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ABSTRACT

Full Name . Ibrahim Turki Al-Turki
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Major Field . Industrial and Systems Engineering
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Warehouse capacitated inventory optimization problems are rarely addressed in the
literature. This is because capacity constraints imposed by warehouses can always be lifted
by leasing or owning more warehouses, and also because warehousing expenses are
considered negligible compared to the whole problem. Hence, problems that deal with
inventory optimization and warehouses are usually neglected in the literature due to the
lack of real-life applications. However, in land-scarce regions, land acquisition and upkeep
are becoming more and more expensive, mainly due to population growth. This growth is
anticipated to make warehousing a major problem, where leasing warehouses is the only
viable option for small business owners to survive. Awarding longer leasing contracts with
cheaper rates is the main rivalry tactic between warehouses. This is where this proposed
work comes to the benefit of the business owners, by aiding them in selecting the optimal
ordering and warehousing plan. Ultimately, this helps in competing business environment.
This work will introduce a new capacitated inventory optimization problem called the
Warehouse Selection and Inventory Optimization (WSIO) problem. The work includes
developing mathematical models for both the deterministic and stochastic demand cases,
developing exact and heuristic solution methods to solve the WSIO problem, suggesting
ideas to speed up the solution process, and finally presenting interesting insights and

observation about the WSIO problem through experimental work.
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CHAPTER 1

INTRODUCTION

In this current age, most corporations operate in highly populated land-scarce regions,
where they tend to suffer from an escalating financial hemorrhaging when expanding
horizontally. Especially for the corporations that invested in business areas that require
large warehouses, like in retail and logistics. This escalation is due to the continuous
increase in land prices, and government taxation efforts to reduce land seizure. Therefore,
corporations tend to escape this managerial and financial nightmare by outsourcing their
storage needs instead of acquiring new warehouses or expanding the existing ones.
Primarily, outsourcing comes in the form where corporations lease warehouses from a
third-party company at a mutually agreed price for a certain lease duration. Typically, the
third-party companies are able to turn a profit — as oppose to corporations not invested in
storage services — due to various reasons, some are technological, and others are
managerial. For instance, a heavy capital investment in advanced automated storage and
retrieving technology will allow for a full utilization of space, reduced upkeep expenses,
and eventually a profit. Another possible reason is having a policy to sublet a single large
warehouse to several corporations with small storage requirements. Regardless of the
mechanism the storage service providers use to turn a profit, the main concern here is “how
corporations can optimally utilize the warehouse services?”. Now, lease contracts are

mostly dependent on the provided storage space, the service provider pricing, and their



leasing policy (whether they reward longer contracts with lower leasing rates or not). For
a retailer seeking to expand, the emergence of many leasing options will urge them to
reconsider their whole supply chain business plan, especially their ordering policy. In a
nutshell, the new business plan must be able to provide answers to the simple questions:
Should we expand? Should we lease warehouses? Which warehouses to lease? When to
lease them and for how long? How much to order for each product? These questions can
pose a challenge for any decision maker, especially if:

e the storage size for each product is different,

e the warehouses have different sizes and lease policies,

e the demand for each product is different from one period to another and possibly is

uncertain, and

e the storage service providers reward longer contracts.
The decision problem with the above issues is referred to in this paper as the Warehouse
Selection and Inventory Optimization (WSIO) problem. The WSIO problem with the
above-described complexity is beyond the scope of the classical Economic Ordering
Quantity (EOQ) models and requires further investigation. This work finds its motivation
from the expected population growth levels, and land—scarcity in many highly—populated
regions across the globe, such as in Honk—Kong, Tokyo, and New York. This growth is
anticipated to create a climate where leasing warehouses is the only viable option for small
business owners to survive, and where awarding longer leasing contracts with cheaper rates
is the main rivalry tactic among the warehouse owners to the attract business owners. This
is where this work comes to the benefit for the business owners to aid them in selecting the

optimal plan, and ultimately survive in the competitive business world.



This thesis's objective is to introduce the WSIO problem for multi—periods inventory
problems with multi-products that have time dependent selling prices, develop
mathematical models for both the deterministic demand case and stochastic demand case,
suggest exact and develop heuristic solution methods to solve the WSIO problem, suggest
ideas to speed up the solution time, and finally draw interesting insights and observation

about the WSIO problem through experimental work.

The rest of this work is organized as follows: In Chapter 2, a concise literature review is
presented. In Chapter 3, a deterministic mathematical model is developed, and ideas to
speed up the solution process are suggested. In Chapter 4, a stochastic model is developed.
In Chapter 5, exact and heuristic solution methods to solve WISO problem are developed
and presented. In Chapter 6, experimental performance of the proposed solution methods
is illustrated through solving several numerical examples on the WSIO problem. In Chapter

7, a conclusion and a summary about this work is presented.



CHAPTER 2

LITERATURE REVIEW

In this chapter, a review is presented on the literature that focus on the connectivity between
inventory optimization, warehousing, and demand uncertainty. This overlap area of
research was found to be better represented by the following three categories: First
category, research work done on Hartley's two warehouse model. Second category,
research work done on inventory optimization and warehousing that is unrelated to
Hartley's model. Third category, research that involves introducing demand uncertainty to
capacitated inventory optimization problems. Hence, this chapter is divided into five
sections: The first three sections each will discuss one category from the three categories
above, the fourth section will discuss the gap found in the literature, and the fifth section

will present the WSIO problem statement and its role in filling the literature gap.

2.1. Hartley's Two—-Warehouse Model

The first to relate the Economic Ordering Quantity (EOQ) model to warehouses was
Hartley in 1976 [1]. He conferred a simple two-warehouse model, one warehouse he
referred to as Owned Warehouse (OW), and the other one as Rented Warehouse (RW). His
work paved the way for many researchers interested in warehouse inventory optimization
problems. Here are few examples: Sarma in 1983 [2] expanded Hartley’s original model

by considering transference cost between the two warehouses and proposed different
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reordering rules. In 1987 [3], Sarma provided further expansion to Hartley’s model by
accommodating for deterioration effect on the two warehouses. In 1992, Chaudhuri and
Goswami [4] extended Sarma’s models to include demand that varies linearly with time.
Later, numerous other researchers followed by developing similar two-warehouse
inventory models where each considered different factors such as shortages, deteriorating
items, stock level-dependent demand, inflation rate, time value of money, finite production,
and finite time horizon, (see for example Pakkala and Achary [5] , Maiti and Bhunia [6],
Kar, Bhunia and Maiti [7], Yang [8], Zhou and Yang [9], Hsieh, Dye and Ouyang [10]).
Furthermore, beside extending Hartley's model, there has been other type of papers inspired
by the two-warehouse model. For instance, Chung, Her, and Lin [11] work where they
converted Salameh and Jaber’s [12] single warehouse model with imperfect products to a
two-warehouse model. Also, Lee, M and Elsayed, E. [13] work where they provided their
own NLP formulation and solution procedure for a two-warehouse problem with
warehouses that operates under a dedicated storage policy, and a full-turnover-based
storage policy. The latest work extensions to the two-warehouse problem was Moncer's
[14] and Sana's [15]. The former extended previous work to accommodate for the two
options: long fixed contract, and flexible contract, and the latter provided a formulation for

the two-warehouse problem when demand is uncertain following the newsvendor concept.

In the above section, published papers on Hartley's two warehouse model was reviewed.
The review unveils that Hartley's two warehouse model's still an active research area, and
is the dominant area when looking up for the topics in inventory optimization and

warehousing.



2.2.  Capacitated Inventory Optimization Problems

Although, Hartley's model appears to be the most popular work on warehouse inventory
optimization, there have been other contributions to this field that are not based on Hartley's
model. For instance, Zhang, Zhu, and Hu [16] provided a different approach on the
warehouse optimization problem. They proposed a simple mathematical model that
provides warehouse owners looking to expand their capacity with the optimal decision
between expanding current warehouses or leasing new warehouses. Another example is
Jucker, Kropp, and Carlson [17] work where they considered leased warehouses in the
classical plant-region allocation problem. They considered a company manufacturing a
single product, and planning to increase production volume by building a plant to supply
new districts, each to be supplied by a local warehouse. Local warehouses are rented in a
way that no fixed costs are associated with the warehouses. The goal is to select the plant
and warehouse capacities which maximizes the net profit, with no stock-outs due to
insufficient plant capacity. Also, the plant installation cost is nonlinear w.r.t. its capacity,
and the warehouses lease costs are linear w.r.t its capacities. They also tackled uncertainty
using expectations to replace stochastic variables or parameters. Moreover, Ng et al. [18]
provided a closed form solution to a capacitated EOQ problem, where the decision
variables are the batch sizes for each period, and the warehouse capacity size. In their
model, it is assumed that warehousing costs dominate non-warehousing costs. Goh et al.
[19] provided a closed form solution to a problem slightly similar to the one proposed in
our work, and an iterative algorithmic solution for a complicated variation of the problem.

The problem described in their paper requires solving simultaneously an inventory



problem, and a warehouse sizing problem, where the demand is known, and constant. In
addition, the warehouses are leased for a fixed time period equal to the demand rate time
unit, with a lease cost that is a step function of the warehouse size. The closed form solution
was for a single product, where the algorithm was for the multi-products. Mousavi et al.
[20] gave a model for a multi-product multi-period inventory control problem under an all-
unit discount policy and inflation, all constrained by a limited capacity and a dedicated

budget. The problem was solved using a particle-swarm based algorithm.

In the above section, published papers on capacitated inventory optimization was reviewed,
while excluding all work relevant to Hartley's model. The review unveils that once
Hartley's two warehouse model is cast aside, the remaining research areas are (A)
Warehouse—Plants allocation problems, (B) Warehouse capacity design problems, (C)
Automation in the warehouse area, and (D) Buy or expand decision problems. This shows
the lack of research on capacitated inventory optimization problems. Specially, in the

variety in of handling warehouse capacity.

2.3.  Stochastic Capacitated Inventory Optimization Problems

Although, most capacitated EOQ models in the literature assume all parameters are known
for certain, there are some researchers who investigated the capacitated EOQ problems
when one or more parameters are not known for certain. In 1988, Rosenblatt and Roll [21]
tackled uncertainty using simulation, where an (s, Q) inventory policy and a random storing

strategy were assumed, s being the reordering inventory level and Q the ordering quantity.



In particular, the warehouse capacity essential to uphold a certain service—level was
discovered to be directly related to the reorder quantity, and the average everyday demands,
and inversely related to the number of products, reorder points and the inconsistency in the
day-to-day demand. A multiplicative regression model shows that the last two factors have
only a negligible influence. Sungur [22], Sungur, Ordonez, and Dessouky [23] tackled a
real-life allocation problem where vehicles with limited capacities are allocated to the
destinations with uncertain demand. Ordonez and Zhao [24] examined the robust capacity
growth problem of network flows under travel time and demand uncertainty. Atamtirk and
Zhang [25] studied the design problem and network flow under demand uncertainty, with
applications to location—transportation and lot-sizing problems. Paolo [26] provided a
mathematical model for a multi-item time capacitated multi-period lot-sizing problem with
uncertain demand. He investigated different existing heuristics to solve the scenarios-tree
based model and discussed their efficiency and effectiveness. In addition to the above,
comprehensive review papers that deals with capacitated inventory problems were taken
into consideration while reviewing this topic. Among them is the review done by Gabrel,
Murat, and Thiele [27] which covers all the recent inventory optimization problems
focused on uncertainty and robustness. Also, there is the most recent review done by Diaz-
Madrofiero, Peidro, and Mula [28] that covers the recent development in tactical
optimization models for the integrated production, warehousing and transport routing

planning decisions.

In the above section, published papers on stochastic capacitated inventory optimization
were reviewed. The review unveils that there is lack of research on stochastic capacitated

inventory optimization problems, especially in the recent years.



2.4. Gap Analysis

The literature review presented in Sections 2.1, 2.2, and 2.3 reveals a gap in the literature
that concerns capacitated inventory optimization problems, especially problems that
involves warehouses. The gap does not exist due to a lack of research done on capacitated
inventory optimization, but due to the majority of this research being extensions to previous
work. This led most research about capacitated inventory optimization and warehousing to
be extensions to Hartley's two—warehouse model, or the warehouses allocation model, or
the warehouse capacity inventory—based design model. Of course, there have been other
research efforts about warehouses, but most of them are irrelevant to our work, and hence,
they were dismissed from our literature review. For example, facility layout optimization
problems, and research about automating warehouses. Hence, although the literature is rich
with published papers about capacitated inventory optimization problems, the variety of
the original models these papers are based upon is limited. In Hartley's model, the capacity
is presented as a fixed starting resource that is extendable by a fixed amount through an
option called Rented—Warehouse, and the problem mainly revolves around the question,
should the Rented—Warehouse option be selected? Of course, this involves other decisions
like how much to order? when to order? and the other usual inventory optimization
questions. In the allocation problem, the capacity is also presented as a fixed resource, but
now the question is how to allocate this resource to maximize the decision maker's goal. In
the warehouse—design problem, the capacity is no longer a fixed resource, but rather is a
first—stage decision that cannot be altered at later stages, hence, the varieties of future

decisions will be limited by that first stage decision. To illustrate the lack of original



models, observe how the capacity of the warehouses is represented in these three research
areas that dominate the topic inventory optimization and warehousing. In all three
problems, the capacity is represented as a fixed resource or as a first stage decision, which
certainly does not accommodate for all the real-life warehouses capacitated inventory
optimization problems. The gap also doubles in size when considering the variety of
existing uncapacitated inventory optimization problems, and the different assumptions they

can have (e.g. fixed demand, and continuous demand).

This work aims to reduce the above gap by introducing the WSIO problem, where capacity
is represented in a unique way, and assumptions are made so that a family of real-life
problems that have not been addressed before in the literature can be addressed by our

work.

2.5. Problem Statement

Nowadays, corporations tend to favor leasing warehouses over owning and maintaining
warehouses. Specially, corporations that are located in highly—populated land-scarce
regions. The reasoning for this is twofold: First, leasing warehouses offer more flexibility
and mobility. The corporations can liquefy their assets, modify their supply chain business
plans, expand or shrink their operations, or even simply switch warehouses, all at much
faster pace. Second, leasing warehouses is mostly favored because it is a risk-averse
strategy. That is, it shields corporations from any potential financial risks associated with

investing upfront on owning a warehouse, or any other post—ramifications like increased
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taxation on owned lands, or sudden drops in warehouses salvage value. To illustrate,
contemplate the following example: a small retailer invests his capital in owning a large
warehouse, and starts to import products that are new to the region and have high demand
rates. He starts to make profit, but suddenly his market share drops significantly because
other retailers notice the trend and join in. Suddenly his business plan becomes unprofitable
due to the competition. Now, because the retailer invested all his capital upfront in owning
the warehouse, his ability to endure loss is weaker and his options are limited. This is a
single example among many other examples where leasing a warehouse for a small
business owner is certainly a better strategy than owning one. However, with a leasing
strategy in mind, more options are available, and hence more questions are to be answered.
The WSIO problem tackles these questions mathematically and when solved offer an

optimal solution to these questions.

The WSIO problem assumes that a corporation is seeking to maximize its total profit by
selling multiple products. However, the total demand for each product is different from one
period to another, and possibly stochastic (independent or correlated). Each product has
different ordering cost, holding cost, purchasing cost, lost sale cost (opportunity cost),
storage space requirements, selling price, and selling price depreciation rate with time.
Furthermore, the corporation needs to choose from several available warehousing options
at different time periods. Each leasing option is characterized by its warehouse capacity
and its reward policy for longer contracts. The warehouses can be leased for any duration
of demand periods, or for a minimum duration of multiple demands periods. The latter

suggests warehousing is more of a strategic decision compared to reordering.
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Now, for any corporation seeking to maximize its total profit, it needs to answer the

following questions:

1) How much to order for each product? When to make the order?

(2 Which warehouses to lease? When to lease them? For how long to lease?

The WSIO problem distinguishes itself apart from the capacitated EOQ models in the
literature in different ways. First, most warehouse inventory optimization problems are
based on Hartley's two-warehouses model, while WSIO is not. Clearly, it has a different
purpose, structure, and set of variables and parameters. Second, most capacitated EOQ
models that are not based on Hartley's model, either assume capacity is given at the
beginning (allocation problems) or to be decided at the start, and then is fixed for the rest
of the planning horizon (design problems). Third, the questions answered by the WSIO
problem, makes it an inventory optimization problem, warehouse selection problem, and
interestingly a scheduling problem as well. Only few inventory problems fall all at once
under these three categories. Fourth, rarity of real-life existence of the WSIO problem in
the past and presumably till today, which suggests that it has never been an active area of
research. However, with population growth accelerating in land-scarce regions like in
Tokyo and Honk Hong, it is possible that in the not so far future this work will be part of

an active area of research.
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CHAPTER 3

THE DETERMINSTIC MODEL

In this chapter, a deterministic mathematical model will be developed for the WSIO
problem described in Chapters 2. First, a deterministic model will be developed for the
problem, where the demand is assumed to be known for certain. Second, different

techniques to improve the model's solution time are proposed and analyzed.

3.1. Motivation

In the literature, any attempt to construct a stochastic model for any problem, starts first by
composing a deterministic model for that problem. This practice eases building the
stochastic model and allows later for comparative verification and testing. In the proposed
deterministic model, it is assumed that the products demands are known for certain
beforehand, for the entire planning horizon. Whereas, the stochastic model assumes that
the demand is not known for certain, and that it may be represented by a probability
distribution. Although, any other parameter could be stochastic such as lead time, or prices
reduction rate with time, demand uncertainty was only considered due to it being the most
relevant to the WSIO problem. While, some would argue that replacing stochastic
parameters by their expectation is a valid approach to avoid overcomplications brought by
stochastic models, many would argue that this approach is merely solving for a single
scenario among many more that would be left unconsidered resulting in a dishonest

13



solution. This argument inspired the development of two decision tools: (1) Expected
Value for Perfect Information (EVPI), and (2) Value for Stochastic Solution (VSS) [29].
The two tools are used primarily to test the effectiveness of a stochastic model solution
against a solution found using expectation in a deterministic model. EVPI estimates the
monetary worth of obtaining perfect information, if investments to eliminate uncertainty
are under consideration. On the other hand, VSS estimates the worth of solving the
stochastic model as oppose to solving the deterministic expectation model. Further details
about the two decision tools will be provided in Chapter 6. In general, both tools provide
very interesting insights about the uncertainty in the WSIO problem, and both measures
require the deterministic and stochastic models. Hence, there are many key incentives to

pursue developing the deterministic model first.

3.2. Model Development

In this section, the steps toward obtaining the deterministic model are listed and explained
in detail. First, the problem is described in mathematical notations, followed by listing the

assumptions made for this work. Second, the deterministic model is developed.

Table 1 Available Warehousing Options Summary

Lease Period
1 2 3 4 joo
&1 hi4 hyz hy3 hi4 hyj | .
TZ hzl h22 h23 h24 h2] ......
Warehouse
Capacity | [ | |
Tw | Ry hyo hys Ry hyw; | ...
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The WSIO problem requires that all available warehousing options, including the
corporation’'s owned warehouses are known beforehand. For example, in Table 1 each row
corresponds to a warehousing option with ; refers to the warehouse capacity, and h;; refers
to warehouse type i lease cost for j periods. To illustrate, assume a corporation is leasing
warehouse i = 1 for 4 periods, then they will be leasing a warehouse with capacity r; for 4
periods and paying in return for this service hq, price unit. Now, h; j,; = (j + 1) could
be equal to h; ; + j, or it could be less. In the latter case, the service provider for warehouse
i is deploying a reward policy, where longer contracts are rewarded with cheaper rates.
Observe that the lower rate could be offered at each lease period or could be offered after
every certain number of periods. There is a total of w warehousing options, and unbounded

possible leasing duration unless bounded by the planning horizon length M.

Typically, the discrete demands for each product over the planning horizon is represented

in a table similar to Table 2.

Table 2 Total Demand for Each Product Over the Planning Horizon

Demand Periods
1 2 3 4 k M
1 Ry D14 D, Di3 D14 Dy Dipm
2 R, D3 D, D3 D3y Dy D3y
Products
g | Rg Dg1 Dy Dgs3 Dga Dy Dgm
v Ry Dy, Dy, D3 Dy Dy Dypm
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In Table 2, each row corresponds to a different product with storage size equal to R, and
Dy referring to product g demand at period k. There is a total of v products and M demand

periods to plan for. Now, a key step in developing any model is first to list all the
assumptions made about the actual problem. Following is a list of all the assumptions made

during the development of the deterministic model:

1. Demand is known for certain but not constant (changes from one period to another.)

N

Ordering cost is constant and known for certain.

w

Holding cost consist of two parts:

a) holding cost for the leased warehouses, which varies based on their capacities and
their lease duration (leasing option) and is independent on number of units stored.

b) holding cost per unit per unit time on stored inventory.

4. Demand periods are equal in duration.

5. Warehouses are leased for a duration that is a multiple of a demand period duration.

6. Lead time isequal to a discrete number of demands periods, and can be equal to zero.

7.  Number of available warehouses are enough to store all the inventory.

8. Products’ unit selling price declines linearly with time at the rate b, per period.

9. The warehouses with the least remaining duration are consumed first.

10. All the products share the available warehouses.

11. Lost sales are permitted.

Note that the above assumptions are shared between the deterministic model, and the
stochastic model, except for the first assumption. That is, demand in the stochastic model
is not known for certain. Hence expenses to dispose excess inventory at the last period are

considered. Further assumptions for the stochastic model will be revealed later in Chapter
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4. Now, the notations used for developing the deterministic model are listed and defined

as follows:

Notations & Parameters:

g :Index used to refer to a product,g=1, ...v
I :Index used to refer to a warehousing option, i=1, ...W
J  :Index used to refer to lease duration, j=1, ...M
k  :Index used to refer to a demand period, k=1, ...M. Aliases: |, m, t, n.
A : Set containing the periods numbers at which leasing is permitted.
Kgi = Ordering cost of product g at period k, and K}, is order placement cost.
r;  : Storage capacity for a warehousing option type i in storage unit (SU).
h;; . Warehousing option i 's lease cost for a lease duration of j periods.
hy, Holding cost per unit per unit time for product g.
ng - Lostsale penalty per unit for product g.
: Demand for product g at period k.

Cy : Purchase cost per unit for product g.

P, : Initial selling price per unit for product g.
b, : Per unit decline in selling price for product g after one period.
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g - Storage size in (SU) for product g.

It, :Lead time duration for product g, from the suppliers to the warehouses.

Decision Variables:

Xijx - Number of warehouses to lease from option i having a capacity r; and

is leased for j periods including and starting from period k.

qgx - Quantity ordered of product g at period k.

I, Planned inventory of product g at period k, where Iy, is the starting
inventory.
ug, - Planned lost sales of product g at period k.

84k - Binary variable that takes the value 1, when product g is ordered at
period k, otherwise 0.
&, : Binary variable that takes the value 1, when an order is placed at

period k, otherwise 0.

Next, the objective function sought for optimization is formulated using the above
notations. The objective function is to maximize total profit over the planning horizon M,

where total profit is defined as follows:
Total Profit = Total Revenue — Holding Cost — Ordering Cost — Purchase Cost
Now, each part is calculated as follows:

TO'[a| revenue = ZZ=1 296/1:1 qgk ' pgk (31)
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where ng is the average selling price for order g4,. However, to compute ng for each
qgk, the periods at which g is consumed must be known beforehand, which is not an

attainable information when this model is extended for demand uncertainty. Hence, the

following expression is used instead:
— v M v M
Total revenue = 30 _, Y1 Py - (Dgie — ugr) — Xh=1 2ke1 Lk * by (3.2)

In Equation (3.2), the total revenue is calculated by first computing the total revenue from
sold products (ng - ugk), assuming that they are all sold at their initial selling price F,,
and then subtracting by the total loss caused by the price reduction b,. This mathematical
representation is valid and can be proved as follows: First assume that q,; refers to an order
made at period k and consumed at period | for product g = 1. Now, I, = Xk_, Y™, .. ¢

Jthen YM L -b=YM Sk M. .1qu-b. Consider the following:

et Ik = Yhe1 Xc Dl ks1 G (3.3)
= %=1 Z%:n Z?ik+1 dni (3.4)
= Z%=1( Zﬁn+1 Qni + Z?in+2 Qu t+ -+ Z{VLM—l qni + Z{VLM In1) (3.5)

=Xn=1([M = nlqny + [(M = 1) = nlgpu-1 + -+ [(n+ 1) —nlanni1)  (3.6)

= Z%:l Zﬁn+1(l - n)in (3.7)
= Z¥=1 Z%k+1(l — K)qp (3.8)
“ kel b =X Xl (= k) gy - b (3.9)
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where, the right-hand side refers to the total reduction caused by b in the revenue generated

by all the orders q,;, and hence Equation (3.2) is valid.

Holding cost = Y yea X125 X1 Xiji - hij) + 2=y Dieq Lok * hg (3.10)
Ordering cost = Y3y 371 8y * Kgie + & - K (3.11)
Purchasing cost = Y¥_; ¥k qgx * Cok (3.12)

Now, since all the components for the objective function are computed, the equation for

the total profit can be represented by:

Total profit =
v M W M-k+1
DB (e~ uge) - ZZ Z K hip) = ZZugk g
g=1k=1 keA i= g=1k=

v M M

— Zlgk (hg+bg)_zz5g" gk — ka Ry

g=1k=1 k=1g=

v M

- oG

(3.13)

In addition to the objective function, following are the constraints governing the problem

logic:

g = 5gk Z{Vik{-lt('g) Dgl V kg (3.14)
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6gk < fk v k,g (315)
Ig1 = qg1 + Igo — Dg1 + ugy Vg (3.16)
Igk = Igk-1 — Dgr + ugy Vg,2<k<1+It(g) (3.17)

ng = qg,k—lt(g) + Ig,k—l - ng + ugk Vg,k >1+4+ lt(g) (318)
ZmeAn{t|t < k}zﬁ\ik—mﬂ Z{'Zl TiXijm 2 Zg=1 Ry (ng + Dgie — ugk) Vi (3.19)

Constraints (3.14) imply that if g, , > 0, then 6,4, = 1. Similarly, Constraints (3.15) imply
that if &g, = 1, then &, = 1. Constraints (3.16), (3.17) and (3.18) are the inventory flow
balance constraints, where constraint (3.16) is for the first period where lead time is ignored
to avoid unavoidable lost sales. In Constraints (3.17), lead time is considered but the index
k here only spans the periods between the first period and the period at which the first order
has arrived. In constraints (3.18), lead time is also considered but k spans the periods that
comes after the arrival of the first order affected by lead time. Finally, constraints (3.19)
are the capacity constraints, where the left-hand side is all the space available at period k
by warehouses leased at periods A, and the right-hand side is all the capacity needed at
period k, which is rendered by inventory carried to the next periods and products sold at

period k.

Regarding the lead time lt(g), it is only considered when it is large enough that it can be
rounded to a multiple of demand periods. Otherwise, lead time is ignored and later is

reflected on the optimal solution. Furthermore, note that if b, is relatively large, tighter

upper bounds on each g, in Constraints (3.14) must be considered. This is to avoid g, x
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spanning a number of demand periods such that the total reduction in price caused by b,

exceeds the unit selling price F,

Following is the complete mathematical model for the WSIO problem:

W M-k+1 M

MaxZ:zv:in'( k—ugk)—zz Z Xijie * hij) = Z 4 ”gk'”g

g=1k=1 k€A i= g=1k
v M M v M
- Zlgk (h.9+bg)_zz6gk ng—ka Ry
g=1k=1 k=1g=1 k=1
v M
J— z qg,k . Cg
g=1k=1
Subject to:
gk < g LiZk+1e(g) Dot vV kg
Sgk < $k vV kg
Ig1 = qg1 + Igo — Dg1 + ugq Vg
Igk = Ig k-1 — Dgr + ugk Vg2<k<1+I1t(g)
Igk = qgk-1t(g) T lgh-1 = Dgk + Ugk Vg k>1+I1t(g)

z:m(EAr’1{lf|t < k} Zﬁ\'/l:k—m+1 ZYL riXijm = ZZ=1 Rg (ng + ng — ugk) vk

8ok € {01}, Iy 2 0, qg =2 0, Xij € Zy4, )y € {0,1}
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Note that although the parameters K, K. by, 14, and fzg are assumed to be given,
following are suggestions on estimating their monetary values: First, the parameters K},
and Ky, which represent respectively the cost incurred by placing an order at period k, and
the additional cost incurred by ordering product g at period k. To illustrate, if an order is
placed for products 1 and 2 at period 3, the objective function would be penalized with the
dollar amount K; + K5 + K,5 solely for that order. Hence, to better estimate K, and Ky
values for each period, the order placement total cost for different orders of different
products combinations for each period are collected, and then the cost effect of ordering
each product is isolated. For instance, if placing an order for product 1 and 2 at period 3 is
equal to $100 and placing an order for product 1 at period 3 is equal to $80, then a good
estimate for K,5 is $20. Second, the parameter ﬁg which represent the cost for holding a
single unit of product g as an inventory for a single period. This parameter can be estimated
as the unit opportunity cost for not investing the dollar amount went in purchasing a unit
product g in the bank. Hence, ﬁg could be estimated by e x C,, where e is the bank rate of
return. Third, the parameter n, which refer to the cost incurred from losing a single sale of
product g. This parameter can be estimated as the opportunity cost for missing on potential
profit, or can estimated as the monetary cost endured when the business owner reputation
is negatively affected by losing a single sale of productg. Fourth, the parameter b, which
refer to the price reduction rate with time for product g. This parameter can be estimated
for each product by analyzing the effect of time on the selling price through previously

recorded sales.
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3.3. Model Validation

In operations research, model validation is defined as the process of ensuring that a
mathematical model is correctly the intended real-life problem. It is an important process
that is to be undertaken whenever a new mathematical model is introduced. This is mainly
accomplished by either comparing the new model results with the results of an older valid
model, or by comparing the model results against real-life data. Success in the latter
approach indicates an existence of empirical evidence on model’s validity. In the WSIO
model case, both approaches are not possible. This is due to the lack of previous similar
models, and to the inaccessibility to real-life data. Hence, instead of the above two
approaches, the WSIO model was validated through an extensive testing procedure for the
model's rational behavior. This was accomplished by testing the model against many
different problems that have optimal solutions, which can be anticipated beforehand. For
instant, assigning high values for K, and not allowing lost sales would push the model to
yield a solution where orders are only placed at the first period. Similarly, assigning high
values for K, would push the orders to be more aligned. This approach was repeated many
times over many parameters, and was successful in unveiling modeling errors that were
ultimately fixed. Furthermore, another reason that supports the WSIO model validity is
the model ease of readability. The model can be easily read and logically understood. For
instance, the objective function is simply the sum of the product of each dollar—unit
parameter by its corresponding decision variable, except for the term I, - (fzg + by) which
was mathematically proven earlier to be valid. This is similarly true to the rest of the model.
Hence, the model is assumed valid.
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3.4. Efforts to Improve the Model's Solution Time

In this section, efforts are made to improve the deterministic model efficiency through
introducing additional constraints that uphold necessary for solution optimality conditions.
These constraints generate valid cuts that may reduce the feasible region. Typically, this
approach is hypothesized to reduce the solution time to reach the optimal solution. The
incentive to pursue these efforts is due to the heavy reliance of the problem on integer

variables.

The rest of this section will be organized as follows: First, the problem's optimality
conditions are introduced, followed by their equivalent mathematical expressions. Then,
new mathematical models are proposed that incorporate the conditions. Then, a complete

study among the models is illustrated to find the best model.

First set of optimality conditions to explore is concerned with the relationship between
inventory and lost sales during each period. In optimal solutions, if lost sales happen to
occur at a certain period, then inventory passed down to next period must be equal to zero,
and vice versa. In simple terms, for a given k and g, if u,  is greater than zero, then I
must be equal to zero, and vice versa. The reason why this is an optimality condition is
because any situation where both u,  and I, are greater than zero for a given g and k
would mean that demand was deliberately not satisfied although inventory did exist.
Intuitively, this is certainly not an optimal situation, since it promotes deliberate rejection

of sales in exchange for more holding cost, and more reduction in the product selling price.
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Following are the optimality conditions. Note that Sgk is a binary decision variable

dedicated only for Constraints (3.20 — 3.21):
Ug ke < 8Dy Vikg (320
Ipk < (1= 8g) XLy Dyt Vkg (321

Second set of optimality conditions to explore is inspired by the dynamic lot sizing
algorithms such as the Wagelmans-Hoesel-Kolen (WHK) algorithm. Basically, all
dynamic lot sizing algorithms are based on three mathematically proven [30]

optimality conditions:

A. The order quantity for any period must only be equal to the sum of a number of
future periods demands. Hence, it cannot be fractions of demands.

B. If ademand is being satisfied from a different period than its own period, then no
order can be made at that demand period.

C. If a demand is satisfied from a certain period call it k, then all previous demands
starting from period k demand, up to the satisfied demand must all be satisfied from

the same order made at period k.

Following are the optimality conditions. Note that y; is a binary decision variable:
Ygki = Ygk,1+1 Vg, kk<l<M-11l—-k> lt(g) (322)

Yg1i = Yg1,1+1 Vg,l (3.23)

Vomn < (1 =Yga) VGhk<M—-1k+1<I<Mk+1<m<lm<n m+lt(g) <l
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(3.24)

Yorn < (1= Ygu1) Vg k>1,1=21t(g) +k k<n<k+It(g) (3.25)
Agk = Xitk+it(a) Yokt Dyt Vg, k>1 (3.26)
g1 = Z?ik Yg11 Dgl Vg (3.27)

The above Constraints (3.26) and (3.27) would mean that g4, must be exactly equal to a

certain sum of future demands, which is a correct optimality condition if there was no

restriction on capacity. In the existence of capacity constraints, g, is bounded by the

capacity limitations, and hence it resorts to the second-best solution that is a fraction of the

demand periods q4 spans. This is accomplished by replacing (3.26) and (3.27) with the

following constraints:
Snci1? gn < (L= 16(9) = K)(A = Ygia) vg,l>k (3.28)

Z{Vikﬂt(g) Vgt < Ogi * M Vg, k (3.29)

Furthermore, another variation that is worth exploring is to replace constraint (3.29) with

the following constraint:
Yokt < Ogi Vg, 1>k +1t(9) (3.30)

Now, these optimality conditions will be tested for their intended purpose. This is
accomplished by first listing the different models that can be assembled by the different

optimality conditions from constraints (3.20 - 3.30). Table 3 shows the different models
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(A, B, ... H.) to be tested, and which constraints they have as additional constraints to the

deterministic model mentioned in section 3.2.

Table 3 Summary of which Optimality Conditions are Included in which Model

CONSTRAINTS
3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30
sl v | v
- v v v v v v

Q2 bl v | v v | v v v ]|v v

LéJ c v v v v v v | v

2 v v v v v v v v | v
- v v v v v v v
W v v v v v v v v v

The seven problem sizes considered for the test are 18x10, 9x10, 6x10, 3x10, 3x20, 3x30,

and 3x60, where 3x10 means a problem with 3 products and 10 periods. For each problem

size, 100 random instances were generated. Then, all the proposed models (A — H) were

executed to solve the 100 random instances for each problem size. Then, the average

solution time and objective function value is recorded. During this test, the same computer

was used (Windows 10 pro 64bit operating system, with a processor Interl(R) Core(TM)

i5-7600 CPU @ 3.5GHz, and an installed memory (RAM) equal to 8.00 GB). Similarly,

the same CPLEX solver was used for all the problems. Also, all problems were solved in

series, no parallel execution was allowed. Table 4 shows a summary of the test results.
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Table 4 Deterministic Model Variants Performance Average Test Results

PROBLEM SIZE

18x10 | 9x10 | 6x10 | 3x10 | 3x20 | 3x30 | 3x60

A | 078 | 074 | 0.74 | 0.73 | 0.73 | 0.80 | 0.93

B| 08 | 075 | 0.76 | 0.79 | 0.74 | 0.82 | 0.99
c| 15 | 1.03 | 0.93 | 0.85 | 3.11 | 26.19 | 103.00
D| 110 | 091 | 089 | 0.82 | 1.36 | 3.52 | 91.00

E | 080 | 075 | 076 | 0.74 | 0.87 | 1.24 | 18.00

MODELS

F| 08 | 075 | 076 | 0.72 | 0.85 | 1.24 | 18.00

G| 0804 | 072 | 0.72 | 0.73 | 0.81 | 1.23 | +100

H| 08 | 072|072 | 073 | 083 | 1.28 | +100

The data displayed in each cell in Table 4 is the average solving time for the hundred
instances for a given model and a given problem size. During the test, outliers were not
dismissed since each model is tested against the same data instance in each size category.
The result shows model A as the most efficient among its peers in all problem sizes; except
for the sizes 9x10 and 6x10, where the models G and H appear to be slightly better than model A;

and size 3x10, where model F appear to be slightly better than the other models. Therefore, the test
was extended for models A, G, and H to accommodate for size 100x10, and the result was 0.99,
2.588, and 3.22 seconds, respectively. Hence, despite the anomaly in sizes 9x10, 6x10, and 3x10,
it is safe to conclude that model A is the most efficient among its peers, and that adding inventory
optimality conditions as constraints is not beneficial to the solution time. A possible reason is the
heavy reliance on the optimality conditions new binary variables. This reasoning is supported by

the contrast in solution times between long planning horizon time problems, and short planning
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horizon time problems. In long planning horizon time problems, the model is required to introduce
more integer variables, which is found to have a drastic impact on solution time as seen in Table 4.
Furthermore, another purpose for this test is to check for the validity of the models. This
was accomplished by recording all the objective function values for all 7 x 100 problems
for each model, and then comparing them for discrepancies. The test showed no

discrepancies in the objective function values for all the models.
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CHAPTER 4

THE STOCHASTIC MODEL

In this chapter, a stochastic mathematical model will be developed for the WSIO problem.
First, a brief background about stochastic programming is provided. Second, the steps
toward developing the WSIO stochastic model are shown. Third, the approach used to

validate the stochastic model is demonstrated.

4.1.  Background

Stochastic programming simply refers to mathematical programming that deals with
parameters that are not known for certain. Although, deterministic programming is more
popular in the literature, most real-life applications are actually inhabited with uncertainty.
This uncertainty comes in the form where some (or all) of the problem parameters are not
known for certain, but their probability distributions are known or at least can be estimated.
For instance, in most financial models, the return-on-investment data is provided by a set
of different possibilities with different probabilities (or sometimes referred to as risk
levels). Stochastic programming was developed for such problems, by finding a solution
that is feasible for all possible scenarios (or almost all), while optimizing an objective
function. The objective function consists of two parts: the first part deals with decisions

made when uncertainty still unrealized, and the second part deals with decisions made
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when uncertainty is realized. The following mathematical model is the standard form for

any stochastic programming problem:
MinZ = CTx + L(x)

Subject to:

A€ R™ pe R, Ce R", x eR"

where L(x) is the second part mentioned earlier, and is equal to the following expression:
L(x) = Ee[Q(x,§(w))]

where Q(x,f(w)) is a function that maps x (the decisions made prior to uncertainty
realization) and ¢ (w) (the scenario realized) to the best possible value when all recourse
decisions are optimized. Hence, Q(x, E(w)) is itself another optimization program, and is

expressed by:
Q(x§(@) = Min {q(@)y |Wy = h(w) = T(w)x,y = 0}
W eR™™ y€eR" he R™, T € R™

Note that é(w) is a vector such that ET(w) = (q()T, h(w),T1(w), ... ... , Trm, (@), and
hence, for each realization of w, there is a probably different optimal recourse actions y.

Also, in certain problems L£(x) can be computed in terms of x and added to the original

problem, which is the case with the newsvendor problem. However, some problems are
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very complicated, and such approach can become very challenging or even inapplicable.
Therefore, such problems must be represented by what is called the extensive form, which
is simply an explicit mathematical programming approach that aims toward optimizing the
expectation of the objective function over all scenarios, while upholding all the constraints

for all the scenarios, and it goes as follow:
MinZ = CTx + Z p-q(w)y
w

Subject to:
Ax = b,
Wy = h(w) - T(w)x V w,
x=>0,y=>0,

In the stochastic WSIO problem, the extensive form is used to represent the problem
mathematically. This is because when demand at each period for each product in uncertain,

L(x) does not exist in a simple closed-form function of x.

4.2. Model Development

Prior to developing the stochastic model for the WSIO problem, it a good practice to depict
uncertainty by a tree diagram. Eventually, this will serve as the basis for the stochastic
model. For simplicity, assume there is a single product with three planning periods, and

four possible demands at each period. The scenario tree for this problem is depicted in
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Figure 4. Scenario trees are very useful when trying to mathematically model a stochastic
problem. They provide a graphical representation that allows for observing the different
possible scenarios, and when decisions are due. Most importantly, they provide a structure
that can be utilized to translate the problem into a mathematical model similar to the

deterministic model.

Scenario 3

Scenario 4

Figure 1 Scenario Tree for a Single Product with 3 Demand Outcomes over 3 Periods

For instance, in Figure 4, the stages above the tree represent the time at which uncertainty
is reveled, and sometimes refer to the time at which decisions can be made. Stages for the
WSIO problem represent the demand periods, where Stage 0 refers to the beginning of a
planning horizon where no uncertainty has been realized yet, but decisions concerning
future periods are to be made. Stage i (1 <i < M) refers to a point in time where demand
for period i has been realized, and consequently decisions concerning future periods are to
be revised, and recourse (corrective) actions regarding previous decisions are to be made.

The nodes at each stage represent the possible different incidents at which some uncertainty
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is realized. For example, at Node 1, it is realized that the demand for the first period is low,
while the arcs coming out Node 1 represent the different possibilities for the demand in
Period 2, given the demand in first period was low. Note that Node 0O is called the root node
where no uncertainty has been realized yet, and all make-now decisions are due.
Furthermore, the nodes at the end are called the terminal nodes, and their count number is
equal to the number of all possible scenarios to the problem. Now, to harness the benefits
of the scenario tree structure and convert it into a mathematical model, let us first introduce

the following notations (modified from other scenario-tree based stochastic models) [26]:

= n € N is anode of the scenario tree, N is the set of all nodes, and O is the set of all
terminating nodes, where |0| is the number of all possible scenarios to the problem.

= T(n) is the time period for node n; for instance, T(1) = 1 and T(12) = 3.

= a(n) is the immediate predecessor for node n, n # 1; for instance, a(6) = 1.

= Q(n,t) is the unique ancestor of node n at stage t; for instance, Q(12,1) = 1.

" Dg["] is the demand for product g at node n.

= p[™lis the unconditional probability for node n, where ¥ ,eniray=n ™ = 1.

" 655"] € {0,1} is the order variable for product g at node n. Similarly, 5["] is defined.

. qgi] is the order quantity for product g made at node n to meet the demand in time

period t.

" Ig[”] is the leftover inventory of product g at node n passed for use to immediate

successor nodes since it was not consumed at n. Also, ILCEO] is the starting inventory, and

[a(0)] _
I =0.
" ug” is the lost sales of product g at node n. Note that uéo] =0.
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* Y, cost of getting rid of excess inventory at the end of the planning horizon.

= A ={n| T(n) € set of stages at which warehouse selection is allowed}, also {0} always

is in A to avoid unavoidable lost sales.

The objective function derived previously for the deterministic model can be used here.
This is because while developing the deterministic model, the goal to eventually have a
stochastic model was considered. This greatly helped into an easy transition toward
introducing uncertainty in demand. For instance, since the revenue in our deterministic

model is computed by the expression X¥_; ¥}, P, - (Dgi — ugi) then using the simple

expression Zgzlzne,\,p[’ﬂ-%-(Dé"]—ué[]”]) can accommodate for the demand

uncertainty. However, if our deterministic model would have used a different expression
to compute revenue, say XY_;Yi-iP; - qgr then simply using the expression

=1 Ynen o™ g qgl]

to accommodate for demand uncertainty would be misleading,
since not all qé"] are necessary sold due to the demand uncertainty. Therefore, the

stochastic model can be derived from our previously developed deterministic model,
without the need to make any major alterations except for considering the additional
expenses caused by getting rid of excess inventory at the end of planning horizon, since it
iIs now a possibility. This additional expense can be represented by the expression
2g=12neo0 pl™ - Ig[”] *Yg - Note that y,, refers to the per unit cost to get rid of excess unsold
inventory at the end of the planning horizon, where y, could refer to the per unit cost of
dismantle service. Beside this alteration, any model from the previous chapter can be
extended toward demand uncertainty using the notations defined earlier in this chapter.

Following is the WSIO stochastic model extended from model A:
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Note that Z here refers to the expected total profit given our decisions about qgl], and Xl.[}l].

The constraints here hold the same logic from the deterministic model except that their
number is multiplied to accommodate for each possible scenario in accordance to the
scenario tree. All the stochastic model constraints and objective function are similar to the
deterministic model but were extended to accommodate for all the possible scenarios. For
instance, Constraint (4.5) 155"] = Iéa(")] —Dg["] +u£[,"] is Constraint (3.15) extended to

accommodate for the uncertainty in products demands. I&E”] is the inventory at node n, Dggn]

is the demand for product g at node n, u™ s the lost sales for product g at node n,

[a(m)]
g I
is the inventory at the parent node (immediate ancestor of node n) for node n. The rest of
the model was extended similarly to accommodate for demand uncertainty. Note that

solving this model will yield a solution that is 100% feasible against all scenarios.

4.3. Model Validation

The stochastic model presented in Section 4.2 was verified through comparative testing
against the deterministic model. Basically, the stochastic model was fed with different
discrete probability distributions for several demand parameters, Dy, in a way that tricks
the model to think there are multiple scenarios, when in reality there is just a single
scenario. For example, assume that the product demand for the first period is uncertain
with a discrete probability distribution that have outcomes with values equal to each other
(see Table 5 for example), Thus, there is actually a single possible outcome, but the model
will assume that there are multiple outcomes and will solve accordingly. Now, if the
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stochastic model is valid, it is supposed to yield the same solution as the deterministic
model's solution. This test was repeated 100 times using different numbers (problems
parameters, and probability distribution functions), and in all of them, the stochastic model
solution was identical to the deterministic model solution. This is a strong indicator that

the stochastic model is valid.

Table 5 Example for a PDF Used During the Validation Process

P(n) pl™
0.1 pM =100
0.3 p# =100
0.6 DBl =100
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CHAPTER 5

SOLUTION METHODS

In this chapter, the methods used to solve the deterministic and stochastic WSIO models
are demonstrated. First, the exact methods used to solve the WISO problem are discussed
and explained, with a main focus on the stochastic model. Second, a novel heuristic to
solve the deterministic WSIO problem is proposed, which is intended for problems that are

too large for the common Mixed Integer Programming (MIP) algorithms.

5.1. Exact Methods

The term Exact Methods refers to the family of well-established algorithms that guarantee
convergence to the optimal solution. In this section, the exact methods used to solve the
WISO problem are demonstrated, both for the deterministic model, and the stochastic
model. First, the exact method and software code used for the deterministic model are
outlined. Second, the exact method and software code used for the stochastic model are

demonstrated and discussed.

For the deterministic model, CPLEX solver was used as an exact method. This is because
the deterministic model is a Mixed Integer Linear Programming (MILP) problem. Hence,
investments in developing and programming exact methods that reaches optimality were

not considered. Since there exist mathematically well-established algorithms that solves
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MILP problems such as CPLEX solver. However, developing a heuristic method was
considered in this work, since the WSIO problem relays heavily on integer decision
variables, and like any MILP problem, if its model size exceeds a certain threshold, it can
make any MIP algorithm inefficient, or simply impractical depending on the machine

solving the problem. The heuristic is discussed in the next section.

For the stochastic model, a different approach and code was used to generate and solve the
model as oppose to the deterministic model. In stochastic programming, a persisting issue
facing researchers and has been an active research area for so long is how to manage the
enormous size of the stochastic model, and the ramifications such size can have on the
solution efficiency. This explosion in size (compared to the problem deterministic model)
is mostly anticipated, since solving a stochastic model means seeking optimization over all
possible scenarios. Whereas, solving a deterministic model means finding the optimal
solution only for a single scenario. This issue does not only affect efficiency (the time to
reach the optimal solution). but could also cause most optimization software packages to
crash or reject solving the model since the number of variables, and constraints can become
intractable. Therefore, this issue started to attract many researchers to develop remedies to
make stochastic problems more manageable. The most famous remedy is known as Slyke
and Wets’s L-shaped method [31], which primarily exploit the explicit-form dual structure,
while using either Wolfe decomposition (inner linearization) [32] of the dual or a Benders
decomposition (outer linearization) [33] of the primal. In a nutshell, the method starts with
an unconstrained variable referring to the recourse function in the objective function, and
the first-stage objective function and constraints. Next, a solution is generated and checked

for feasibility over all scenarios, where if it is feasible, the solution proceeds to next step,
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otherwise a feasibility cut is added to the original model and previous steps are repeated.
Then, using the first stage feasible solution, all second-stage scenarios are solved separately
for the optimal recourse action, and an optimality cut is generated using the simplex
multipliers of each scenario. This process is repeated until a certain criterion is reached (for
the explicit details, please refer to [34]). The L-shaped method is mostly described as a
divide-and-congquer method where the single large size stochastic model is replaced with
many more small size models, trading a problem enormous size for more iterations. Since
then, many more extensions and improvements were added to the L-shaped method making
it a vital tool in solving any scenario-tree based stochastic problem. However, since the L-
shaped method's first introduction, computing power has grown exponentially promoting
many engineers, and researchers to avoid the complications associated with the L-shaped
method and simply generate the explicit form using any modeling software and later
solving it using any appropriate solver. Fortunately, the modeling software package GAMS
(General Algebraic Modeling System) has recently released a new tool known as EMP
(Extended Mathematical Programming) [34], which can combine the former option
efficiency, and the latter option convince. EMP primarily allows for reformulating any
given model into an equivalent model where mathematical programming is more
established. For instance, EMP can generate the KKT conditions for a given NLP model,
which allows for reformulating the model to an MCP (Mixed Complementarity Problems)
model. In our case, this powerful tool is capable of generating the deterministic equivalent
model for any stochastic model efficiently, and then solving it using any appropriate

algorithm. To achieve this, GAMS require three main code segments:
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(1) The core model, which is the stochastic model presented as a deterministic model
by replacing the stochastic variables with their expectations.

(2) EMP annotations, where the random variables and their probability distributions
are defined, and the constraints and decision variables are allocated to their
corresponding stages.

(3) A directory, which records the decision variables' values for each scenario, and
allows the software to run more efficiently by storing the model structure and

prevent recreating the model each time a scenario is optimized.

The core model is written in GAMS language. The EMP annotations will always start with
the stochastic variables' (parameters) definitions, followed by a specific allocation of which
variables (both decision variables, and stochastic) and constraints belong to which stage.
Finally, the dictionary, which will contain a set that maps each scenario decision—variable
to its corresponding variable in the original deterministic model. For explicit sample codes,
and further read about the matter please refer to reference [34]. Furthermore, usually SP
models in GAMS require two solvers, EMP tend to use either the solver DE or JAMS to
generate the deterministic equivalent model, then a secondary sub-solver is used to solve
the generated model (e.g. lingo or Cplex). In addition to the simplicity offered by EMP,
this tool also allows for other optimization goals beside optimizing the expected objective
function. For instance, it allows for CVaR optimization (conditional value at risk), worst-
case scenario optimization and chance constraints. Hence, the EMP tool was chosen to
solve the WSIO problem, due to its convince and efficiency. Note that a separate GAMS
code beside the code used for solving, was used first to generate the EMP annotations

(since there were 10 stages, and many variables and constraints, writing the annotations
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manually is impractical). Once the annotations are generated, they are added manually to

the GAMS code used to solve the stochastic WSIO problem.

5.2. Heuristic Methods

Heuristic methods refer to a family of algorithms that seek to find solutions among all
possible solutions, but the optimal solution is not guaranteed to be among them. These
algorithms usually find near optimal solutions, and they find them fast and easy compared
to exact algorithms. Since the WSIO problem relies heavily on integer variables, and exact
methods can become inefficient for large intractable problems, there is certainly a need to
develop a heuristic for large problems, where optimality is traded for a faster solution time.
In this section, a heuristic is developed for the deterministic WSIO problem.

In abstract, the heuristic developed in this section consist of five major phases: (1)
Generating and selecting the best feasible solutions to the WSIO problem, while assuming
capacity restriction is not a constraint, (2) Computing the capacity requirements for each
period for each solution, (3) Selecting heuristically the least expensive warehouses to
satisfy the capacity requirements for each solution, (4) Reducing the number of leased
warehouses for each solution, and consequently reducing the ordered quantities, (5) Phase
four is repeated until no improvement is observed in the objective function (total profit).
Finally, the solution with the best total profit is selected. The heuristic is tentatively named

The Reduced Capacity Heuristic and is abstractly depicted in Figure 2.
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COMPUTE CAPACITY

‘ GENES%‘;EET%?SIBLE REQUIREMENTS FOR EACH
(CAPACITY IS NOT A CONSTRAINT) PERIOD FOR EACH
SOLUTION
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ORDERED QUANTITIES TO LEASED WAREHOUSES FOR WAREHOUSES FOR BACH
REACH FEASTBILITY EACH SOLUTION SOLUTON
STOPPING
COMPUTE THE NEW TOTAL CRITERIA

PROFIT

Figure 2 Flowchart for The Reduced Capacity Heuristic

In details, the explicit heuristic algorithm is as follows:

Step 1.Generate feasible solutions to the WSIO problem, while assuming capacity is not a

constraint. This is accomplished by various means, such as solving the uncapacitated

deterministic model H using the genetics algorithm, or through applying the silver-

meal heuristic, or any other similar easy to apply heuristics. Then, let each solution

be referred to by S wherec=1,2...andn=1.

Step 2.Compute the total capacity needed at each period for each solution, TC,EC). This is

accomplished by computing 7€\ = X%_, R, (I + Dy — ugy.) for each period k

for each solution SZ.
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Step 3.Select the warehouses, X ©

ij4» for each solution S¢* as follows:

a. Compute each period total capacity requirements, TC,EC), and once they are

computed, all TC,EC) values are ordered by their period number k in a single row grid
(start with the smallest k value in the left and ascend to the largest k value in the right)
,call it the capacity requirements grid. To illustrate, the following is a capacity

requirement grid:

Period 1 2 3 4 5 6 7 8 9

(,:\IZ%%‘;';V 3000 | 9000 | 8000 | 6000 | 4000 | 5000 | 3000 | 4000 | 4500

b. Now, remove from the capacity requirements grid the minimum number of periods
(columns) to maintain a steadily declining 7C9, call it the reduced capacity

requirements grid. To illustrate, the grid would be as follows for the capacity

requirement grid:

Period 2 3 4 6 9

Capacity

Needed 9000 | 8000 | 6000 | 5000 | 4500

Figure 3 shows the difference between planning for the actual capacity requirements
grid, and the reduced capacity requirements grid. Clearly, selecting which
warehouses to choose is easier for the reduced grid as oppose to the actual grid, since
the reduced grid has a downward stairs shape, and satisfying the reduced grid satisfies

the actual capacity grid.
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Figure 3 Difference between Actual and Reduced Grid Capacities
Now, starting from the end period in the reduce capacity requirements grid, find the
least expensive warehousing plan that satisfy its TC,EC). This is accomplished by first
dividing the last TC,EC) over all r;, and rounding up to the nearest integer, this will

give the number of warehouses need of Xi(]f’;i to satisfy the last TC,EC)With awarehouse
capacity r;, call it WN; = [TC,EC) /ri] Then, compute the leasing cost for the different

possible plans to satisfy that TC,EC) from all the periods, and pick the least expensive.
The leasing cost for each plan is computed by multiplying W N; by its corresponding
h;j. To illustrate, assume that the last TC,EC) = 4500 (from the previous grid), and
assume A={1,8}. Then, the different possible plans and their prices would be: Plan
(1) Xl(g? = WN; X h;, compute this for all i and pick the least expensive, this will

be the option to satisfy the last TC,EC) from warehouses leased at the first period,
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where plan (2) Xl(;i = WN; X h;g and Xi(zcg = WN; X h;,, pick the least expensive

I for both, and add their costs together. Then, compare Plan (1) with Plan (2), and

pick the least expensive, add it to its corresponding SZ.

d. Deduct the newly provided capacity value from all TC,EC)in the reduced capacity
requirements grid. Now, the last period will have TC,EC) = 0, hence, remove it and
update the reduced grid. To illustrate, the updated reduced grid for the earlier

example will be as follows, assuming the newly provided capacity equal to TC,gc) =

4500:
Period 2 3 4 6
Capacity
5500 | 3500 | 1500 | 500
Needed

Furthermore, the updated plot for Figure 3 is in Figure 4.

e. Repeat the process starting from point (c), until all TC,EC) = 0 for all k.

Step 4.Compute the total profit for each SZ, and assign them in the variables Z7, where n
= 1. If a certain solution S has a total profit ZZ that meet the termination criteria
(minimum targeted profit), then terminate the algorithm and S7 is the solution.

Otherwise procced to the next step to improve new feasible solutions SZ for all c.
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Figure 4 Change between Actual and Reduced Grid Capacities

Step 5. Assign a priority index (Pl ) to each product using the following formula:

_ (Pg—Cgt1g)dg
Plg " Kgt(hg+bg)-dg+Rgdg (5.1)

The lower Pl , the better is to cause lost sales in product g ordering plan. This formula

uses a heuristic sense by having the reasons to keep a product order at the denominator,
and the reasons to eliminate the order at the numerator.

Step 6.Let n = n +1. Identify the product with the lowest Pl , pick the order Qé? in its
ordering plan that spans the most demand periods. Cause lost sales ué? IS the last

period spanned by Qé? by an amount that is enough to reduce one from the most

expensive Xl.(ja that covers Qéﬁ?, while maintaining solution feasibility. If the reduced
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<k

Q(C) satisfies the two points: (I) Qgx < %ﬂ:g and (I1) happens only to exists for
g g''lg

a single demand period, eliminate that order, hence u (C) = Qéﬁg, this is because

satisfying these two conditions means that Q;‘;;) is so small that Qéﬁ? existence does

not justify the ordering cost k,. Note that 'D'gk is not the demand from the original

problem, but it is the satisfied demand by the reduced Qék), Dgy = Dy — ué?.

Step 7.Compute the new Z%, if there is improvement in Z* over Z*~1, update S and go

to step 6, otherwise let S* = S*~1 and repeat step 6 by choosing a different Q(C) If

all Qéﬁ? are exhausted, terminate the algorithm and choose the best S* with the

highest Z7 as the best solution yielded.

This heuristic is guaranteed to converge to a set of solutions and terminate, since step 1 to

step 5 are non-iterative, and the rest of the steps are governed by a%; where an

improvement in total profit means continuous reduction in Xflj, which will lead to zero
capacity (which means that the cost of leasing warehouses is too overwhelming), and no
improvement in total profit will lead a% to reach zero. This heuristic seeks to generate
feasible solutions, and then improve on them through an iterative process of capacity
reduction and order plans adjustments. Note that the heuristic algorithm was written with
an intent to improve all starting solutions, S2, through a parallel process. However, a series
improving process is also possible by looping the heuristic over ¢ for each starting solution

SL. A numerical example on this heuristic demonstrated above is presented in the next

chapter.
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5.3.  Presolving Techniques for the WSIO Problem

In this section, a list of pre—solving techniques are suggested to improve the solution time
for the WSIO problem, mainly by either reducing the problem size or setting upper limits
on the decision variables. These techniques can be used in conjunction with many exiting

pre—solving techniques for MIP problems [35]

Dominated Solutions: One very effective pre—solving technique is to lookup for
dominated solutions and remove them before solving the model. The term dominated
solutions refer to the set of solutions that is guaranteed not to be among the optimal
solutions. In the WSIO problem, dominated solutions are identified through the parameter
h;j, which refers to the cost of leasing a warehouse with a capacity of r; for j periods. Now,
if there was to exist a warehouse, say i, and another warehouse, say i,, and r;, = n- 14,
and n is a positive integer, and h;, ; > n - h;; ; for a given j. Then, X, ;. for that given j is
assigned a zero or removed from the model before solving. This is because any solution
with a non-zero X;, ji is dominated by the same solution but with X;, ;. set to fulfill the
capacity secured by X, jx, and X, ji is set to zero. This is a very effective technique that
is guaranteed to maintain optimality and reduces solution time. (since it will reduce the

number of integer variables, and hence reduce the model size

Upper Bounds: Furthermore, another very effective pre—solving technique is to set an

upper bound on each X; .. This is accomplished by assuming that the optimal solution is a
solution that will depend mainly on the variable X;;, given the indices i, j, and k to supply
for the capacity needed starting from period k up to period k + j. Hence, the upper bound
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for each X; ;, would be equal to [ max[TCy ,... ,TCyyj] /1 ] Following constraint depict
a mechanism to identify upper bounds:

Xije < | max[TCy , ... ,TCry1/7i] Vijk (5.2)

Correlated Demand: Also, a very effective pre—solving technique that concern the
stochastic model is to reduce the number of stochastic variables by identifying a correlation
between the demands of the different products. For instance, assume there are three
products with demands for 10 periods, and each demand could be high or low at each period
for each product. The total number of possible scenarios would be 81°. Now, assume a
correlation is found between the products' demands, such that there is a dominant product

where if its demand is high, the others have low demands, and if its low, the others have
high demands. Now, the stochastic variable Dg] can be replaced by a regular variable D, ,
and the uncertainty is represented by a binary variable that once realized, a value is assigned
to the dominant D, , and consequently the demands for the other products. This is will

reduce the number of scenarios from 80 to 210 (as illustrated in Figure 5), hence, a
considerable amount of solution time is saved. In brief, there is a reasonable incentive to
lookup for possible demand correlation between the products prior to solving, which will
considerably reduce the number of stochastic variables, the scenario-tree size, and

eventually reduce solution time.
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Figure 5 Depiction of The Scenario Trees when Demand Correlation is Considered
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, experimental results for the work presented in the previous chapters are
provided in the form of numerical examples. First, a numerical example on the
deterministic WSIO problem is presented. Second, the same numerical example but with
demand uncertainty is solved, and the result is comparatively analyzed and discussed. Next,
the same numerical example is re—solved but using the heuristic presented in Chapter 4.
This is followed by a comparative analysis in efficiency and effectiveness between the

heuristic's performance and the exact methods' performance.

6.1.  Numerical Example |

In this section, a numerical example is presented on the deterministic model derived
earlier in a previous chapter. Following are the problem parameters:

Table 6 and Table 7 shows the products’ demand grid and warehouse leasing prices.

P, = $60/unit, b; = $10/unit, C; = $10/unit, ~; = $0.01/(unit-period), R, = 1.0 SU.

P, = $80/unit, b, = $15/unit, C, = $20/unit, h, = $0.02/(unit-period), R, = 3.0 SU.

P; = $100/unit, b; = $20/unit, C; = $30/unit, h, = $0.03/(unit-period), R; = 5.0 SU.

n1 = $10/unit, n, = $15/unit, n; = $20/unit, It, = 1 period, It, = 2 period, It; = 3 period.

K, = $2500/order, K; = $5000/order, K, = $6000/order, K5 = $8000 /order, A = {1, 4, 8}.
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Table 6 Demand Requirements Assumed for the Test Problems

Demand Periods

1 2 3 4 5 6 7 8 9 10

1| 200 | 300 | 400 | 150 | 1000 | 800 400 300 190 200

Products | 2 | 300 | 800 | 1000 | 4000 | 700 400 300 50 120 10

3 | 1000 | 1000 | 1000 | 100 10 900 700 200 0 100

Table 7 Available Warehousing Options Assumed for the Test Problems

Leasing Periods, and their cost
1 2 3 4 5 6 7 8 9 10

1(20) | 100 | 190 | 270 | 340 | 400 | 450 | 490 | 520 | 540 | 550

2(40) | 190 | 370 | 540 | 700 | 850 | 990 | 1120 | 1240 | 1350 | 1450

Warehouse

Type 3(60) | 280 | 550 | 810 | 1060 | 1300 | 1530 | 1750 | 1960 | 2160 | 2350

4(80) | 360 | 710 | 1050 | 1380 | 1700 | 2010 | 2310 | 2600 | 2880 | 3150

5(100) | 450 | 890 | 1320 | 1740 | 2150 | 2550 | 2940 | 3320 | 3690 | 4050

The problem solution using CPLEX as the solver is as follows:
The maximum possible total profit is $469,076.852 and the optimal solution has the

following products’ ordering, and warehouse leasing schemes:

Table 8 Solution Products' Ordering Plan for Numerical Example |

Ordering Plan

1 2 3 4 5 6 7 8 9 10

1| 500 | 550 1000 | 800 700 390

Products | 2 | 2100 | 4000 | 700 | 400 | 480

3 | 2588 900 | 700 | 300

Above is the solution’s products ordering plan, and below is the warehouses leasing plan

X1,6,1 == 43 ,X1’7'1 = 165 1X1,8,1 = 53 1X1,9,1 == 27 y X1,10,1 == 37 ,X4'1’4 = 67,
X421 =88, X511 =61,X514=3,X5,1=1
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Figure 5 shows the solution’s total capacity needed at each period in black solid line, and

the total capacity provided by the solution’s set of leased warehouses in red dashed line.

Also, the yellow boxes refer to the points in time at which leasing warehouses is permitted.

It can be inferred from the plot that the solution is feasible, since the storage capacity

provided at each period is higher or equal to the storage capacity needed. Also, it can be

inferred that the solution is rational, since the gap between the storage capacity need and

provided is kept at minimum.

Storage Unit (SU)

—Capacity Needed By Inventory

— =Capacity Provided By Leased Warchouses

22500

20000 g
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15000 H

12500 -
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5000
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Figure 6 Storage Capacity Needed, and Capacity Provided at Each Period

The result for this deterministic numerical example will be used to analyze the stochastic

model in the next section.
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6.2.  Numerical Example Il

In this section, a numerical example is presented on the stochastic model derived earlier in
a previous chapter. The problem used in this section is the same one used by the previous
deterministic numerical example, except for the assumption of demand uncertainty, which
is reflected by the following probability mass function for products’ demands at each

period k, and the additional parameter y, = 0.01 :

Table 9 Probability Mass Function (PMF) For Products' Demands at Each Period k

k| bl | b} | DI | PkDg) | DI D;' D' | P(k.Dg)
1| 200 | 300 | 1000 | 0.5 200 | 300 | 1000 05
2 | 330 | 700 | 1000 | 0.9 30 | 1700 | 1000 0.1
3| 700 | 100 | 1000 | 0.55 100 | 2100 | 1000 | 0.45
4 | 157 | 1500 | 100 | 0.65 137 | 8550 | 100 0.35
5| 2000 | 500 | 10 0.20 750 | 750 10 0.80
62100 | 10 | 900 | 0.35 100 | 610 | 900 0.65
711100 | 90 | 700 | 0.30 100 | 390 | 700 0.70
8|33 | 30 | 200 | 0.80 180 | 130 | 200 0.20
9 | 250 | 60 0 0.70 50 260 0 0.30
10/ 500 | 4 | 100 | 0.25 100 12 100 0.75

Notice that the expression P(k, D) x Dj + P(k,Dg") x Dg' is equal Dy, from the
deterministic numerical example for any g and k. Hence, the demand grid in the
deterministic numerical example is basically the expectation demand grid, not the actual
demand. This choice of numbers is to study the difference between the practice of replacing
demand uncertainty with their expectation, and the practice of representing demand

uncertainty through the extensive stochastic form, at least for this numerical example.

The problem was solved using EMP-CPLEX as the solver, and the solution is as follows:

The maximum possible expected total profit is $218,523.23. The solution was found to be
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the best solution to behave against 512 possible demand scenarios given their probability
of occurring and is feasible for all 512 scenarios. The solution is represented as 512
products’ ordering and warehouse leasing schemes, which each differ in their reaction to
the demand realized at each period. For instance, all planning schemes will have the
following part in their solution, which is made at time zero, and when no products demands
have been realized yet: q; ; = 530, q; = 1100, 31 = 2922, X; ;1 = 163, X151 = 47,
X191 =14, X101 = 65, X471 = 82, X511 = 61. However, as the products’ demands
start to unveil at each period, the complete solution starts to form up at each period as a
reflex to the realized demand. The complete solution is in Appendix A. To illustrate,
following is a comparison for the highest possible total profit scenario (the best-case

scenario), and the least possible total profit scenario (the worst-case scenario):

= The best-case scenario (S18, Probability = 0.005, profit = $350,059.457):

Table 10 Best Case-Scenario’s Products Demand Grid (Numerical Example I1)

Demand Periods

1 2 3 4 5 6 7 8 9 10

1] 200 | 330 | 700 | 157 | 2000 | 100 1100 330 250 100

Products | 2 | 300 | 700 | 100 | 1500 | 500 610 90 30 60 12

3 | 1000 | 1000 | 1000 | 100 10 900 700 200 0 100

Table 11 Best Case-Scenario's Products Ordering Plan (Numerical Example 11)

Ordering Plan
1 2 3 4 5 6 7 8 9 10
1| 530 | 857 1910 | 410 470 680
Products | 2 | 1100 | 1674 | 669 187
3| 2922 900 | 700 | 300
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The warehouses leasing scheme:
X1,7,1 = 163, X1,8,1 = 47, X1,9,1 = 14, X1,10,1 = 65, X4,2,1 = 82, X5,1,1 =61, X4,3,4 =2
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Figure 7 Plot for the Best-Case Scenario Stochastic Solution

= The worst-case scenario (5512, Probability = 2.58 x 10~4, profit = $14,351.94):

Table 12 Worst Case-Scenario's Products Demand Grid (Numerical Example 11)

Demand Periods

1 2 3 4 5 6 7 8 9 10

1| 200 30 100 | 137 | 750 100 100 180 50 100

Products | 2 | 300 | 1700 | 2100 | 8550 | 750 610 390 130 260 12

3 | 1000 | 1000 | 1000 | 100 10 900 700 200 0 100

Table 13 Worst Case-Scenario's Products Ordering Plan (Numerical Example 11)

Ordering Plan

1 2 3 4 5 6 7 8 9 10
1| 530 | 557 1330
Products | 2 | 1100 | 1674 | 666 393
3| 2922 900 | 700 | 300

1 8512 refers to scenario number 512 in the solution report
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The warehouses leasing scheme:

X1’7,1 = 163, X1,8,1 = 4‘7, X1,9,1 = 14, X1,10,1 = 65, X4’2’1 = 82, X5’1,1 = 61

—Capacity Needed By Inventory
= =Capacity Provided By Leased Warehouses

20000

17500 -

15000 -

12500 ~

10000 -

7500 -

5000 - === | |

2500 -

Storage Unit (SU)

Periods (k)

Figure 8 Plot for the Worst-Case Scenario Stochastic Solution

Notice the difference between the two above cases, both started with the same ordering and
warehouse selection plan, but as the products’ demands being realized, the plan starts to
change. In the best-case scenario, the ordering and warehouse selection plan better
succeeds in matching the products’ anticipated demands as oppose to the worst-case
scenario, where the plan fails to match the anticipated demands, resulting in high level of
lost sales. This is attributed to the high probability the best-case scenario has in comparison
to the probability of the worst-case scenario. Hence, the model was swayed to give more
emphasis in optimization on scenario 18 (the best-case scenario) and other similar
scenarios with high probability of occurring, on the account of scenarios with low

probability of occurring (e.g. scenario 512, the worst-case scenario). Furthermore, notice
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the difference between the deterministic numerical example solution, and the stochastic
numerical example solution. Although, they share the same problem parameters, and the
fact that the deterministic problem’s products demands are actually the expectation of the
stochastic problem’s products uncertain demands, they have completely two different
solutions and expected profit. This is because attempting to remedy demand uncertainty
through demand expectation is a misleading approach. It simply makes the optimization
process exclusive only for a single scenario that is the expectation, while neglecting the
totality of all the 512 possible scenarios. Actually, feeding the deterministic model solution
to the stochastic model as fixed parameters resulted in the solution being infeasible to all
512 scenarios due to the high variation in demand uncertainty. The infeasibility is caused
by the violation of the products’ capacity requirement constraints by all 512 scenarios. This
IS because in some periods, actual demand can be lower than the expectation causing more
inventory to be carried out to future periods, while the capacity of the leased warehouses
cannot accommodate for the additional inventory, since they are tailored for the capacity
requirements of the expected demand. To illustrate, observe Figure 8, where the
deterministic solution was used in a stochastic environment, and assuming scenario 18 (the
best case scenario) happened to take place. Notice the infeasibility highlighted in red,
which is described by the capacity—needed line exceeding the capacity—provided line for
around six periods. Similarly, all 512 scenarios will have the same issue with the
deterministic model solution. This observation is very important because it reveals a very
effective pre—solution procedure that could reduce the solution time considerably. The

procedure suggested is to eliminate before solving any solution with X;;, that cannot

provide storage capacity to the maximum possible demand in Table 9. The solutions
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removed are all infeasible solutions, since feasibility is mainly affected by the capacity
provided at each period. This procedure will surely improve the solution time, since the
number of integer variables will drop. Now, since deterministic solution is 100% infeasible
as shown earlier, and computing a real value for the decision—making tool VSS (value of
stochastic solution, mentioned in previous chapters) is impossible. However, if infeasibility
is avoided by penalizing the additional inventory by a negligible amount, say $0.001 per

unit per time period, then a rough estimate of the VSS tool can be computed.

— Capacity Needed By Inventory

— =Capacity Provided By Leased Warechouses

22500

20000 [ e

17500 A

15000 ~

12500 -

10000 ~

7500 -

Storage Unit (SU)

5000 -

2500 A

Periods (k)

Figure 9 Infeasibility of the Deterministic Solution used in the Stochastic Problem

First, the mathematical expression for VSS is written as follows:

VSS= 75— 7P (6.1)
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where, Z5 is the stochastic model's optimal objective function value, and Z¢ is the
stochastic model's objective function value, given the solution is the deterministic
expectation model's optimal solution. Z5 is already computed, and it is equal to
$218,523.23, while Z¢ is computed by adding a dummy positive variable to the right-hand
side of the capacity constraint, and then is used to penalize the objective function by $0.001
per infeasible unit, and Z¢ becomes equal to — $32939.12. Hence, the monetary value for
investing in solving the stochastic model is roughly VSS = Z$ — ZP = $251,462.35. The
second key measurement indicator is EVPI, which simply attempts to give a monetary
value for collecting perfect information that reduce demand uncertainty toward complete
certainty. This is accomplished by evaluating the following mathematical expression for

EVPI:
EVPI =Y,P(n)-Z% - 7S (6.2)

where Z2 is the optimal solution objective function for scenario n given that all demand
uncertainty is realized at Stage 1. This is simply accomplished by introducing a dummy
stage as the first stage with dummy variables, while changing all the previous EMP
annotations stage numbers to two. This will tell the model that all the information will be
reveled and all the non—-dummy decisions will have to be made together after the dummy
stage. Z* is already computed, and it is equal to $218,523.23, while },, P(n) - Z¢ is equal
to $454,310.92. Hence, EVPI = Y, P(n) - Z¢ — Z° = $235,787.7, which is the monetary
value for obtaining perfect information at the beginning of the planning horizon. This
information is very valuable when deciding whether to invest in seeking perfect

information or settle with the existing information.
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VSS and EVPI are key measures that are consistently reintroduced or redeveloped
mathematically in the literature whenever a new stochastic problem is introduced. The
above calculations are a guide toward recomputing these two key measurements to any

stochastic WSIO problem.

Now, inspired by both the VSS and EVPI decision—making tool, we introduce in this work
another new decision—making tool called the Expected Value for Reduce Lead Time
(EVRLT), which is a very relevant decision—-making tool to the WSIO problem. EVRLT
seeks to measure the monetary value for investing in reducing the lead time for a certain
product, which will result in improving the reaction time toward demand realization, and
ultimately better solutions with higher total profit. Following is the mathematical

expression for EVRLT:
EVRLT(g,u) =Z5, —Z° (6.3)

where Z; ,, is the stochastic model's optimal objective function value, when the lead time
for product g is reduced by u. Both Tables 14 and 15 show the summary computations of

ZS

2., and EVRLT on the stochastic numerical example presented earlier in this section.

Table 14 Zy, Values for g, and u For Numerical Example 11

Lead Time Reduction (u)

Z5u 0 1 2 3
1 | $218,523.23 | $254,000.97 NA NA
Product (g) | 2 |$218.523.23 | $276.997.28 $:552’62 NA

3 | $218,523.23 | $218,527.00 | $296,771.41 | $330,550.81
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Table 15 EVRLT (g, u) Values for g, and u for Numerical Example 11

Lead Time Reduction (u)
EVRLT 0 1 2 3
1 $0.00 $35,477.74 NA NA
Product (g) 2 $0.00 $58,474.05 | $239,742.23 NA
3 $0.00 $3.77 $78,248.18 | $112,027.58

Table 15 provides very useful information for the decision—-maker concerning which
product should be invested in reducing its lead time, and how much is expected in return
on that investment. For instance, if the investment amount of reducing the lead time for
any product by one period is the same, then clearly from Table 15, Product 2 should be
made top priority, while Product 3 should be avoided entirely. Furthermore, although Table
15 shows the EVRLT values for each product separately, EVRLT can be extended to study

the effect of reducing the lead time for multiple products simultaneously.

6.3.  Numerical Example 111

In this section, a numerical example is presented on the heuristic algorithm developed in
the preceding chapter. The problem used in this section is similar to the one used in the
previously discussed deterministic numerical example. This is to allow for a comparative

analysis between the heuristic solution, and the actual optimal solution.

Now, the first step in the reduced capacity heuristic is to generate many feasible solutions

to the uncapacitated WSIO problem, preferably variant model E (without the capacity
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constraint). This is because model E contain all the optimality conditions as constraints.
The generated solutions from variant model E have better quality compared to solutions

generated from other variant models. Now, assume one of the possible generated solutions

is the following solution, call it S:

Ordering Periods
1 2 3 4 5 6 7 8 10
1| 500 |550 1000 | 800 700 390
Products | 2 | 2100 | 4000 | 700 | 400 | 480
313000 900 | 700 | 300

Although, the heuristic algorithm uses multiple starting solutions (seeds), and then
improves them toward feasibility and optimality, and ultimately chooses the best among
them, the above solution is the only solution that will be used during this numerical
example (c = 1). This is because the main goal for this numerical example is to show how
the heuristic algorithm will be applied step by step toward each single starting solution.
Hence, the steps will be shown are for S}, the above single starting solution only.

Now, the step that comes after generating the starting solutions is to compute their capacity

requirements grids. Following is the grid for the above starting solution, S3:

1

2

3

4

5

6

7

8

9

10

21800

15700

8550

12150

3100

6500

5640

2340

1280

730

Next step is to compute the reduced capacity requirements grid, which goes as follow:

4

10

21800

15700

12150

6500

5640

2340

1280

730
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Next step is to start with the end ¢, and compare between all the possible different
warehousing plans to satisfy this capacity requirement from all the periods. Then, pick the
least expensive and add it to the solution. Following is all the possible warehousing plans
to satisfy TCl(;) =730:

Plan (1): X%, | = 37 with a cost equal to $20,075.

Plan (2): X3, = 10and X{), = 37 with a cost equal to $27,466.
Plan (3): X1(,17),1 = 37 and X&),S = 37 with a cost equal to $27,466.

Plan (4): X{Y, = 10, x}), = 37 and X{}); = 37 with a cost equal to $31,572.

The plans are generated as follows: observe plan (1), the last index in X1(,11)0,1 refers to the

first leasing period, the second index refers to the lease duration required to reach the
targeted period, and the first index refers to the warehouse size, and it was set to be equal
to one, because WN; X h, 1, Was the least expensive compared to the other WN; X h; 1,
and finally the 37 is actually WN;. For plan (2), the same process is repeated but with a
different chosen path that is leasing at Period 1, and then at Period 4. Similarly, the same

process with a similar variation choosing the path was done to compute Plan (3) and (4).

Now, notice that Plan (1) is the least expensive plan, hence, add the term X3, = 37 to

the solution Si. Now, the newly provided capacity by X1(,11)0,1 = 37 is subtracted from all

the capacity requirements TC,ED in the reduced grid, and TCI%) is taken out. Following is
the updated grid:
1 2 4 6 7 8 9

21060 | 14960 | 11410 5760 4900 1600 540
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Similarly, we compute the different warehousing plans to satisfy the last period total
capacity requirements, Tcg(l) = 540. The plans are as follow:

Plan (1) ngl = 27, with a cost equal to $14,580.

Plan (2) Xi,l33,1 =7and X1(24 = 27, with a cost equal to $19,238.

Plan (3) XY, = 27 and X&)

171 428 = 7, With a cost equal to $18,023.

Plan (4) X{3, =7 and X1}, = 27,and X{}); = 7, with a cost equal to $21,061.

Since plan (1) is the least expensive, the term Xl(gl = 27 is added to the solution Si. Also,
the newly provided capacity by Xl(,lg)‘1 =27 is subtracted from all the capacity
requirements TC,El) in the reduced grid, and TC9(1) is taken out. This process is repeated

until all TC,EI) = 0. Following are the remaining solution details.

The updated reduced capacity requirements grid is as follows:

20520 | 14420 | 10870 5220 4360 1060

The possible plans to satisfy TCél) = 1060:

Plan (1) X3, = 53,$27,560. (v )
Plan (2) X{, = 14and X{¥, = 53, $34,393.
Plan (3) X3, = 53 and X\3; = 14, $30,740.

Plan (4) XY, = 14and x{}), = 53 and X{}) = 14, $36,703.
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The updated reduced capacity requirements grid is as follows:

19460 | 13360 | 9810 4160 3300

The possible plans to satisfy T¢{" = 3300:

Plan (1) X{}, = 165, $80,850. ( v/ )
Plan (2) X{Y, =42 andx{}), = 165, $99,413.

The updated reduced capacity requirements grid is as follows:

16160 | 10060 6510 860

The possible plans to satisfy TC6(1) = 860:

Plan (1) X2, = 43,$19,350. (v )
Plan (2) X{y, =11 and X{3, = 11,$22,576.

The updated reduced capacity requirements grid is as follows:

15300 | 9200 5650

The possible plans to satisfy TC{" = 5650:
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Plan (1) X1}, = 283, $96,050. ( v )

Plan (2) X{3, =71 and X}, =71, $99,581.

The updated reduced capacity requirements grid is as follows:

9650 3550

The possible plans to satisfy Tcz(l) = 3550:
Plan (1) X, = 45, $31,506. (v )

The updated reduced capacity requirements grid is as follows:

6100

The possible plans to satisfy TCl(l) = 6100:
Plan (1)  X{}, =77,$27,450. (¢ )

Eventually, the solution Si becomes:

X =37,x0), =27,x%), =53, x), =165, x| =43, x), = 283,
@ _ @ _
X4,2,1 =45, X4,1,1 =77,

Table 16 Heuristic Solution’s Products Ordering Plan for Numerical Example 111

Ordering Periods
1 2 3 4 5 6 7 8 9 10
1| 500 |550 1000 | 800 700 390
Products | 2 | 2100 | 4000 | 700 | 400 | 480
3 | 3000 900 | 700 | 300
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Now, the total profit for SI is Z1 = $450,052.1. Notice that Z} is relatively very close to
Z* (the optimal from the deterministic numerical example) with an absolute gap difference
equal to Z*— Z] = $19,024.75, and a relative gap equal to Z*— Z1/Z* = 4%. This is an
indication that this hurestic has good potentials to yield more suboptimal solutions, once
given good uncapacitated starting solutions. In the algorithm, it is suggested that Si can be
checked for further possible improvements in its Z{ by causing lost sales in the least
important product at the product order that spans the most demand periods. This is
accomplished by first updating n = 1 to n = 2, and computing the new SZ and Z? as follows:

[1] First, compute the priority index for each product:

PI} =2,PI} =3,PI} =1.
[2] Then, Identify the order that spans the most demand periods for the least important

product, that becomes le1) = 3000.

Demand Periods

1 2 3 4 5 6 7 8 9 10
1| 500 |550 1000 | 800 | 700 390
Products | 2 | 2100 | 4000 | 700 400 | 480
3| 3000 900 | 700 | 300

‘?Nag’:g;;y 21800 | 15700 | 8550 | 12150 | 3100 | 6500 | 5640 | 2340 | 1280 | 730

Available

Capacity 21920 | 15760 | 12160 | 12160 | 6500 | 6500 | 5640 | 2340 | 1280 | 740

[3] Then, cause lost sales in le1) so it becomes le1) = 2984 which save enough space
to eliminate a single warehouse from Xg)l = 45, so it becomes Xg)l = 44. The

changes in Q$Y = 2984, and X{}) = 44 makes the new solution SZ.
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[4] Then, compute the total profit for S? that is Z? = $449,963.06. Hence, this
direction negatively affects the total profit. Hence, we return to the solution S{ and
try a different similar change to a different order, and then to a different product.

[5] All products orders were checked is accordance to the steps shown above, no

resulting S provided a better total profit than S;'s total profit.

72



CHAPTER 7

CONCLUSIONS

In this thesis, the literature concerning the topic "capacitated inventory optimization and
warehousing” was extensively reviewed, and consequently a gap was successfully
identified. The gap revealed that although the literature is rich with published papers about
capacitated inventory optimization, the bulk of these papers are actually extensions to few
well-known inventory optimization problems. Hence, the variety of the original models
these papers are based upon is limited, there is a need to introduce new models, which can
accommodate for other real-life inventory problems. The objective of this thesis is to
introduce a new capacitated inventory optimization and warehousing problem. The
problem introduced is named as the Warehouses Selection and Inventory Optimization
(WSIO) problem. The WSIO problem is unique in the way capacity is viewed as a resource,
along with the assumptions made for this problem. In the WSIO problem, business owners
are seeking to find the optimal ordering plan for multiple products, along with the optimal
warehousing plan. It is assumed that a variety of warehousing options exist, which mainly
differ in storage space, and in their reward system for longer contracts. The thesis has
successfully introduced the problem, developed both a deterministic and a stochastic model
for the problem, suggested exact methods to solve both models, developed and tested
possible modeling techniques to improve the exact methods' efficiency, developed
heuristic methods to solve the models, and finally drew important insights about the WSIO

problem through performing experiments and analyzing the results. The motivation behind
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this accomplishment is twofold: First, the anticipated need for this work in the not so far
future in highly—populated land—scarce regions like Honk—Kong and Tokyo. Second, the
lack of past research on this area as reveled by the literature review. Furthermore, this work
is considered novel in not only introducing the WSIO problem, but in the other
accomplishments that accompanied this introduction. This involved developing a variety
of novel mathematical formulations for several existing optimality conditions of the
inventory problem dynamic model. Then, developing an elaborate test to examine whether
adding these newly fashioned mathematical formulations would improve solution time or
not, which was initially hypothesized that they would improve solution time, but instead
they were proven to worsen solution time. Furthermore, this work is novel in developing a
GAMS code for the stochastic model using the newly added EMP tool, which was first
introduced in late 2017. Also, the work is novel in developing a heuristic approach to the
WSIO problem that was shown to have good potentials but require further testing, along
with a new decision tool called the Expected Value for Reduced Lead Time (EVRLT). In
addition to the previous accomplishments, this work provides experimental data that can
be citied, and used for other researches, such as the data concerning the solution
performance of the optimality conditions' models, and the data concerning the difference
between using the deterministic model solution and the stochastic model solution. Most
importantly, this work might be able to shed the light on an uncharted or forgotten territory

in the capacitated inventory optimization research area.

The future work for this thesis is to develop a software program for the reduced capacity

heuristic and have it tested for performance against the exact MIP solution methods. In
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addition, looking up for other real-life application that can utilize the work presented by

this thesis, not necessarily inventory and warehousing applications.
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Appendix A

Numerical Example Il Solution Report

The solution report consists of over than 190 pages. Hence, it was enclosed on a CD

accompanying this document.
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