reutilisation of existing deployed assets. In this context, it is important to emphasise that this case study focuses on the circular business models and potential for Canon EMEA, whose business is principally a combination of sales/marketing and service delivery. This is in contrast to Canon Inc. (Japan) who manufactures and supplies equipment for Canon EMEA to sell and integrate into its service offerings. This case study explores the opportunities, as well as enablers and barriers, to Canon expanding the role of remanufacturing and refurbishment within its circular business models. We believe this will have important positive implications for Canon given the broader strategic challenges it face

    Design and control of service part distribution systems

    Get PDF

    The on-demand warehousing problem

    Get PDF
    Warehouses are key elements of supply chain networks, and great attention is paid to increase their efficiency. Highly volatile space requirements are enablers of innovative resource sharing concepts, where warehouse capacities are traded on online platforms. In this context, our paper introduces the on-demand warehousing problem from the perspective of platform providers. The objective prioritises demandโ€“supply matching with maximisation of the number of transactions. If there is a tie, the secondary objective maximises the number of suppliers matched with at least one customer and the number of customers that have matches within a specific threshold with respect to the minimum achievable cost. Besides the mathematical integer programming formulation, a myopic list-based heuristic and an efficient matheuristic approach are presented and benchmarked against the performance of a commercial optimisation solver. The impact of several parameters on the platform's objective is analysed. A particularly relevant finding is that the pricing flexibility on the demand side does not necessarily imply higher payments to the supply side. All data instances are made available publicly to encourage more researchers to work on this timely and challenging topic

    ํ•ด์šด๋ฌผ๋ฅ˜์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ํšจ๊ณผ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022.2. ๋ฌธ์ผ๊ฒฝ.์ปจํ…Œ์ด๋„ˆ ํ™” ์ดํ›„๋กœ ํ•ด์ƒ ๋ฌผ๋ฅ˜๋Š” ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  ์„ธ๊ณ„ํ™”์™€ ์‚ฐ์—… ๋ฐœ์ „์„ ์„ ๋„ํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๋ฌด์—ญ๋Ÿ‰์˜ ์ฆ๊ฐ€์™€ ๋น„๋ก€ํ•˜์—ฌ ์ˆ˜์ถœ์ž… ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•œ ์ปจํ…Œ์ด๋„ˆ์˜ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋„ ์‹ฌํ™”๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ์ž๋“ค์˜ ๋…ธ๋ ฅ์ด ์žˆ์—ˆ๊ณ , ๊ทธ ์ค‘ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•„์ง ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๋Š” ์ƒ์šฉํ™” ์ดˆ๊ธฐ ๋‹จ๊ณ„์ด๋ฉฐ, ์ด๋ฅผ ํ™œ์šฉํ•œ ์—ฌ๋Ÿฌ ํšจ๊ณผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๋„์ž…๋˜์—ˆ์„ ๋•Œ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ๊ณผ ๊ทธ ํšจ๊ณผ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋จผ์ € ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ํฌ๋ ˆ์ธ ํ™œ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ , ์ „์—ญ์  ๊ด€์ ์œผ๋กœ ํฌ๋ ˆ์ธ ํ™œ๋™์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์œก์ƒ์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ์ ์šฉ์ด ํ•ด์ƒ๊ณผ๋Š” ๋‹ค๋ฅด๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 2008 ๊ธˆ์œต์œ„๊ธฐ์™€ COVID-19 ์ดํ›„์— ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ํ•ด์šด๋ฌผ๋ฅ˜์˜ ๊ฐ์ข… ๋ณ€๋™ํ•˜๋Š” ์ƒํ™ฉ ํ•˜์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ํšจ๊ณผ์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ํ†ต์ฐฐ์„ ์ œ๊ณตํ•˜์˜€๋‹ค. 1์žฅ์—์„œ๋Š” ๊ฐ„๋‹จํ•˜๊ฒŒ ์ปจํ…Œ์ด๋„ˆํ™”์™€ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ๋ฌธ์ œ๋ฅผ ์ฃผ๋ชฉํ•˜๊ฒŒ ๋œ ์ด์œ ์™€ ๊ทธ ์„ฑ๊ณผ๋ฅผ ์„œ์ˆ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๋„์ž…๋จ์— ๋”ฐ๋ผ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋Š” โ€˜์ƒ๋‹จ ์ ์žฌ ๊ทœ์น™โ€™์ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ์˜ ํฌ๋ ˆ์ธ ํ™œ๋™์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๊ณ  ์ „์—ญ์  ์ตœ์ ํ™”๊ฐ€ ์ง€์—ญ์  ์ตœ์ ํ™”๋ณด๋‹ค ํšจ๊ณผ์ ์ž„์„ ๋ณด์˜€๋‹ค. ๋”๋ถˆ์–ด ์ „์—ญ์  ์ตœ์ ํ™”๋ฅผ ๋„์ž…ํ•˜์˜€์„ ๋•Œ ์ง๋ฉดํ•  ์ˆ˜ ์žˆ๋Š” ๋น„์šฉ ๋ถ„๋ฐฐ ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ๋„ ์กฐ๋งํ•˜์—ฌ ๊ทธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ์œก์ƒ์—์„œ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ์ˆ˜์†ก๊ณต๊ฐ„์„ ์ค„์—ฌ์ฃผ๋Š” ์žฅ์  ์™ธ์— ๊ฒฝ๋กœ๋ฅผ ๋ฐ”๊พธ๋Š” ํšจ๊ณผ๊ฐ€ ์กด์žฌํ•จ์„ ๋ณด์ด๊ณ , ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ์ •์ฑ…์— ๋”ฐ๋ผ ๊ทธ ํšจ๊ณผ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. 4์žฅ์—์„œ๋Š” ์ฆ๊ฐ€ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ณ€๋™์ƒํ™ฉ ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์˜ ํšจ๊ณผ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ฐ ์ƒํ™ฉ์— ๋งž๋Š” ์ตœ์  ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ๊ฐœ์ˆ˜๋ฅผ ๋„์ถœํ•˜๊ณ  ์ž„๋Œ€ ์ •์ฑ…์„ ํ†ตํ•ด ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ํ†ต์ฐฐ์„ ๋„์ถœํ•˜์˜€๋‹ค. 5์žฅ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์˜ ๊ฒฐ๋ก ๊ณผ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฌธ์ œ์™€ ๊ทธ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์€ ํ•™์ˆ ์  ๋ฐ ์‚ฐ์—…์ ์œผ๋กœ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ํ•™๊ณ„์—๋Š” ์‹ค์ œ ์กด์žฌํ•˜๋Š” ํ˜„์žฅ์˜ ๋ฌธ์ œ๋“ค์„ ์ œ์‹œํ•˜๊ณ  ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฐ์—…๊ณ„์—๋Š” ์‹ ๊ธฐ์ˆ ์ธ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์˜ ๋„์ž…์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ •๋Ÿ‰ํ™” ๋ฐ ๋ชจํ˜•ํ™”๋ฅผ ํ†ตํ•œ ํ•ด๊ฒฐ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์„ ํ†ตํ•ด ์‚ฐ์—…์˜ ๋ฐœ์ „๊ณผ ํ•™๋ฌธ์˜ ๋ฐœ์ „์ด ํ•จ๊ป˜ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.After containerization, maritime logistics experienced the substantial growth of trade volumes and led to globalization and industrial development. However, in proportion to the increase in the volume, the degree of container imbalance also intensified due to the disparity between importing and exporting sizes at ports in different continents. A group of researchers is digging into resolving this ongoing challenge, and a new concept of a container, called a foldable container, has been proposed. Nevertheless, foldable containers are still in the early stage of commercialization, and research on the various effects of using foldable containers seems insufficient yet. This dissertation considers the possible effects of the introduction of foldable containers. First, we analyze the effect of foldable containers on crane operation and reduce shifts from a global perspective. Second, the effect of using foldable containers in hinterland areas was analyzed by noting that the application of foldable containers on land was different from that of the sea. Finally, we provided new insights into the foldable container under plausible dynamic situations in the shipping industry during the COVID-19 and logistics that have increased since the 2008 financial crisis. A brief explanation of containerization and foldable containers is introduced in Chapter 1, along with the dissertation's motivations, contributions, and outlines. Chapter 2 examines changes in crane operation when the 'top stowing rule' that can be treated with foldable containers is applied and shows that global optimization is more effective than local optimization. In addition, we suggested the cost-sharing method to deal with fairness issues for additional costs between ports when the global optimization method is fully introduced. Chapter 3 shows that foldable containers in the hinterland have the effect of changing routes in addition to reducing transportation space and analyzes how the results change according to various scenarios and policies. Chapter 4 analyzes the effectiveness of foldable containers for different dynamic situations. Moreover, the managerial insight was derived that the optimal number of foldable containers suitable for each situation can be obtained and responded to leasing policies. Chapter 5 describes the conclusions of this dissertation and discusses future research. The problem definition and solution methods proposed in this dissertation can be seen as meaningful in both academic and industrial aspects. For academia, we presented real-world problems in the field and suggested ways to solve problems effectively. For industry, we offered solutions through quantification and modeling for real problems related to foldable containers. We expect that industrial development and academic achievement can be achieved together through this dissertation.Chapter 1 Introduction 1 1.1 Containerization and foldable container 1 1.2 Research motivations and contributions 3 1.3 Outline of the dissertation 6 Chapter 2 Efficient stowage plan with loading and unloading operations for shipping liners using foldable containers and shift cost-sharing 7 2.1 Introduction 7 2.2 Literature review 10 2.3 Problem definition 15 2.4 Mathematical model 19 2.4.1 Mixed-integer programming model 19 2.4.2 Cost-sharing 24 2.5 Computational experiment and analysis 26 2.6 Conclusions 34 Chapter 3 Effects of using foldable containers in hinterland areas 36 3.1 Introduction 36 3.2 Single depot repositioning problem 39 3.2.1 Problem description 40 3.2.2 Mathematical formulation of the single depot repositioning problem 42 3.2.3 Effects of foldable containers 45 3.3 Multi-depot repositioning problem 51 3.4 Computational experiments 56 3.4.1 Experimental design for the SDRP 57 3.4.2 Experimental results for the SDRP 58 3.4.3 Major and minor effects with the single depot repositioning problem 60 3.5 Conclusions 65 Chapter 4 Effect of foldable containers in dynamic situation 66 4.1 Introduction 66 4.2 Problem description 70 4.3 Mathematical model 73 4.4 Computational experiments 77 4.4.1 Overview 77 4.4.2 Experiment results 79 4.5 Conclusions 88 Chapter 5 Conclusion and future research 90 Bibliography 94 ๊ตญ๋ฌธ์ดˆ๋ก 99๋ฐ•
    • โ€ฆ
    corecore