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Warehouse capacitated inventory optimization problems are rarely addressed in the 

literature. This is because capacity constraints imposed by warehouses can always be lifted 

by leasing or owning more warehouses, and also because warehousing expenses are 

considered negligible compared to the whole problem. Hence, problems that deal with 

inventory optimization and warehouses are usually neglected in the literature due to the 

lack of real–life applications. However, in land-scarce regions, land acquisition and upkeep 

are becoming more and more expensive, mainly due to population growth. This growth is 

anticipated to make warehousing a major problem, where leasing warehouses is the only 

viable option for small business owners to survive. Awarding longer leasing contracts with 

cheaper rates is the main rivalry tactic between warehouses. This is where this proposed 

work comes to the benefit of the business owners, by aiding them in selecting the optimal 

ordering and warehousing plan. Ultimately, this helps in competing business environment. 

This work will introduce a new capacitated inventory optimization problem called the 

Warehouse Selection and Inventory Optimization (WSIO) problem. The work includes 

developing mathematical models for both the deterministic and stochastic demand cases, 

developing exact and heuristic solution methods to solve the WSIO problem, suggesting 

ideas to speed up the solution process, and finally presenting interesting insights and 

observation about the WSIO problem through experimental work. 
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 تحقيق الأمثلية في إدارة المخزون واختيار المستودعات :عنوان الرسالة
 

 هندسة النظم الصناعية التخصص:
 

 2019 أبريل :تاريخ الدرجة العلمية
 
 

نادرا ما يتطرق الباحثون في مجال تحقيق الأمثلية إلى المسائل الرياضية المتعلقة بإدارة المخزون المقيدة بمساحة 

تخزين ثابتة متوفرة من قبل مجموعة مستودعات. السبب في ذلك يعود إلى كون تلك القيود قابلة للثني عن طريق 

تودعات إضافية، وكذلك لرخص تكاليف إيجار المستودعات مس استئجارالتوسع بمساحة التخزين المتوفرة عن طريق 

مقارنة بالمصاريف التشغيلية الأخرى. لتلك الأسباب ولقلة التطبيقات الحياتية والحاجة العملية لبحث علمي في هذا 

المجال، تكاد تضمحل الأعمال الأكاديمية في مجال تحقيق الأمثلية في إدارة المخزون المقيدة بمساحة تخزين 

لمستودعات. غير أن في البلدان المكتظة بالسكان والشحيحة بالمساحات السكنية والتجارية، تجد أن التكاليف المتعلقة ا

بامتلاك وإبقاء مساحات شاسعة للتخزين في ارتفاع مستمر، ويعود السبب في ذلك لجهود الجهات التنظيمية هناك لفك 

مات الإسكان والتوسع العمراني. في مثل هذا المناخ، قد تقيد شركات الاحتكار القائم على تلك المساحات ولمواجهة أز

على طرف  الاعتمادالأعمال بالذات صغيرة الحجم منها من امتلاك مستودعات تخزين خاصة بها ، واللجوء على 

جتذاب شركات ثالث موفراَ لخدمة التخزين كبديل حيث أن الإستراتيجية التنافسية المتوقعة بين موفري خدمة التخزين لا

الأعمال هي مكافأة العقود الطويلة برسوم إيجار أرخص. هنا يكمن هدف هذا العمل بمساعدة شركات الأعمال في 

تحقيق الأمثلية في إدارة المخزون واختيار المستودعات لتحقيق خطة تعود في النهاية بأفضل الأرباح. هذا العمل 

مثلية فإدارة المخزون واختيار المستودعات "، وسيقوم بتوفير سيطرح مسألة رياضية جديدة بمسمى " تحقيق الأ

نموذجين رياضيين إحداهما للمسائل الحتمية والأخر للمسائل العشوائية، وهذا يتضمن طرح طرق مختلفة لحل 

مع مناقشة طرق مختلفة لتسريع حل النموذجين  البرمجية،النموذجين سواء بطرق حتمية أو تقريبية مع نصوصها 

وحل عدة أمثلة عددية مع مناقشة نتائج حلها. ،برمجيا



1 

 

1 CHAPTER 1 

INTRODUCTION 

In this current age, most corporations operate in highly populated land-scarce regions, 

where they tend to suffer from an escalating financial hemorrhaging when expanding 

horizontally. Especially for the corporations that invested in business areas that require 

large warehouses, like in retail and logistics. This escalation is due to the continuous 

increase in land prices, and government taxation efforts to reduce land seizure. Therefore, 

corporations tend to escape this managerial and financial nightmare by outsourcing their 

storage needs instead of acquiring new warehouses or expanding the existing ones. 

Primarily, outsourcing comes in the form where corporations lease warehouses from a 

third-party company at a mutually agreed price for a certain lease duration. Typically, the 

third-party companies are able to turn a profit — as oppose to corporations not invested in 

storage services — due to various reasons, some are technological, and others are 

managerial. For instance, a heavy capital investment in advanced automated storage and 

retrieving technology will allow for a full utilization of space, reduced upkeep expenses, 

and eventually a profit. Another possible reason is having a policy to sublet a single large 

warehouse to several corporations with small storage requirements. Regardless of the 

mechanism the storage service providers use to turn a profit, the main concern here is “how 

corporations can optimally utilize the warehouse services?”.  Now, lease contracts are 

mostly dependent on the provided storage space, the service provider pricing, and their 
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leasing policy (whether they reward longer contracts with lower leasing rates or not). For 

a retailer seeking to expand, the emergence of many leasing options will urge them to 

reconsider their whole supply chain business plan, especially their ordering policy. In a 

nutshell, the new business plan must be able to provide answers to the simple questions: 

Should we expand? Should we lease warehouses? Which warehouses to lease? When to 

lease them and for how long? How much to order for each product? These questions can 

pose a challenge for any decision maker, especially if: 

• the storage size for each product is different,  

• the warehouses have different sizes and lease policies,  

• the demand for each product is different from one period to another and possibly is 

uncertain, and  

• the storage service providers reward longer contracts.  

The decision problem with the above issues is referred to in this paper as the Warehouse 

Selection and Inventory Optimization (WSIO) problem. The WSIO problem with the 

above-described complexity is beyond the scope of the classical Economic Ordering 

Quantity (EOQ) models and requires further investigation. This work finds its motivation 

from the expected population growth levels, and land–scarcity in many highly–populated 

regions across the globe, such as in Honk–Kong, Tokyo, and New York. This growth is 

anticipated to create a climate where leasing warehouses is the only viable option for small 

business owners to survive, and where awarding longer leasing contracts with cheaper rates 

is the main rivalry tactic among the warehouse owners to the attract business owners. This 

is where this work comes to the benefit for the business owners to aid them in selecting the 

optimal plan, and ultimately survive in the competitive business world.  
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This thesis's objective is to introduce the WSIO problem for multi–periods inventory 

problems with multi–products that have time dependent selling prices, develop 

mathematical models for both the deterministic demand case and stochastic demand case, 

suggest exact and develop heuristic solution methods to solve the WSIO problem, suggest 

ideas to speed up the solution time, and finally draw interesting insights and observation 

about the WSIO problem through experimental work. 

 

The rest of this work is organized as follows: In Chapter 2, a concise literature review is 

presented. In Chapter 3, a deterministic mathematical model is developed, and ideas to 

speed up the solution process are suggested. In Chapter 4, a stochastic model is developed. 

In Chapter 5, exact and heuristic solution methods to solve WISO problem are developed 

and presented. In Chapter 6, experimental performance of the proposed solution methods 

is illustrated through solving several numerical examples on the WSIO problem. In Chapter 

7, a conclusion and a summary about this work is presented. 
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2. CHAPTER 2  

LITERATURE REVIEW 

In this chapter, a review is presented on the literature that focus on the connectivity between 

inventory optimization, warehousing, and demand uncertainty. This overlap area of 

research was found to be better represented by the following three categories: First 

category, research work done on Hartley's two warehouse model. Second category, 

research work done on inventory optimization and warehousing that is unrelated to 

Hartley's model. Third category, research that involves introducing demand uncertainty to 

capacitated inventory optimization problems. Hence, this chapter is divided into five 

sections: The first three sections each will discuss one category from the three categories 

above, the fourth section will discuss the gap found in the literature, and the fifth section 

will present the WSIO problem statement and its role in filling the literature gap. 

 

2.1. Hartley's Two–Warehouse Model 

 

The first to relate the Economic Ordering Quantity (EOQ) model to warehouses was 

Hartley in 1976 [1]. He conferred a simple two-warehouse model, one warehouse he 

referred to as Owned Warehouse (OW), and the other one as Rented Warehouse (RW). His 

work paved the way for many researchers interested in warehouse inventory optimization 

problems. Here are few examples: Sarma in 1983 [2] expanded Hartley’s original model 

by considering transference cost between the two warehouses and proposed different 
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reordering rules. In 1987 [3], Sarma provided further expansion to Hartley’s model by 

accommodating for deterioration effect on the two warehouses. In 1992, Chaudhuri and 

Goswami [4] extended Sarma’s models to include demand that varies linearly with time. 

Later, numerous other researchers followed by developing similar two-warehouse 

inventory models where each considered different factors such as shortages, deteriorating 

items, stock level-dependent demand, inflation rate, time value of money, finite production, 

and finite time horizon, (see for example Pakkala and Achary [5]  , Maiti and Bhunia [6], 

Kar, Bhunia and Maiti [7], Yang [8], Zhou and Yang [9], Hsieh, Dye and Ouyang [10]). 

Furthermore, beside extending Hartley's model, there has been other type of papers inspired 

by the two-warehouse model. For instance, Chung, Her, and Lin [11] work where they 

converted Salameh and Jaber’s [12] single warehouse model with imperfect products to a 

two-warehouse model. Also, Lee, M and Elsayed, E. [13] work where they provided their 

own NLP formulation and solution procedure for a two-warehouse problem with 

warehouses that operates under a dedicated storage policy, and a full-turnover-based 

storage policy. The latest work extensions to the two-warehouse problem was Moncer's  

[14] and Sana's [15]. The former extended previous work to accommodate for the two 

options: long fixed contract, and flexible contract, and the latter provided a formulation for 

the two-warehouse problem when demand is uncertain following the newsvendor concept.  

In the above section, published papers on Hartley's two warehouse model was reviewed. 

The review unveils that Hartley's two warehouse model's still an active research area, and 

is the dominant area when looking up for the topics in inventory optimization and 

warehousing.  
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2.2. Capacitated Inventory Optimization Problems 

 

Although, Hartley's model appears to be the most popular work on warehouse inventory 

optimization, there have been other contributions to this field that are not based on Hartley's 

model. For instance,  Zhang, Zhu, and Hu [16] provided a different approach on the 

warehouse optimization problem. They proposed a simple mathematical model that 

provides warehouse owners looking to expand their capacity with the optimal decision 

between expanding current warehouses or leasing new warehouses. Another example is 

Jucker, Kropp, and Carlson [17] work where they considered leased warehouses in the 

classical plant-region allocation problem. They considered a company manufacturing a 

single product, and planning to increase production volume by building a plant to supply 

new districts, each to be supplied by a local warehouse. Local warehouses are rented in a 

way that no fixed costs are associated with the warehouses. The goal is to select the plant 

and warehouse capacities which maximizes the net profit, with no stock-outs due to 

insufficient plant capacity. Also, the plant installation cost is nonlinear w.r.t. its capacity, 

and the warehouses lease costs are linear w.r.t its capacities. They also tackled uncertainty 

using expectations to replace stochastic variables or parameters. Moreover, Ng et al. [18] 

provided a closed form solution to a capacitated EOQ problem, where the decision 

variables are the batch sizes for each period, and the warehouse capacity size. In their 

model, it is assumed that warehousing costs dominate non-warehousing costs. Goh et al. 

[19] provided a closed form solution to a problem slightly similar to the one proposed in 

our work, and an iterative algorithmic solution for a complicated variation of the problem. 

The problem described in their paper requires solving simultaneously an inventory 
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problem, and a warehouse sizing problem, where the demand is known, and constant. In 

addition, the warehouses are leased for a fixed time period equal to the demand rate time 

unit, with a lease cost that is a step function of the warehouse size. The closed form solution 

was for a single product, where the algorithm was for the multi-products. Mousavi et al. 

[20] gave a model for a multi-product multi-period inventory control problem under an all-

unit discount policy and inflation, all constrained by a limited capacity and a dedicated 

budget. The problem was solved using a particle-swarm based algorithm. 

In the above section, published papers on capacitated inventory optimization was reviewed, 

while excluding all work relevant to Hartley's model. The review unveils that once 

Hartley's two warehouse model is cast aside, the remaining research areas are (A) 

Warehouse–Plants allocation problems, (B) Warehouse capacity design problems, (C) 

Automation in the warehouse area, and (D) Buy or expand decision problems.  This shows 

the lack of research on capacitated inventory optimization problems. Specially, in the 

variety in of handling warehouse capacity. 

 

2.3. Stochastic Capacitated Inventory Optimization Problems 

 

Although, most capacitated EOQ models in the literature assume all parameters are known 

for certain, there are some researchers who investigated the capacitated EOQ problems 

when one or more parameters are not known for certain. In 1988, Rosenblatt and Roll [21] 

tackled uncertainty using simulation, where an (s, Q) inventory policy and a random storing 

strategy were assumed, s being the reordering inventory level and Q the ordering quantity. 
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In particular, the warehouse capacity essential to uphold a certain service–level was 

discovered to be directly related to the reorder quantity, and the average everyday demands, 

and inversely related to the number of products, reorder points and the inconsistency in the 

day-to-day demand. A multiplicative regression model shows that the last two factors have 

only a negligible influence. Sungur [22], Sungur, Ordonez, and Dessouky [23] tackled a 

real-life allocation problem where vehicles with limited capacities are allocated to the 

destinations with uncertain demand. Ordonez and Zhao [24] examined the robust capacity 

growth problem of network flows under travel time and demand uncertainty. Atamtürk and 

Zhang [25] studied the design problem and network flow under demand uncertainty, with 

applications to location–transportation and lot-sizing problems. Paolo [26] provided a 

mathematical model for a multi-item time capacitated multi-period lot-sizing problem with 

uncertain demand. He investigated different existing heuristics to solve the scenarios-tree 

based model and discussed their efficiency and effectiveness. In addition to the above, 

comprehensive review papers that deals with capacitated inventory problems were taken 

into consideration while reviewing this topic. Among them is the review done by Gabrel, 

Murat, and Thiele [27] which covers all the recent inventory optimization problems 

focused on uncertainty and robustness. Also, there is the most recent review done by Díaz-

Madroñero, Peidro, and Mula [28] that covers the recent development in tactical 

optimization models for the integrated production, warehousing and transport routing 

planning decisions.  

In the above section, published papers on stochastic capacitated inventory optimization 

were reviewed. The review unveils that there is lack of research on stochastic capacitated 

inventory optimization problems, especially in the recent years. 



9 

 

2.4. Gap Analysis 

 

The literature review presented in Sections 2.1, 2.2, and 2.3 reveals a gap in the literature 

that concerns capacitated inventory optimization problems, especially problems that 

involves warehouses. The gap does not exist due to a lack of research done on capacitated 

inventory optimization, but due to the majority of this research being extensions to previous 

work. This led most research about capacitated inventory optimization and warehousing to 

be extensions to Hartley's two–warehouse model, or the warehouses allocation model, or 

the warehouse capacity inventory–based design model. Of course, there have been other 

research efforts about warehouses, but most of them are irrelevant to our work, and hence, 

they were dismissed from our literature review. For example, facility layout optimization 

problems, and research about automating warehouses. Hence, although the literature is rich 

with published papers about capacitated inventory optimization problems, the variety of 

the original models these papers are based upon is limited. In Hartley's model, the capacity 

is presented as a fixed starting resource that is extendable by a fixed amount through an 

option called Rented–Warehouse, and the problem mainly revolves around the question, 

should the Rented–Warehouse option be selected? Of course, this involves other decisions 

like how much to order? when to order? and the other usual inventory optimization 

questions. In the allocation problem, the capacity is also presented as a fixed resource, but 

now the question is how to allocate this resource to maximize the decision maker's goal. In 

the warehouse–design problem, the capacity is no longer a fixed resource, but rather is a 

first–stage decision that cannot be altered at later stages, hence, the varieties of future 

decisions will be limited by that first stage decision. To illustrate the lack of original 
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models, observe how the capacity of the warehouses is represented in these three research 

areas that dominate the topic inventory optimization and warehousing. In all three 

problems, the capacity is represented as a fixed resource or as a first stage decision, which 

certainly does not accommodate for all the real–life warehouses capacitated inventory 

optimization problems. The gap also doubles in size when considering the variety of 

existing uncapacitated inventory optimization problems, and the different assumptions they 

can have (e.g. fixed demand, and continuous demand). 

This work aims to reduce the above gap by introducing the WSIO problem, where capacity 

is represented in a unique way, and assumptions are made so that a family of real–life 

problems that have not been addressed before in the literature can be addressed by our 

work. 

 

2.5. Problem Statement 

 

Nowadays, corporations tend to favor leasing warehouses over owning and maintaining 

warehouses. Specially, corporations that are located in highly–populated land–scarce 

regions. The reasoning for this is twofold: First, leasing warehouses offer more flexibility 

and mobility. The corporations can liquefy their assets, modify their supply chain business 

plans, expand or shrink their operations, or even simply switch warehouses, all at much 

faster pace. Second, leasing warehouses is mostly favored because it is a risk-averse 

strategy. That is, it shields corporations from any potential financial risks associated with 

investing upfront on owning a warehouse, or any other post–ramifications like increased 
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taxation on owned lands, or sudden drops in warehouses salvage value. To illustrate, 

contemplate the following example: a small retailer invests his capital in owning a large 

warehouse, and starts to import products that are new to the region and have high demand 

rates. He starts to make profit, but suddenly his market share drops significantly because 

other retailers notice the trend and join in. Suddenly his business plan becomes unprofitable 

due to the competition. Now, because the retailer invested all his capital upfront in owning 

the warehouse, his ability to endure loss is weaker and his options are limited. This is a 

single example among many other examples where leasing a warehouse for a small 

business owner is certainly a better strategy than owning one. However, with a leasing 

strategy in mind, more options are available, and hence more questions are to be answered. 

The WSIO problem tackles these questions mathematically and when solved offer an 

optimal solution to these questions. 

The WSIO problem assumes that a corporation is seeking to maximize its total profit by 

selling multiple products. However, the total demand for each product is different from one 

period to another, and possibly stochastic (independent or correlated). Each product has 

different ordering cost, holding cost, purchasing cost, lost sale cost (opportunity cost), 

storage space requirements, selling price, and selling price depreciation rate with time. 

Furthermore, the corporation needs to choose from several available warehousing options 

at different time periods. Each leasing option is characterized by its warehouse capacity 

and its reward policy for longer contracts. The warehouses can be leased for any duration 

of demand periods, or for a minimum duration of multiple demands periods. The latter 

suggests warehousing is more of a strategic decision compared to reordering.  
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Now, for any corporation seeking to maximize its total profit, it needs to answer the 

following questions:  

3. (1) How much to order for each product? When to make the order?  

4. (2) Which warehouses to lease? When to lease them? For how long to lease? 

The WSIO problem distinguishes itself apart from the capacitated EOQ models in the 

literature in different ways. First, most warehouse inventory optimization problems are 

based on Hartley's two-warehouses model, while WSIO is not. Clearly, it has a different 

purpose, structure, and set of variables and parameters. Second, most capacitated EOQ 

models that are not based on Hartley's model, either assume capacity is given at the 

beginning (allocation problems) or to be decided at the start, and then is fixed for the rest 

of the planning horizon (design problems). Third, the questions answered by the WSIO 

problem, makes it an inventory optimization problem, warehouse selection problem, and 

interestingly a scheduling problem as well. Only few inventory problems fall all at once 

under these three categories. Fourth, rarity of real-life existence of the WSIO problem in 

the past and presumably till today, which suggests that it has never been an active area of 

research. However, with population growth accelerating in land-scarce regions like in 

Tokyo and Honk Hong, it is possible that in the not so far future this work will be part of 

an active area of research.  
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3. CHAPTER 3  

THE DETERMINSTIC MODEL 

In this chapter, a deterministic mathematical model will be developed for the WSIO 

problem described in Chapters 2. First, a deterministic model will be developed for the 

problem, where the demand is assumed to be known for certain. Second, different 

techniques to improve the model's solution time are proposed and analyzed. 

 

3.1. Motivation 

 

In the literature, any attempt to construct a stochastic model for any problem, starts first by 

composing a deterministic model for that problem. This practice eases building the 

stochastic model and allows later for comparative verification and testing. In the proposed 

deterministic model, it is assumed that the products demands are known for certain 

beforehand, for the entire planning horizon. Whereas, the stochastic model assumes that 

the demand is not known for certain, and that it may be represented by a probability 

distribution. Although, any other parameter could be stochastic such as lead time, or prices 

reduction rate with time, demand uncertainty was only considered due to it being the most 

relevant to the WSIO problem. While, some would argue that replacing stochastic 

parameters by their expectation is a valid approach to avoid overcomplications brought by 

stochastic models, many would argue that this approach is merely solving for a single 

scenario among many more that would be left unconsidered resulting in a dishonest 
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solution. This argument inspired the development of two decision tools: (1) Expected 

Value for Perfect Information (EVPI), and (2) Value for Stochastic Solution (VSS) [29]. 

The two tools are used primarily to test the effectiveness of a stochastic model solution 

against a solution found using expectation in a deterministic model. EVPI estimates the 

monetary worth of obtaining perfect information, if investments to eliminate uncertainty 

are under consideration. On the other hand, VSS estimates the worth of solving the 

stochastic model as oppose to solving the deterministic expectation model. Further details 

about the two decision tools will be provided in Chapter 6. In general, both tools provide 

very interesting insights about the uncertainty in the WSIO problem, and both measures 

require the deterministic and stochastic models. Hence, there are many key incentives to 

pursue developing the deterministic model first. 

 

3.2. Model Development 

 

In this section, the steps toward obtaining the deterministic model are listed and explained 

in detail. First, the problem is described in mathematical notations, followed by listing the 

assumptions made for this work. Second, the deterministic model is developed. 

Table  1  Available Warehousing Options Summary 

Lease Period  

…… 𝑗 … 4 3 2 1  

…… ℎ1𝑗 … ℎ14 ℎ13 ℎ12 ℎ11 𝑟1 

Warehouse 

Capacity 

…… ℎ2𝑗 … ℎ24 ℎ23 ℎ22 ℎ21 𝑟2 

…… … … … … … … … 

…… ℎ𝑤𝑗 … ℎ𝑤4 ℎ𝑤3 ℎ𝑤2 ℎ𝑤1 𝑟𝑤 
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The WSIO problem requires that all available warehousing options, including the 

corporation's owned warehouses are known beforehand. For example, in Table 1 each row 

corresponds to a warehousing option with 𝑟𝑖 refers to the warehouse capacity, and ℎ𝑖𝑗 refers 

to warehouse type i lease cost for j periods. To illustrate, assume a corporation is leasing 

warehouse i = 1 for 4 periods, then they will be leasing a warehouse with capacity 𝑟1 for 4 

periods and paying in return for this service ℎ14  price unit. Now, ℎ𝑖,𝑗+1 ÷ (𝑗 + 1) could 

be equal to ℎ𝑖,𝑗 ÷ 𝑗, or it could be less. In the latter case, the service provider for warehouse 

i is deploying a reward policy, where longer contracts are rewarded with cheaper rates. 

Observe that the lower rate could be offered at each lease period or could be offered after 

every certain number of periods. There is a total of w warehousing options, and unbounded 

possible leasing duration unless bounded by the planning horizon length M. 

Typically, the discrete demands for each product over the planning horizon is represented 

in a table similar to Table 2.  

Table  2  Total Demand for Each Product Over the Planning Horizon 

Demand Periods   

𝑀  𝑘 … 4 3 2 1   

𝐷1𝑀 … 𝐷1𝑘 … 𝐷14 𝐷13 𝐷12 𝐷11 𝑅1 1 

Products 

𝐷2𝑀 … 𝐷2𝑘 … 𝐷24 𝐷23 𝐷22 𝐷21 𝑅2 2 

… … … … … … … … … … 

𝐷𝑔𝑀 … 𝐷𝑔𝑘 … 𝐷𝑔4 𝐷𝑔3 𝐷𝑔2 𝐷𝑔1 𝑅𝑔 𝑔 

… … … … … … … … … … 

𝐷𝑣𝑀 … 𝐷𝑣𝑘 … 𝐷𝑣4 𝐷𝑣3 𝐷𝑣2 𝐷𝑣1 𝑅𝑣 𝑣 
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In Table 2, each row corresponds to a different product with storage size equal to 𝑅𝑔, and 

𝐷𝑔𝑘 referring to product g demand at period k. There is a total of v products and M demand 

periods to plan for. Now, a key step in developing any model is first to list all the 

assumptions made about the actual problem. Following is a list of all the assumptions made 

during the development of the deterministic model: 

1. Demand is known for certain but not constant (changes from one period to another.) 

2. Ordering cost is constant and known for certain. 

3. Holding cost consist of two parts:  

a) holding cost for the leased warehouses, which varies based on their capacities and 

their lease duration (leasing option) and is independent on number of units stored. 

b) holding cost per unit per unit time on stored inventory.  

4. Demand periods are equal in duration. 

5. Warehouses are leased for a duration that is a multiple of a demand period duration. 

6. Lead time is equal to a discrete number of demands periods, and can be equal to zero. 

7. Number of available warehouses are enough to store all the inventory. 

8. Products' unit selling price declines linearly with time at the rate 𝑏𝑔 per period. 

9. The warehouses with the least remaining duration are consumed first. 

10. All the products share the available warehouses. 

11. Lost sales are permitted. 

Note that the above assumptions are shared between the deterministic model, and the 

stochastic model, except for the first assumption. That is, demand in the stochastic model 

is not known for certain. Hence expenses to dispose excess inventory at the last period are 

considered. Further assumptions for the stochastic model will be revealed later in Chapter 
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4. Now, the notations used for developing the deterministic model are listed and defined 

as follows: 

Notations & Parameters: 

g : Index used to refer to a product, g = 1, …v  

i : Index used to refer to a warehousing option, i = 1, …W 

j : Index used to refer to lease duration, j = 1, …M 

k : Index used to refer to a demand period, k = 1, …M. Aliases: l, m, t, n. 

A : Set containing the periods numbers at which leasing is permitted.  

𝐾𝑔𝑘 : Ordering cost of product g at period k, and 𝐾𝑘 is order placement cost. 

𝑟𝑖 : Storage capacity for a warehousing option type i in storage unit (SU). 

ℎ𝑖𝑗 : Warehousing option i 's lease cost for a lease duration of j periods. 

ℎ̂𝑔 : Holding cost per unit per unit time for product g. 

𝜂𝑔 : Lost sale penalty per unit for product g. 

𝐷𝑔𝑘 : Demand for product g at period k. 

𝐶𝑔 : Purchase cost per unit for product g. 

𝑃𝑔 : Initial selling price per unit for product g. 

𝑏𝑔 : Per unit decline in selling price for product g after one period.  
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𝑅𝑔 : Storage size in (SU) for product g. 

𝑙𝑡𝑔 : Lead time duration for product g, from the suppliers to the warehouses. 

 

Decision Variables: 

𝑋𝑖𝑗𝑘 : Number of warehouses to lease from option i having a capacity 𝑟𝑖 and 

is leased for j periods including and starting from period 𝑘. 

𝑞𝑔𝑘 : Quantity ordered of product g at period k. 

𝐼𝑔𝑘 : Planned inventory of product g at period k, where 𝐼𝑔0 is the starting 

inventory. 

𝑢𝑔𝑘 : Planned lost sales of product g at period k. 

𝛿𝑔𝑘  : Binary variable that takes the value 1, when product g is ordered at 

period k, otherwise 0. 

𝜉𝑘 : Binary variable that takes the value 1, when an order is placed at 

period k, otherwise 0. 

Next, the objective function sought for optimization is formulated using the above 

notations. The objective function is to maximize total profit over the planning horizon M, 

where total profit is defined as follows: 

Total Profit = Total Revenue – Holding Cost – Ordering Cost – Purchase Cost 

Now, each part is calculated as follows: 

Total revenue =  ∑ ∑ 𝑞𝑔𝑘 ∙ 𝑃̅𝑔𝑘
𝑀
𝑘=1

𝑣
𝑔=1                                                        (3.1) 
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where 𝑃̅𝑔𝑘 is the average selling price for order 𝑞𝑔𝑘. However, to compute 𝑃̅𝑔𝑘 for each 

𝑞𝑔𝑘, the periods at which 𝑞𝑔𝑘 is consumed must be known beforehand, which is not an 

attainable information when this model is extended for demand uncertainty. Hence, the 

following expression is used instead: 

Total revenue =  ∑ ∑ 𝑃𝑔 ∙ (𝐷𝑔𝑘 − 𝑢𝑔𝑘) − ∑ ∑ 𝐼𝑔𝑘 ∙ 𝑏𝑔
𝑀
𝑘=1

𝑣
𝑔=1

𝑀
𝑘=1

𝑣
𝑔=1                               (3.2) 

In Equation (3.2), the total revenue is calculated by first computing the total revenue from 

sold products (𝐷𝑔𝑘 − 𝑢𝑔𝑘), assuming that they are all sold at their initial selling price 𝑃𝑔, 

and then subtracting by the total loss caused by the price reduction 𝑏𝑔. This mathematical 

representation is valid and can be proved as follows: First assume that 𝑞𝑘𝑙 refers to an order 

made at period k and consumed at period l for product g = 1. Now, 𝐼1𝑘 = ∑ ∑ 𝑞𝑛𝑙
𝑀
𝑙=𝑘+1

𝑘
𝑛=1  

, then  ∑ 𝐼1𝑘 ∙ 𝑏𝑀
𝑘=1 = ∑ ∑ ∑ 𝑞𝑛𝑙

𝑀
𝑙=𝑘+1

𝑘
𝑛=1 ∙ 𝑏𝑀

𝑘=1 . Consider the following:  

∑ 𝐼1𝑘
𝑀
𝑘=1 = ∑ ∑ ∑ 𝑞𝑛𝑙

𝑀
𝑙=𝑘+1

𝑘
𝑛=1

𝑀
𝑘=1                (3.3) 

         = ∑ ∑ ∑ 𝑞𝑛𝑙
𝑀
𝑙=𝑘+1

𝑀
𝑘=𝑛

𝑀
𝑛=1             (3.4) 

         = ∑ ( ∑ 𝑞𝑛𝑙
𝑀
𝑙=𝑛+1 + ∑ 𝑞𝑛𝑙

𝑀
𝑙=𝑛+2 + ⋯ + ∑ 𝑞𝑛𝑙

𝑀
𝑙=𝑀−1 + ∑ 𝑞𝑛𝑙

𝑀
𝑙=𝑀 )𝑀

𝑛=1                   (3.5) 

         = ∑ ( [𝑀 − 𝑛]𝑞𝑛𝑀 + [(𝑀 − 1) − 𝑛]𝑞𝑛,𝑀−1 + ⋯ + [(𝑛 + 1) − 𝑛]𝑞𝑛,𝑛+1)𝑀
𝑛=1       (3.6) 

        = ∑ ∑ (𝑙 − 𝑛)𝑞𝑛𝑙
𝑀
𝑙=𝑛+1

𝑀
𝑛=1            (3.7)  

        = ∑ ∑ (𝑙 − 𝑘)𝑞𝑘𝑙
𝑀
𝑙=𝑘+1

𝑀
𝑘=1            (3.8)  

∴ ∑ 𝐼1𝑘 ∙ 𝑏𝑀
𝑘=1 = ∑ ∑ (𝑙 − 𝑘)𝑞𝑘𝑙

𝑀
𝑙=𝑘+1

𝑀
𝑘=1 ∙ 𝑏                                        (3.9) 
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where, the right-hand side refers to the total reduction caused by 𝑏 in the revenue generated 

by all the orders 𝑞𝑘𝑙, and hence Equation (3.2) is valid. 

Holding cost = ∑ ∑ ∑ (𝑋𝑖𝑗𝑘
𝑀−𝑘+1
𝑗=1 ∙ ℎ𝑖𝑗)𝑊

𝑖=1𝑘∈𝐴  + ∑ ∑ 𝐼𝑔𝑘 ∙ ℎ̂𝑔
𝑀
𝑘=1

𝑣
𝑔=1                  (3.10) 

Ordering cost =  ∑ ∑ 𝛿𝑔𝑘 ∙ 𝐾𝑔𝑘 + 𝜉𝑘 ∙ 𝐾𝑘
𝑣
𝑔=1

𝑀
𝑘=1                                                    (3.11) 

Purchasing cost =  ∑ ∑ 𝑞𝑔𝑘 ∙ 𝐶𝑔𝑘
𝑀
𝑘=1

𝑣
𝑔=1                                                                  (3.12) 

Now, since all the components for the objective function are computed, the equation for 

the total profit can be represented by: 

Total profit = 

∑ ∑ 𝑃𝑔 ∙ (𝐷𝑔𝑘 − 𝑢𝑔𝑘)

𝑀

𝑘=1

𝑣

𝑔=1

− ∑ ∑ ∑ (𝑋𝑖𝑗𝑘

𝑀−𝑘+1

𝑗=1

∙ ℎ𝑖𝑗) − ∑ ∑ 𝑢𝑔𝑘 ∙ 𝜂𝑔

𝑀

𝑘=1

𝑣

𝑔=1

𝑊

𝑖=1𝑘∈𝐴

− ∑ ∑ 𝐼𝑔𝑘 ∙ (ℎ̂𝑔 + 𝑏𝑔)

𝑀

𝑘=1

𝑣

𝑔=1

− ∑ ∑ 𝛿𝑔𝑘 ∙ 𝐾𝑔𝑘

𝑣

𝑔=1

𝑀

𝑘=1

− ∑ 𝜉𝑘 ∙ 𝐾𝑘

𝑀

𝑘=1

− ∑ ∑ 𝑞𝑔,𝑘 ∙ 𝐶𝑔

𝑀

𝑘=1

𝑣

𝑔=1

 

  (3.13) 

In addition to the objective function, following are the constraints governing the problem 

logic: 

                                    𝑞𝑔,𝑘 ≤ 𝛿𝑔𝑘 ∑ 𝐷𝑔𝑙
𝑀
𝑙=𝑘+𝑙𝑡(𝑔)                                       ∀  𝑘, 𝑔                 (3.14) 
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                                 𝛿𝑔𝑘 ≤ 𝜉𝑘                                                                  ∀  𝑘, 𝑔                       (3.15) 

                                       𝐼𝑔1 = 𝑞𝑔,1 + 𝐼𝑔0 − 𝐷𝑔1 + 𝑢𝑔1                            ∀ 𝑔                      (3.16) 

                                       𝐼𝑔𝑘 = 𝐼𝑔,𝑘−1 − 𝐷𝑔𝑘 + 𝑢𝑔𝑘             ∀ 𝑔, 2 ≤ 𝑘 ≤ 1 + 𝑙𝑡(𝑔)          (3.17)  

                              𝐼𝑔𝑘 = 𝑞𝑔,𝑘−𝑙𝑡(𝑔) + 𝐼𝑔,𝑘−1 − 𝐷𝑔𝑘 + 𝑢𝑔𝑘         ∀ 𝑔, 𝑘 > 1 + 𝑙𝑡(𝑔)         (3.18) 

∑ ∑ ∑ 𝑟𝑖𝑋𝑖𝑗𝑚
𝑊
𝑖=1

𝑀
𝑗=𝑘−𝑚+1𝑚∈𝐴∩{𝑡|𝑡 ≤ 𝑘} ≥  ∑ 𝑅𝑔

𝑣
𝑔=1  (𝐼𝑔𝑘 + 𝐷𝑔𝑘 − 𝑢𝑔𝑘)        ∀𝑘         (3.19) 

Constraints (3.14) imply that if 𝑞𝑔,𝑘 > 0, then 𝛿𝑔𝑘 = 1. Similarly, Constraints (3.15) imply 

that if  𝛿𝑔𝑘 = 1, then 𝜉𝑘 = 1. Constraints (3.16), (3.17) and (3.18) are the inventory flow 

balance constraints, where constraint (3.16) is for the first period where lead time is ignored 

to avoid unavoidable lost sales. In Constraints (3.17), lead time is considered but the index 

𝑘 here only spans the periods between the first period and the period at which the first order 

has arrived. In constraints (3.18), lead time is also considered but k spans the periods that 

comes after the arrival of the first order affected by lead time. Finally, constraints (3.19) 

are the capacity constraints, where the left-hand side is all the space available at period k 

by warehouses leased at periods A, and the right-hand side is all the capacity needed at 

period k, which is rendered by inventory carried to the next periods and products sold at 

period k.  

Regarding the lead time 𝑙𝑡(𝑔), it is only considered when it is large enough that it can be 

rounded to a multiple of demand periods. Otherwise, lead time is ignored and later is 

reflected on the optimal solution. Furthermore, note that if 𝑏𝑔 is relatively large, tighter 

upper bounds on each 𝑞𝑔,𝑘 in Constraints (3.14) must be considered. This is to avoid 𝑞𝑔,𝑘 
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spanning a number of demand periods such that the total reduction in price caused by 𝑏𝑔 

exceeds the unit selling price 𝑃𝑔. 

Following is the complete mathematical model for the WSIO problem: 

𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑃𝑔 ∙ (𝐷𝑔𝑘 − 𝑢𝑔𝑘)

𝑀

𝑘=1

𝑣

𝑔=1

− ∑ ∑ ∑ (𝑋𝑖𝑗𝑘

𝑀−𝑘+1

𝑗=1

∙ ℎ𝑖𝑗) − ∑ ∑ 𝑢𝑔𝑘 ∙ 𝜂𝑔

𝑀

𝑘=1

𝑣

𝑔=1

𝑊

𝑖=1𝑘∈𝐴

− ∑ ∑ 𝐼𝑔𝑘 ∙ (ℎ̂𝑔 + 𝑏𝑔)

𝑀

𝑘=1

𝑣

𝑔=1

− ∑ ∑ 𝛿𝑔𝑘 ∙ 𝐾𝑔𝑘

𝑣

𝑔=1

𝑀

𝑘=1

− ∑ 𝜉𝑘 ∙ 𝐾𝑘

𝑀

𝑘=1

− ∑ ∑ 𝑞𝑔,𝑘 ∙ 𝐶𝑔

𝑀

𝑘=1

𝑣

𝑔=1

 

  (3.13) 

 Subject to: 

 𝑞𝑔,𝑘 ≤ 𝛿𝑔𝑘 ∑ 𝐷𝑔𝑙
𝑀
𝑙=𝑘+𝑙𝑡(𝑔)                                       ∀  𝑘, 𝑔                                               (3.14) 

𝛿𝑔𝑘 ≤ 𝜉𝑘                                                                      ∀  𝑘, 𝑔                                                  (3.15) 

𝐼𝑔1 = 𝑞𝑔,1 + 𝐼𝑔0 − 𝐷𝑔1 + 𝑢𝑔1                                 ∀ 𝑔                                                    (3.16) 

𝐼𝑔𝑘 = 𝐼𝑔,𝑘−1 − 𝐷𝑔𝑘 + 𝑢𝑔𝑘                                         ∀ 𝑔, 2 ≤ 𝑘 ≤ 1 + 𝑙𝑡(𝑔)                   (3.17) 

𝐼𝑔𝑘 = 𝑞𝑔,𝑘−𝑙𝑡(𝑔) + 𝐼𝑔,𝑘−1 − 𝐷𝑔𝑘 + 𝑢𝑔𝑘                  ∀ 𝑔, 𝑘 > 1 + 𝑙𝑡(𝑔)                           (3.18) 

∑ ∑ ∑ 𝑟𝑖𝑋𝑖𝑗𝑚
𝑊
𝑖=1

𝑀
𝑗=𝑘−𝑚+1𝑚∈𝐴∩{𝑡|𝑡 ≤ 𝑘} ≥  ∑ 𝑅𝑔

𝑣
𝑔=1  (𝐼𝑔𝑘 + 𝐷𝑔𝑘 − 𝑢𝑔𝑘)        ∀𝑘         (3.19) 

𝛿𝑔𝑘 ∈ {0,1} , 𝐼𝑔𝑘 ≥ 0 , 𝑞𝑔𝑘 ≥ 0 , 𝑋𝑖𝑗𝑘 ∈  ℤ+, 𝜉𝑘 ∈ {0,1} 
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Note that although the parameters 𝐾𝑔𝑘, 𝐾𝑘, 𝑏𝑔, 𝜂𝑔, and ℎ̂𝑔 are assumed to be given, 

following are suggestions on estimating their monetary values: First, the parameters 𝐾𝑘 

and 𝐾𝑔𝑘, which represent respectively the cost incurred by placing an order at period k, and 

the additional cost incurred by ordering product g at period k. To illustrate, if an order is 

placed for products 1 and 2 at period 3, the objective function would be penalized with the 

dollar amount 𝐾3 + 𝐾13 + 𝐾23 solely for that order. Hence, to better estimate 𝐾𝑘 and 𝐾𝑔𝑘 

values for each period, the order placement total cost for different orders of different 

products combinations for each period are collected, and then the cost effect of ordering 

each product is isolated. For instance, if placing an order for product 1 and 2 at period 3 is 

equal to $100 and placing an order for product 1 at period 3 is equal to $80, then a good 

estimate for 𝐾23 is $20. Second, the parameter ℎ̂𝑔 which represent the cost for holding a 

single unit of product g as an inventory for a single period. This parameter can be estimated 

as the unit opportunity cost for not investing the dollar amount went in purchasing a unit 

product g in the bank. Hence, ℎ̂𝑔 could be estimated by e × 𝐶𝑔, where e is the bank rate of 

return. Third, the parameter 𝜂𝑔 which refer to the cost incurred from losing a single sale of 

product g. This parameter can be estimated as the opportunity cost for missing on potential 

profit, or can estimated as the monetary cost endured when the business owner reputation 

is negatively affected by losing a single sale of product g.   Fourth, the parameter 𝑏𝑔 which 

refer to the price reduction rate with time for product g. This parameter can be estimated 

for each product by analyzing the effect of time on the selling price through previously 

recorded sales. 
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3.3. Model Validation 

 

In operations research, model validation is defined as the process of ensuring that a 

mathematical model is correctly the intended real–life problem. It is an important process 

that is to be undertaken whenever a new mathematical model is introduced. This is mainly 

accomplished by either comparing the new model results with the results of an older valid 

model, or by comparing the model results against real–life data. Success in the latter 

approach indicates an existence of empirical evidence on model’s validity. In the WSIO 

model case, both approaches are not possible. This is due to the lack of previous similar 

models, and to the inaccessibility to real–life data. Hence, instead of the above two 

approaches, the WSIO model was validated through an extensive testing procedure for the 

model's rational behavior. This was accomplished by testing the model against many 

different problems that have optimal solutions, which can be anticipated beforehand. For 

instant, assigning high values for 𝐾𝑔𝑘, and not allowing lost sales would push the model to 

yield a solution where orders are only placed at the first period. Similarly, assigning high 

values for 𝐾𝑘 would push the orders to be more aligned. This approach was repeated many 

times over many parameters, and was successful in unveiling modeling errors that were 

ultimately fixed.  Furthermore, another reason that supports the WSIO model validity is 

the model ease of readability. The model can be easily read and logically understood. For 

instance, the objective function is simply the sum of the product of each dollar–unit 

parameter by its corresponding decision variable, except for the term 𝐼𝑔𝑘 ∙ (ℎ̂𝑔 + 𝑏𝑔) which 

was mathematically proven earlier to be valid. This is similarly true to the rest of the model. 

Hence, the model is assumed valid. 
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3.4. Efforts to Improve the Model's Solution Time 

 

In this section, efforts are made to improve the deterministic model efficiency through 

introducing additional constraints that uphold necessary for solution optimality conditions. 

These constraints generate valid cuts that may reduce the feasible region. Typically, this 

approach is hypothesized to reduce the solution time to reach the optimal solution. The 

incentive to pursue these efforts is due to the heavy reliance of the problem on integer 

variables. 

The rest of this section will be organized as follows: First, the problem's optimality 

conditions are introduced, followed by their equivalent mathematical expressions. Then, 

new mathematical models are proposed that incorporate the conditions. Then, a complete 

study among the models is illustrated to find the best model. 

First set of optimality conditions to explore is concerned with the relationship between 

inventory and lost sales during each period. In optimal solutions, if lost sales happen to 

occur at a certain period, then inventory passed down to next period must be equal to zero, 

and vice versa. In simple terms, for a given k and g, if 𝑢𝑔,𝑘 is greater than zero, then 𝐼𝑔,𝑘 

must be equal to zero, and vice versa. The reason why this is an optimality condition is 

because any situation where both 𝑢𝑔,𝑘 and 𝐼𝑔,𝑘 are greater than zero for a given g and k 

would mean that demand was deliberately not satisfied although inventory did exist. 

Intuitively, this is certainly not an optimal situation, since it promotes deliberate rejection 

of sales in exchange for more holding cost, and more reduction in the product selling price. 
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Following are the optimality conditions. Note that 𝛿̂𝑔𝑘 is a binary decision variable 

dedicated only for Constraints (3.20 – 3.21): 

𝑢𝑔,𝑘 ≤ 𝛿̂𝑔𝑘𝐷𝑔𝑘                                                                                                        ∀  𝑘, 𝑔         (3.20) 

𝐼𝑔,𝑘 ≤ (1 − 𝛿̂𝑔𝑘) ∑ 𝐷𝑔𝑙
𝑀
𝑙=1                                                                                   ∀  𝑘, 𝑔         (3.21) 

Second set of optimality conditions to explore is inspired by the dynamic lot sizing 

algorithms such as the Wagelmans–Hoesel–Kolen (WHK) algorithm. Basically, all 

dynamic lot sizing algorithms are based on three mathematically proven [30] 

optimality conditions:  

A. The order quantity for any period must only be equal to the sum of a number of 

future periods demands. Hence, it cannot be fractions of demands. 

B. If a demand is being satisfied from a different period than its own period, then no 

order can be made at that demand period. 

C. If a demand is satisfied from a certain period call it k, then all previous demands 

starting from period k demand, up to the satisfied demand must all be satisfied from 

the same order made at period k.  

Following are the optimality conditions. Note that 𝑦𝑔𝑘𝑙 is a binary decision variable: 

𝑦𝑔𝑘𝑙 ≥ 𝑦𝑔𝑘,𝑙+1                                          ∀𝑔, 𝑘, 𝑘 ≤ 𝑙 ≤ 𝑀 − 1, 𝑙 − 𝑘 ≥ 𝑙𝑡(𝑔)                    (3.22) 

𝑦𝑔1𝑙 ≥ 𝑦𝑔1,𝑙+1                                          ∀𝑔, 𝑙                                                                    (3.23) 

𝑦𝑔𝑚𝑛 ≤ (1 − 𝑦𝑔𝑘𝑙)    ∀𝑔, 𝑘 ≤ 𝑀 − 1, 𝑘 + 1 ≤ 𝑙 ≤ 𝑀, 𝑘 + 1 ≤ 𝑚 ≤ 𝑙, 𝑚 ≤ 𝑛, 𝑚 + 𝑙𝑡(𝑔) < 𝑙  
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                          (3.24) 

𝑦𝑔𝑘𝑛 ≤ (1 − 𝑦𝑔𝑘𝑙)                           ∀𝑔, 𝑘 > 1, 𝑙 ≥ 𝑙𝑡(𝑔) + 𝑘, 𝑘 ≤ 𝑛 < 𝑘 + 𝑙𝑡(𝑔)                (3.25) 

𝑞𝑔𝑘 = ∑ 𝑦𝑔𝑘𝑙 𝐷𝑔𝑙
𝑀
𝑙=𝑘+𝑙𝑡(𝑑)            ∀𝑔, 𝑘 > 1                                                                    (3.26) 

𝑞𝑔1 = ∑ 𝑦𝑔1𝑙 𝐷𝑔𝑙
𝑀
𝑙=𝑘                      ∀𝑔                                                                                (3.27) 

The above Constraints (3.26) and (3.27) would mean that 𝑞𝑔𝑘 must be exactly equal to a 

certain sum of future demands, which is a correct optimality condition if there was no 

restriction on capacity. In the existence of capacity constraints, 𝑞𝑔𝑘 is bounded by the 

capacity limitations, and hence it resorts to the second-best solution that is a fraction of the 

demand periods 𝑞𝑔𝑘 spans. This is accomplished by replacing (3.26) and (3.27) with the 

following constraints: 

∑ 𝛿𝑔𝑛
𝑛=𝑙−𝑙𝑡(𝑔)
𝑛=𝑘+1 ≤ (𝑙 − 𝑙𝑡(𝑔) − 𝑘)(1 − 𝑦𝑔𝑘𝑙)                                        ∀𝑔, 𝑙 > 𝑘                 (3.28) 

∑ 𝑦𝑔𝑘𝑙
𝑀
𝑙=𝑘+𝑙𝑡(𝑔) ≤ 𝛿𝑔𝑘 ∙ 𝑀                                                                          ∀𝑔, 𝑘                    (3.29) 

Furthermore, another variation that is worth exploring is to replace constraint (3.29) with 

the following constraint: 

𝑦𝑔𝑘𝑙 ≤ 𝛿𝑔𝑘                                                                                      ∀𝑔, 𝑙 ≥ 𝑘 + 𝑙𝑡(𝑔)                (3.30) 

 Now, these optimality conditions will be tested for their intended purpose. This is 

accomplished by first listing the different models that can be assembled by the different 

optimality conditions from constraints (3.20 - 3.30). Table 3 shows the different models 
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(A, B, ... H.) to be tested, and which constraints they have as additional constraints to the 

deterministic model mentioned in section 3.2. 

Table 3  Summary of which Optimality Conditions are Included in which Model 

  CONSTRAINTS 

  3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 

M
O

D
E

L
S

 

A            

B ✔ ✔          

C   ✔ ✔ ✔ ✔ ✔ ✔    

D ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔    

E   ✔ ✔ ✔ ✔ ✔  ✔ ✔  

F ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔ ✔  

G   ✔ ✔ ✔ ✔ ✔  ✔  ✔ 

H ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔ 

 

The seven problem sizes considered for the test are 18×10, 9×10, 6×10, 3×10, 3×20, 3×30, 

and 3×60, where 3×10 means a problem with 3 products and 10 periods. For each problem 

size, 100 random instances were generated. Then, all the proposed models (A – H) were 

executed to solve the 100 random instances for each problem size. Then, the average 

solution time and objective function value is recorded. During this test, the same computer 

was used (Windows 10 pro 64bit operating system, with a processor Interl(R) Core(TM) 

i5-7600 CPU @ 3.5GHz, and an installed memory (RAM) equal to 8.00 GB). Similarly, 

the same CPLEX solver was used for all the problems. Also, all problems were solved in 

series, no parallel execution was allowed. Table 4 shows a summary of the test results. 
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Table 4  Deterministic Model Variants Performance Average Test Results 

  PROBLEM SIZE 

  18×10 9×10 6×10 3×10 3×20 3×30 3×60 

M
O

D
E

L
S

 
A 0.785 0.74 0.74 0.73 0.73 0.80 0.93 

B 0.85 0.75 0.76 0.79 0.74 0.82 0.99 

C 1.56 1.03 0.93 0.85 3.11 26.19 103.00 

D 1.10 0.91 0.89 0.82 1.36 3.52 91.00 

E 0.80 0.75 0.76 0.74 0.87 1.24 18.00 

F 0.89 0.75 0.76 0.72 0.85 1.24 18.00 

G 0.804 0.72 0.72 0.73 0.81 1.23 +100 

H 0.85 0.72 0.72 0.73 0.83 1.28 +100 

 

The data displayed in each cell in Table 4 is the average solving time for the hundred 

instances for a given model and a given problem size. During the test, outliers were not 

dismissed since each model is tested against the same data instance in each size category. 

The result shows model A as the most efficient among its peers in all problem sizes; except 

for the sizes 9×10 and 6×10, where the models G and H appear to be slightly better than model A; 

and size 3×10, where model F appear to be slightly better than the other models. Therefore, the test 

was extended for models A, G, and H to accommodate for size 100×10, and the result was 0.99, 

2.588, and 3.22 seconds, respectively. Hence, despite the anomaly in sizes 9×10, 6×10, and 3×10, 

it is safe to conclude that model A is the most efficient among its peers, and that adding inventory 

optimality conditions as constraints is not beneficial to the solution time. A possible reason is the 

heavy reliance on the optimality conditions new binary variables. This reasoning is supported by 

the contrast in solution times between long planning horizon time problems, and short planning 
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horizon time problems. In long planning horizon time problems, the model is required to introduce 

more integer variables, which is found to have a drastic impact on solution time as seen in Table 4. 

Furthermore, another purpose for this test is to check for the validity of the models. This 

was accomplished by recording all the objective function values for all 7 × 100 problems 

for each model, and then comparing them for discrepancies. The test showed no 

discrepancies in the objective function values for all the models. 
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4. CHAPTER 4  

THE STOCHASTIC MODEL 

 In this chapter, a stochastic mathematical model will be developed for the WSIO problem. 

First, a brief background about stochastic programming is provided. Second, the steps 

toward developing the WSIO stochastic model are shown. Third, the approach used to 

validate the stochastic model is demonstrated. 

 

4.1. Background 

 

Stochastic programming simply refers to mathematical programming that deals with 

parameters that are not known for certain. Although, deterministic programming is more 

popular in the literature, most real-life applications are actually inhabited with uncertainty. 

This uncertainty comes in the form where some (or all) of the problem parameters are not 

known for certain, but their probability distributions are known or at least can be estimated. 

For instance, in most financial models, the return-on-investment data is provided by a set 

of different possibilities with different probabilities (or sometimes referred to as risk 

levels). Stochastic programming was developed for such problems, by finding a solution 

that is feasible for all possible scenarios (or almost all), while optimizing an objective 

function. The objective function consists of two parts: the first part deals with decisions 

made when uncertainty still unrealized, and the second part deals with decisions made 
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when uncertainty is realized. The following mathematical model is the standard form for 

any stochastic programming problem: 

𝑀𝑖𝑛 𝑍 = 𝐶𝑇𝑥 +  ℒ(𝑥) 

Subject to: 

𝐴𝑥 = 𝑏, 

𝑥 ≥ 0, 

𝐴 ∈  𝑅𝑚∙𝑛, 𝑏 ∈  𝑅𝑚, 𝐶 ∈  𝑅𝑛, 𝑥 ∈ 𝑅𝑛 

where ℒ(𝑥) is the second part mentioned earlier, and is equal to the following expression: 

ℒ(𝑥) =  𝐸𝜉[ 𝑄(𝑥, 𝜉(𝜔)) ] 

where 𝑄(𝑥, 𝜉(𝜔)) is a function that maps 𝑥 (the decisions made prior to uncertainty 

realization) and 𝜉(𝜔) (the scenario realized) to the best possible value when all recourse 

decisions are optimized. Hence, 𝑄(𝑥, 𝜉(𝜔)) is itself another optimization program, and is 

expressed by: 

𝑄(𝑥, 𝜉(𝜔)) =  𝑀𝑖𝑛
𝑦

 {𝑞(𝜔)𝑇𝑦 | 𝑊𝑦 = ℎ(𝜔) − 𝑇(𝜔)𝑥, 𝑦 ≥ 0 } 

𝑊 ∈ 𝑅𝑚∙𝑛, 𝑦 ∈ 𝑅𝑛, h ∈ 𝑅𝑚, 𝑇 ∈ 𝑅𝑚 

Note that 𝜉(𝜔) is a vector such that 𝜉𝑇
(𝜔) = (𝑞(𝜔)𝑇, ℎ(𝜔), 𝑇1(𝜔), … … , 𝑇𝑚2

(𝜔)), and 

hence, for each realization of 𝜔, there is a probably different optimal recourse actions 𝑦. 

Also, in certain problems ℒ(𝑥) can be computed in terms of x and added to the original 

problem, which is the case with the newsvendor problem. However, some problems are 
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very complicated, and such approach can become very challenging or even inapplicable. 

Therefore, such problems must be represented by what is called the extensive form, which 

is simply an explicit mathematical programming approach that aims toward optimizing the 

expectation of the objective function over all scenarios, while upholding all the constraints 

for all the scenarios, and it goes as follow: 

𝑀𝑖𝑛 𝑍 = 𝐶𝑇𝑥 + ∑  𝑝 ⋅ 𝑞(𝜔)𝑇𝑦
𝜔

 

Subject to: 

𝐴𝑥 = 𝑏, 

 𝑊𝑦 = ℎ(𝜔) − 𝑇(𝜔)𝑥    ∀ 𝜔,  

𝑥 ≥ 0, 𝑦 ≥ 0, 

In the stochastic WSIO problem, the extensive form is used to represent the problem 

mathematically. This is because when demand at each period for each product in uncertain, 

ℒ(𝑥) does not exist in a simple closed-form function of 𝑥. 

 

4.2. Model Development 

 

Prior to developing the stochastic model for the WSIO problem, it a good practice to depict 

uncertainty by a tree diagram. Eventually, this will serve as the basis for the stochastic 

model. For simplicity, assume there is a single product with three planning periods, and 

four possible demands at each period. The scenario tree for this problem is depicted in 
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Figure 4. Scenario trees are very useful when trying to mathematically model a stochastic 

problem. They provide a graphical representation that allows for observing the different 

possible scenarios, and when decisions are due. Most importantly, they provide a structure 

that can be utilized to translate the problem into a mathematical model similar to the 

deterministic model.   

 

Figure 1 Scenario Tree for a Single Product with 3 Demand Outcomes over 3 Periods 

For instance, in Figure 4, the stages above the tree represent the time at which uncertainty 

is reveled, and sometimes refer to the time at which decisions can be made. Stages for the 

WSIO problem represent the demand periods, where Stage 0 refers to the beginning of a 

planning horizon where no uncertainty has been realized yet, but decisions concerning 

future periods are to be made. Stage i (1 ≤ i ≤ M) refers to a point in time where demand 

for period i has been realized, and consequently decisions concerning future periods are to 

be revised, and recourse (corrective) actions regarding previous decisions are to be made. 

The nodes at each stage represent the possible different incidents at which some uncertainty 
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is realized. For example, at Node 1, it is realized that the demand for the first period is low, 

while the arcs coming out Node 1 represent the different possibilities for the demand in 

Period 2, given the demand in first period was low. Note that Node 0 is called the root node 

where no uncertainty has been realized yet, and all make-now decisions are due. 

Furthermore, the nodes at the end are called the terminal nodes, and their count number is 

equal to the number of all possible scenarios to the problem. Now, to harness the benefits 

of the scenario tree structure and convert it into a mathematical model, let us first introduce 

the following notations (modified from other scenario-tree based stochastic models) [26]: 

▪ 𝑛 ∈ 𝑁 is a node of the scenario tree, N is the set of all nodes, and O is the set of all 

terminating nodes, where |𝑂| is the number of all possible scenarios to the problem. 

▪ T(n) is the time period for node n; for instance, T(1) = 1 and T(12) = 3. 

▪ a(n) is the immediate predecessor for node n, n ≠ 1; for instance, a(6) = 1. 

▪ Ω(𝑛, 𝑡) is the unique ancestor of node n at stage t; for instance, Ω(12,1) = 1. 

▪ 𝐷𝑔
[𝑛]

 is the demand for product g at node n. 

▪ 𝑝[𝑛] is the unconditional probability for node n, where ∑ 𝑝[𝑛]
𝑛∈{𝑛|𝑇(𝑛)=𝑡} = 1. 

▪ 𝛿𝑔
[𝑛]

∈ {0,1} is the order variable for product g at node n. Similarly, 𝜉
[𝑛]

 is defined. 

▪ 𝑞𝑔𝜏
[𝑛]

 is the order quantity for product g made at node n to meet the demand in time 

period 𝜏. 

▪ 𝐼𝑔
[𝑛]

 is the leftover inventory of product g at node n passed for use to immediate 

successor nodes since it was not consumed at n. Also, 𝐼𝑔
[0]

 is the starting inventory, and 

𝐼𝑔
[𝑎(0)]

 = 0. 

▪ 𝑢𝑔
[𝑛]

 is the lost sales of product g at node n. Note that 𝑢𝑔
[0]

 = 0.  
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▪ 𝛾𝑔 cost of getting rid of excess inventory at the end of the planning horizon. 

▪ A = {n| T(n) ∈ set of stages at which warehouse selection is allowed}, also {0} always 

is in A to avoid unavoidable lost sales. 

The objective function derived previously for the deterministic model can be used here. 

This is because while developing the deterministic model, the goal to eventually have a 

stochastic model was considered. This greatly helped into an easy transition toward 

introducing uncertainty in demand. For instance, since the revenue in our deterministic 

model is computed by the expression ∑ ∑ 𝑃𝑔 ∙ (𝐷𝑔𝑘 − 𝑢𝑔𝑘)𝑀
𝑘=1

𝑣
𝑔=1  then using the simple 

expression ∑ ∑ 𝑝[𝑛] ∙ 𝑃𝑔 ∙ (𝐷𝑔
[𝑛]

− 𝑢𝑔
[𝑛]

)𝑛∈𝑁
𝑣
𝑔=1  can accommodate for the demand 

uncertainty. However, if our deterministic model would have used a different expression 

to compute revenue, say ∑ ∑ 𝑃𝑔 ∙ 𝑞𝑔𝑘
𝑀
𝑘=1

𝑣
𝑔=1 , then simply using the expression 

∑ ∑ 𝑝[𝑛] ∙ 𝑃𝑔 ∙ 𝑞𝑔
[𝑛]

𝑛∈𝑁
𝑣
𝑔=1  to accommodate for demand uncertainty would be misleading, 

since not all 𝑞𝑔
[𝑛]

 are necessary sold due to the demand uncertainty. Therefore, the 

stochastic model can be derived from our previously developed deterministic model, 

without the need to make any major alterations except for considering the additional 

expenses caused by getting rid of excess inventory at the end of planning horizon, since it 

is now a possibility. This additional expense can be represented by the expression 

∑ ∑ 𝑝[𝑛] ∙ 𝐼𝑔
[𝑛]

∙ 𝛾𝑔𝑛∈𝑂
𝑣
𝑔=1  . Note that 𝛾𝑔 refers to the per unit cost to get rid of excess unsold 

inventory at the end of the planning horizon, where 𝛾𝑔 could refer to the per unit cost of 

dismantle service. Beside this alteration, any model from the previous chapter can be 

extended toward demand uncertainty using the notations defined earlier in this chapter. 

Following is the WSIO stochastic model extended from model A: 
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𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑝[𝑛] ∙ 𝑃𝑔 ∙ (𝐷𝑔
[𝑛]

− 𝑢𝑔
[𝑛]

)
𝑛∈𝑁

𝑣

𝑔=1

− ∑ ∑ ∑ 𝑝[𝑛] ∙ (

𝑀−𝑘+1

𝑗=1

𝑋𝑖𝑗
[𝑛]

∙ ℎ𝑖𝑗) − ∑ ∑ 𝑝[𝑛] ∙ 𝑢𝑔
[𝑛]

∙ 𝜂𝑔

𝑛∈𝑁

𝑣

𝑔=1

𝑊

𝑖=1𝑛∈𝐴

− ∑ ∑ 𝑝[𝑛] ∙ 𝐼𝑔
[𝑛]

∙ (ℎ̂𝑔 + 𝑏𝑔)
𝑛∈𝑁\𝑂

𝑣

𝑔=1

− ∑ ∑ 𝑝[𝑛] ∙ 𝛿𝑔
[𝑛]

∙ 𝐾𝑔
[𝑛]

𝑛∈𝑁

𝑣

𝑔=1

− ∑ 𝑝[𝑛] ∙ 𝜉
[𝑛]

∙ 𝐾
[𝑛]

𝑛∈𝑁

− ∑ ∑ 𝑝[𝑛] ∙ 𝑞𝑔
[𝑛]

∙ 𝐶𝑔 − ∑ ∑ 𝑝[𝑛] ∙ 𝐼𝑔
[𝑛]

∙ 𝛾𝑔

𝑛∈𝑂

𝑣

𝑔=1𝑛∈𝑁

𝑣

𝑔=1

 

    (4.1) 

Subject to: 

𝑞𝑔
[𝑛]

≤ 𝛿𝑔
[𝑛]

∙ 𝑚𝑎𝑥
𝑖∈Σ(𝑛)

𝐷𝑔
[𝑖]

∙ (𝑀 + 1 − 𝑇(𝑛))                  ∀  𝑛, 𝑔             (4.2) 

𝛿𝑔
[𝑛]

≤ 𝜉
[𝑛]

                                                                        ∀  𝑛, 𝑔                     (4.3) 

𝐼𝑔
[0]

= 𝑞𝑔
[0]

+ 𝐼𝑔
[𝑎(0)]

                                                          ∀ 𝑔        (4.4) 

𝐼𝑔
[𝑛]

= 𝐼𝑔
[𝑎(𝑛)]

− 𝐷𝑔
[𝑛]

+ 𝑢𝑔
[𝑛]

                                     ∀ 𝑔, 𝑛 ∈ {𝑖|1 ≤ 𝑇(𝑖) ≤ 1 + 𝑙𝑡(𝑔)}    (4.5) 

𝐼𝑔
[𝑛]

= 𝑞𝑔
[Ω(𝑛,𝑇(𝑛)−𝑙𝑡(𝑔))]

+ 𝐼𝑔
[𝑎(𝑛)]

− 𝐷𝑔
[𝑛]

+ 𝑢𝑔
[𝑛]

       ∀ 𝑔, 𝑛 ∈ {𝑖|𝑇(𝑖) > 1 + 𝑙𝑡(𝑔)}       (4.6) 

∑ ∑ ∑ 𝑟𝑖𝑋𝑖𝑗
[𝑘]𝑊

𝑖=1
𝑀
𝑗=𝑇(𝑛)−𝑇(𝑘)+1𝑘∈𝐴∩⋃ Ω(𝑛,𝑡)𝑡≤𝑇(𝑛)

≥  ∑ 𝑅𝑔
𝑣
𝑔=1  (𝐼𝑔

[𝑛]
+ 𝐷𝑔

[𝑛]
− 𝑢𝑔

[𝑛]
)  ∀𝑛   (4.7) 

 𝛿𝑔
[𝑛]

∈ {0,1}, 𝜉
[𝑛]

∈ {0,1}, 𝐼𝑔
[𝑛]

≥ 0 , 𝑞𝑔
[𝑛]

≥ 0 , 𝑋𝑖𝑗
[𝑛]

∈  ℤ+, 𝑢𝑔
[𝑛]

≥ 0, 
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Note that Z here refers to the expected total profit given our decisions about 𝑞𝑔
[𝑛]

, and 𝑋𝑖𝑗
[𝑛]

. 

The constraints here hold the same logic from the deterministic model except that their 

number is multiplied to accommodate for each possible scenario in accordance to the 

scenario tree. All the stochastic model constraints and objective function are similar to the 

deterministic model but were extended to accommodate for all the possible scenarios. For 

instance, Constraint (4.5) 𝐼𝑔
[𝑛]

= 𝐼𝑔
[𝑎(𝑛)]

− 𝐷𝑔
[𝑛]

+ 𝑢𝑔
[𝑛]

 is Constraint (3.15) extended to 

accommodate for the uncertainty in products demands. 𝐼𝑔
[𝑛]

 is the inventory at node n, 𝐷𝑔
[𝑛]

 

is the demand for product g at node n, 𝑢𝑔
[𝑛]

 is the lost sales for product g at node n, 𝐼𝑔
[𝑎(𝑛)]

 

is the inventory at the parent node (immediate ancestor of node n) for node n. The rest of 

the model was extended similarly to accommodate for demand uncertainty. Note that 

solving this model will yield a solution that is 100% feasible against all scenarios. 

 

4.3. Model Validation 

 

The stochastic model presented in Section 4.2 was verified through comparative testing 

against the deterministic model. Basically, the stochastic model was fed with different 

discrete probability distributions for several demand parameters, 𝐷𝑔𝑘 , in a way that tricks 

the model to think there are multiple scenarios, when in reality there is just a single 

scenario. For example, assume that the product demand for the first period is uncertain 

with a discrete probability distribution that have outcomes with values equal to each other 

(see Table 5 for example), Thus, there is actually a single possible outcome, but the model 

will assume that there are multiple outcomes and will solve accordingly. Now, if the 
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stochastic model is valid, it is supposed to yield the same solution as the deterministic 

model's solution. This test was repeated 100 times using different numbers (problems 

parameters, and probability distribution functions), and in all of them, the stochastic model 

solution was identical to the deterministic model solution. This is a strong indicator that 

the stochastic model is valid. 

Table 5  Example for a PDF Used During the Validation Process 

P( 𝑛 ) 𝐷1
[𝑛]

 

0.1 𝐷1
[1]

= 100 

0.3 𝐷1
[2]

= 100 

0.6 𝐷1
[3]

= 100 
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5. CHAPTER 5  

SOLUTION METHODS 

In this chapter, the methods used to solve the deterministic and stochastic WSIO models 

are demonstrated. First, the exact methods used to solve the WISO problem are discussed 

and explained, with a main focus on the stochastic model. Second, a novel heuristic to 

solve the deterministic WSIO problem is proposed, which is intended for problems that are 

too large for the common Mixed Integer Programming (MIP) algorithms. 

 

5.1. Exact Methods 

 

The term Exact Methods refers to the family of well-established algorithms that guarantee 

convergence to the optimal solution. In this section, the exact methods used to solve the 

WISO problem are demonstrated, both for the deterministic model, and the stochastic 

model. First, the exact method and software code used for the deterministic model are 

outlined. Second, the exact method and software code used for the stochastic model are 

demonstrated and discussed.  

For the deterministic model, CPLEX solver was used as an exact method. This is because 

the deterministic model is a Mixed Integer Linear Programming (MILP) problem. Hence, 

investments in developing and programming exact methods that reaches optimality were 

not considered. Since there exist mathematically well-established algorithms that solves 
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MILP problems such as CPLEX solver. However, developing a heuristic method was 

considered in this work, since the WSIO problem relays heavily on integer decision 

variables, and like any MILP problem, if its model size exceeds a certain threshold, it can 

make any MIP algorithm inefficient, or simply impractical depending on the machine 

solving the problem. The heuristic is discussed in the next section. 

For the stochastic model, a different approach and code was used to generate and solve the 

model as oppose to the deterministic model. In stochastic programming, a persisting issue 

facing researchers and has been an active research area for so long is how to manage the 

enormous size of the stochastic model, and the ramifications such size can have on the 

solution efficiency. This explosion in size (compared to the problem deterministic model) 

is mostly anticipated, since solving a stochastic model means seeking optimization over all 

possible scenarios. Whereas, solving a deterministic model means finding the optimal 

solution only for a single scenario. This issue does not only affect efficiency (the time to 

reach the optimal solution). but could also cause most optimization software packages to 

crash or reject solving the model since the number of variables, and constraints can become 

intractable. Therefore, this issue started to attract many researchers to develop remedies to 

make stochastic problems more manageable. The most famous remedy is known as Slyke 

and Wets’s L-shaped method [31], which primarily exploit the explicit-form dual structure, 

while using either Wolfe decomposition (inner linearization) [32] of the dual or a Benders 

decomposition (outer linearization) [33] of the primal. In a nutshell, the method starts with 

an unconstrained variable referring to the recourse function in the objective function, and 

the first-stage objective function and constraints. Next, a solution is generated and checked 

for feasibility over all scenarios, where if it is feasible, the solution proceeds to next step, 
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otherwise a feasibility cut is added to the original model and previous steps are repeated. 

Then, using the first stage feasible solution, all second-stage scenarios are solved separately 

for the optimal recourse action, and an optimality cut is generated using the simplex 

multipliers of each scenario. This process is repeated until a certain criterion is reached (for 

the explicit details, please refer to [34]). The L-shaped method is mostly described as a 

divide-and-conquer method where the single large size stochastic model is replaced with 

many more small size models, trading a problem enormous size for more iterations. Since 

then, many more extensions and improvements were added to the L-shaped method making 

it a vital tool in solving any scenario-tree based stochastic problem. However, since the L-

shaped method's first introduction, computing power has grown exponentially promoting 

many engineers, and researchers to avoid the complications associated with the L-shaped 

method and simply generate the explicit form using any modeling software and later 

solving it using any appropriate solver. Fortunately, the modeling software package GAMS 

(General Algebraic Modeling System) has recently released a new tool known as EMP 

(Extended Mathematical Programming) [34], which can combine the former option 

efficiency, and the latter option convince. EMP primarily allows for reformulating any 

given model into an equivalent model where mathematical programming is more 

established. For instance, EMP can generate the KKT conditions for a given NLP model, 

which allows for reformulating the model to an MCP (Mixed Complementarity Problems) 

model. In our case, this powerful tool is capable of generating the deterministic equivalent 

model for any stochastic model efficiently, and then solving it using any appropriate 

algorithm. To achieve this, GAMS require three main code segments:  
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(1) The core model, which is the stochastic model presented as a deterministic model 

by replacing the stochastic variables with their expectations. 

(2) EMP annotations, where the random variables and their probability distributions 

are defined, and the constraints and decision variables are allocated to their 

corresponding stages. 

(3) A directory, which records the decision variables' values for each scenario, and 

allows the software to run more efficiently by storing the model structure and 

prevent recreating the model each time a scenario is optimized. 

The core model is written in GAMS language. The EMP annotations will always start with 

the stochastic variables' (parameters) definitions, followed by a specific allocation of which 

variables (both decision variables, and stochastic) and constraints belong to which stage. 

Finally, the dictionary, which will contain a set that maps each scenario decision–variable 

to its corresponding variable in the original deterministic model. For explicit sample codes, 

and further read about the matter please refer to reference [34]. Furthermore, usually SP 

models in GAMS require two solvers, EMP tend to use either the solver DE or JAMS to 

generate the deterministic equivalent model, then a secondary sub-solver is used to solve 

the generated model (e.g. lingo or Cplex). In addition to the simplicity offered by EMP, 

this tool also allows for other optimization goals beside optimizing the expected objective 

function. For instance, it allows for CVaR optimization (conditional value at risk), worst-

case scenario optimization and chance constraints. Hence, the EMP tool was chosen to 

solve the WSIO problem, due to its convince and efficiency. Note that a separate GAMS 

code beside the code used for solving, was used first to generate the EMP annotations 

(since there were 10 stages, and many variables and constraints, writing the annotations 
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manually is impractical). Once the annotations are generated, they are added manually to 

the GAMS code used to solve the stochastic WSIO problem. 

 

5.2. Heuristic Methods 

 

Heuristic methods refer to a family of algorithms that seek to find solutions among all 

possible solutions, but the optimal solution is not guaranteed to be among them. These 

algorithms usually find near optimal solutions, and they find them fast and easy compared 

to exact algorithms. Since the WSIO problem relies heavily on integer variables, and exact 

methods can become inefficient for large intractable problems, there is certainly a need to 

develop a heuristic for large problems, where optimality is traded for a faster solution time. 

In this section, a heuristic is developed for the deterministic WSIO problem.  

In abstract, the heuristic developed in this section consist of five major phases: (1) 

Generating and selecting the best feasible solutions to the WSIO problem, while assuming 

capacity restriction is not a constraint, (2) Computing the capacity requirements for each 

period for each solution, (3) Selecting heuristically the  least expensive warehouses to 

satisfy the capacity requirements for each solution, (4) Reducing the number of leased 

warehouses for each solution, and consequently reducing the ordered quantities, (5) Phase 

four is repeated until no improvement is observed in the objective function (total profit). 

Finally, the solution with the best total profit is selected. The heuristic is tentatively named 

The Reduced Capacity Heuristic and is abstractly depicted in Figure 2. 
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Figure 2 Flowchart for The Reduced Capacity Heuristic 

In details, the explicit heuristic algorithm is as follows:  

 

Step 1. Generate feasible solutions to the WSIO problem, while assuming capacity is not a 

constraint. This is accomplished by various means, such as solving the uncapacitated 

deterministic model H using the genetics algorithm, or through applying the silver-

meal heuristic, or any other similar easy to apply heuristics. Then, let each solution 

be referred to by 𝑆𝑐
𝑛 where c = 1, 2 ... and n = 1. 

 

Step 2. Compute the total capacity needed at each period for each solution, 𝑇𝐶𝑘
(𝑐)

. This is 

accomplished by computing 𝑇𝐶𝑘
(𝑐)

= ∑ 𝑅𝑔
𝑣
𝑔=1  (𝐼𝑔𝑘 + 𝐷𝑔𝑘 − 𝑢𝑔𝑘) for each period k 

for each solution 𝑆𝑐
𝑛. 
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Step 3. Select the warehouses, 𝑋𝑖𝑗𝐴
(𝑐)

, for each solution 𝑆𝑐
𝑛 as follows: 

a. Compute each period total capacity requirements, 𝑇𝐶𝑘
(𝑐)

, and once they are 

computed, all 𝑇𝐶𝑘
(𝑐)

 values are ordered by their period number k in a single row grid 

(start with the smallest k value in the left and ascend to the largest k value in the right) 

,call it the capacity requirements grid. To illustrate, the following is a capacity 

requirement grid: 

9 8 7 6 5 4 3 2 1 Period 

4500 4000 3000 5000 4000 6000 8000 9000 3000 
Capacity 

Needed 

b. Now, remove from the capacity requirements grid the minimum number of periods 

(columns) to maintain a steadily declining 𝑇𝐶𝑘
(𝑐)

, call it the reduced capacity 

requirements grid. To illustrate, the grid would be as follows for the capacity 

requirement grid: 

9 6 4 3 2 Period 

4500 5000 6000 8000 9000 
Capacity 

Needed 

Figure 3 shows the difference between planning for the actual capacity requirements 

grid, and the reduced capacity requirements grid. Clearly, selecting which 

warehouses to choose is easier for the reduced grid as oppose to the actual grid, since 

the reduced grid has a downward stairs shape, and satisfying the reduced grid satisfies 

the actual capacity grid. 
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Figure 3 Difference between Actual and Reduced Grid Capacities 

c. Now, starting from the end period in the reduce capacity requirements grid, find the 

least expensive warehousing plan that satisfy its 𝑇𝐶𝑘
(𝑐)

. This is accomplished by first 

dividing the last 𝑇𝐶𝑘
(𝑐)

 over all 𝑟𝑖, and rounding up to the nearest integer, this will 

give the number of warehouses need of 𝑋𝑖𝑗𝐴
(𝑐)

 to satisfy the last 𝑇𝐶𝑘
(𝑐)

with a warehouse 

capacity 𝑟𝑖, call it 𝑊𝑁𝑖 = ⌈𝑇𝐶𝑘
(𝑐)

/𝑟𝑖⌉ Then, compute the leasing cost for the different 

possible plans to satisfy that 𝑇𝐶𝑘
(𝑐)

 from all the periods, and pick the least expensive. 

The leasing cost for each plan is computed by multiplying 𝑊𝑁𝑖 by its corresponding 

ℎ𝑖𝑗. To illustrate, assume that the last 𝑇𝐶𝑘
(𝑐)

= 4500 (from the previous grid), and 

assume A={1,8}. Then, the different possible plans and their prices would be: Plan 

(1) 𝑋𝑖91
(𝑐)

=  𝑊𝑁𝑖 ×  ℎ𝑖9 , compute this for all i and pick the least expensive, this will 

be the option to satisfy the last 𝑇𝐶𝑘
(𝑐)

 from warehouses leased at the first period, 
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where plan (2) 𝑋𝑖71
(𝑐)

=  𝑊𝑁𝑖 × ℎ𝑖8 and 𝑋𝑖28
(𝑐)

=  𝑊𝑁𝑖 ×  ℎ𝑖2, pick the least expensive 

i for both, and add their costs together. Then, compare Plan (1) with Plan (2), and 

pick the least expensive, add it to its corresponding 𝑆𝑐
𝑛. 

d. Deduct the newly provided capacity value from all 𝑇𝐶𝑘
(𝑐)

in the reduced capacity 

requirements grid. Now, the last period will have 𝑇𝐶𝑘
(𝑐)

= 0, hence, remove it and 

update the reduced grid. To illustrate, the updated reduced grid for the earlier 

example will be as follows, assuming the newly provided capacity equal to 𝑇𝐶9
(𝑐)

 = 

4500: 

6 4 3 2 Period 

500 1500 3500 5500 
Capacity 

Needed 

Furthermore, the updated plot for Figure 3 is in Figure 4. 

e. Repeat the process starting from point (c), until all 𝑇𝐶𝑘
(𝑐)

= 0 for all k. 

 

Step 4. Compute the total profit for each 𝑆𝑐
𝑛, and assign them in the variables 𝑍𝑐

𝑛, where n 

= 1. If a certain solution  𝑆𝑐
𝑛 has a total profit 𝑍𝑐

𝑛 that meet the termination criteria 

(minimum targeted profit), then terminate the algorithm and 𝑆𝑐
𝑛 is the solution. 

Otherwise procced to the next step to improve new feasible solutions 𝑆𝑐
𝑛 for all c. 
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Figure 4 Change between Actual and Reduced Grid Capacities 

 

Step 5. Assign a priority index (PIg ) to each product using the following formula: 

      PIg =
(𝑃𝑔−𝐶𝑔+𝜂𝑔)∙𝑑𝑔

𝐾𝑔+(ℎ𝑔+𝑏𝑔)∙𝑑̅𝑔+𝑅𝑔∙𝑑𝑔
                                     (5.1) 

The lower PIg , the better is to cause lost sales in product g ordering plan. This formula 

uses a heuristic sense by having the reasons to keep a product order at the denominator, 

and the reasons to eliminate the order at the numerator. 

 

Step 6. Let n = n +1. Identify the product with the lowest PIg , pick the order 𝑄𝑔𝑘
(𝑐)

 in its 

ordering plan that spans the most demand periods. Cause lost sales 𝑢𝑔𝑘
(𝑐)

 is the last 

period spanned by 𝑄𝑔𝑘
(𝑐)

 by an amount that is enough to reduce one from the most 

expensive 𝑋𝑖𝑗𝐴
(𝑐)

 that covers 𝑄𝑔𝑘
(𝑐)

, while maintaining solution feasibility. If the reduced 
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𝑄𝑔𝑘
(𝑐)

 satisfies the two points: (I) 𝑄𝑔𝑘 ≤
𝑘𝑔+𝐷⃛𝑔𝑘 ∙ 𝜂𝑔

𝑃𝑔−𝐶𝑔+𝜂𝑔
 and (II) happens only to exists for 

a single demand period, eliminate that order, hence 𝑢𝑔𝑘
(𝑐)

= 𝑄𝑔𝑘
(𝑐)

, this is because 

satisfying these two conditions means that 𝑄𝑔𝑘
(𝑐)

 is so small that 𝑄𝑔𝑘
(𝑐)

 existence does 

not justify the ordering cost 𝑘𝑔. Note that 𝐷⃛𝑔𝑘 is not the demand from the original 

problem, but it is the satisfied demand by the reduced 𝑄𝑔𝑘
(𝑐)

, 𝐷⃛𝑔𝑘 = 𝐷𝑔𝑘 − 𝑢𝑔𝑘
(𝑐)

. 

 

Step 7. Compute the new 𝑍𝑐
𝑛, if there is improvement in 𝑍𝑐

𝑛 over 𝑍𝑐
𝑛−1, update 𝑆𝑐

𝑛 and go 

to step 6, otherwise let 𝑆𝑐
𝑛 = 𝑆𝑐

𝑛−1 and repeat step 6 by choosing a different 𝑄𝑔𝑘
(𝑐)

. If 

all 𝑄𝑔𝑘
(𝑐)

 are exhausted, terminate the algorithm and choose the best 𝑆𝑐
𝑛 with the 

highest 𝑍𝑐
𝑛 as the best solution yielded. 

 

This heuristic is guaranteed to converge to a set of solutions and terminate, since step 1 to 

step 5 are non-iterative, and the rest of the steps are governed by α%; where an 

improvement in total profit means continuous reduction in 𝑋𝑖𝑗𝐴
(𝑐)

, which will lead to zero 

capacity (which means that the cost of leasing warehouses is too overwhelming), and no 

improvement in total profit will lead α% to reach zero. This heuristic seeks to generate 

feasible solutions, and then improve on them through an iterative process of capacity 

reduction and order plans adjustments. Note that the heuristic algorithm was written with 

an intent to improve all starting solutions, 𝑆𝑐
1, through a parallel process. However, a series 

improving process is also possible by looping the heuristic over c for each starting solution 

𝑆𝑐
1. A numerical example on this heuristic demonstrated above is presented in the next 

chapter. 
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5.3. Presolving Techniques for the WSIO Problem 

 

In this section, a list of pre–solving techniques are suggested to improve the solution time 

for the WSIO problem, mainly by either reducing the problem size or setting upper limits 

on the decision variables. These techniques can be used in conjunction with many exiting 

pre–solving techniques for MIP problems [35] 

Dominated Solutions: One very effective pre–solving technique is to lookup for 

dominated solutions and remove them before solving the model. The term dominated 

solutions refer to the set of solutions that is guaranteed not to be among the optimal 

solutions. In the WSIO problem, dominated solutions are identified through the parameter 

ℎ𝑖𝑗, which refers to the cost of leasing a warehouse with a capacity of 𝑟𝑖 for j periods. Now, 

if there was to exist a warehouse, say 𝑖1, and another warehouse, say 𝑖2, and 𝑟𝑖2 = 𝑛 ∙ 𝑟𝑖1, 

and n is a positive integer, and ℎ𝑖2,𝑗 > 𝑛 ∙ ℎ𝑖1,𝑗 for a given j. Then, 𝑋𝑖2,𝑗𝑘 for that given j is 

assigned a zero or removed from the model before solving. This is because any solution 

with a non–zero 𝑋𝑖2,𝑗𝑘 is dominated by the same solution but with 𝑋𝑖1,𝑗𝑘 set to fulfill the 

capacity secured by 𝑋𝑖2,𝑗𝑘, and 𝑋𝑖2,𝑗𝑘 is set to zero. This is a very effective technique that 

is guaranteed to maintain optimality and reduces solution time. (since it will reduce the 

number of integer variables, and hence reduce the model size 

Upper Bounds: Furthermore, another very effective pre–solving technique is to set an 

upper bound on each 𝑋𝑖𝑗𝑘. This is accomplished by assuming that the optimal solution is a 

solution that will depend mainly on the variable 𝑋𝑖𝑗𝑘 given the indices i, j, and k to supply 

for the capacity needed starting from period k up to period k + j. Hence, the upper bound 
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for each 𝑋𝑖𝑗𝑘 would be equal to ⌈ 𝑚𝑎𝑥[ 𝑇𝐶𝑘 , …  , 𝑇𝐶𝑘+𝑗] / 𝑟𝑖  ⌉. Following constraint depict 

a mechanism to identify upper bounds: 

𝑋𝑖𝑗𝑘 ≤ ⌈ max [ 𝑇𝐶𝑘 , …  , 𝑇𝐶𝑘+𝑗] / 𝑟𝑖 ⌉          ∀ 𝑖, 𝑗, 𝑘          (5.2)  

 

Correlated Demand: Also, a very effective pre–solving technique that concern the 

stochastic model is to reduce the number of stochastic variables by identifying a correlation 

between the demands of the different products. For instance, assume there are three 

products with demands for 10 periods, and each demand could be high or low at each period 

for each product. The total number of possible scenarios would be  810. Now, assume a 

correlation is found between the products' demands, such that there is a dominant product 

where if its demand is high, the others have low demands, and if its low, the others have 

high demands. Now, the stochastic variable 𝐷𝑔
[𝑖]

 can be replaced by a regular variable 𝐷𝑔 , 

and the uncertainty is represented by a binary variable that once realized, a value is assigned 

to the dominant 𝐷𝑔 , and consequently the demands for the other products. This is will 

reduce the number of scenarios from 810 to 210 (as illustrated in Figure 5), hence, a 

considerable amount of solution time is saved. In brief, there is a reasonable incentive to 

lookup for possible demand correlation between the products prior to solving, which will 

considerably reduce the number of stochastic variables, the scenario–tree size, and 

eventually reduce solution time. 
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Figure 5 Depiction of The Scenario Trees when Demand Correlation is Considered 
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6. CHAPTER 6  

EXPERIMENTAL RESULTS 

In this chapter, experimental results for the work presented in the previous chapters are 

provided in the form of numerical examples. First, a numerical example on the 

deterministic WSIO problem is presented. Second, the same numerical example but with 

demand uncertainty is solved, and the result is comparatively analyzed and discussed. Next, 

the same numerical example is re–solved but using the heuristic presented in Chapter 4. 

This is followed by a comparative analysis in efficiency and effectiveness between the 

heuristic's performance and the exact methods' performance. 

 

6.1. Numerical Example I 

 

In this section, a numerical example is presented on the deterministic model derived 

earlier in a previous chapter. Following are the problem parameters: 

Table 6 and Table 7 shows the products’ demand grid and warehouse leasing prices. 

 𝑃1 = $60/unit,  𝑏1 = $10/unit, 𝐶1 = $10/unit, ℎ̂1 = $0.01/(unit∙period),  𝑅1 = 1.0 SU. 

 𝑃2 = $80/unit,  𝑏2 = $15/unit, 𝐶2 = $20/unit, ℎ̂2 = $0.02/(unit∙period),  𝑅1 = 3.0 SU. 

 𝑃3 = $100/unit,  𝑏3 = $20/unit, 𝐶3 = $30/unit, ℎ̂2 = $0.03/(unit∙period),  𝑅3 = 5.0 SU. 

𝜂1 = $10/unit, 𝜂2 = $15/unit, 𝜂3 = $20/unit, 𝑙𝑡1 = 1 period, 𝑙𝑡2 = 2 period, 𝑙𝑡3 = 3 period. 

 𝐾0 = $2500/order,  𝐾1 = $5000/order, 𝐾2 = $6000/order, 𝐾3 = $8000 /order, A = {1, 4, 8}. 
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Table  6  Demand Requirements Assumed for the Test Problems 

Demand Periods  

10 9 8 7 6 5 4 3 2 1  

200 190 300 400 800 1000 150 400 300 200 1 

Products 10 120 50 300 400 700 4000 1000 800 300 2 

100 0 200 700 900 10 100 1000 1000 1000 3 

6.  

Table 7  Available Warehousing Options Assumed for the Test Problems 

Leasing Periods, and their cost  

10 9 8 7 6 5 4 3 2 1  

550 540 520 490 450 400 340 270 190 100 1(20) 

Warehouse 

Type 

1450 1350 1240 1120 990 850 700 540 370 190 2(40) 

2350 2160 1960 1750 1530 1300 1060 810 550 280 3(60) 

3150 2880 2600 2310 2010 1700 1380 1050 710 360 4(80) 

4050 3690 3320 2940 2550 2150 1740 1320 890 450 5(100) 

 

The problem solution using CPLEX as the solver is as follows:  

The maximum possible total profit is $469,076.852 and the optimal solution has the 

following products’ ordering, and warehouse leasing schemes:  

Table 8  Solution Products' Ordering Plan for Numerical Example I 

Ordering Plan  

10 9 8 7 6 5 4 3 2 1  

  390  700 800 1000  550 500 1 

Products      480 400 700 4000 2100 2 

     300 700 900  2588 3 

Above is the solution’s products ordering plan, and below is the warehouses leasing plan 

𝑋1,6,1 = 43 , 𝑋1,7,1 = 165 , 𝑋1,8,1 = 53 , 𝑋1,9,1 = 27 , 𝑋1,10,1 = 37 , 𝑋4,1,4 = 67,   

𝑋4,2,1 = 88 , 𝑋5,1,1 = 61 , 𝑋5,1,4 = 3 , 𝑋5,2,1 = 1   
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Figure 5 shows the solution’s total capacity needed at each period in black solid line, and 

the total capacity provided by the solution’s set of leased warehouses in red dashed line. 

Also, the yellow boxes refer to the points in time at which leasing warehouses is permitted. 

It can be inferred from the plot that the solution is feasible, since the storage capacity 

provided at each period is higher or equal to the storage capacity needed. Also, it can be 

inferred that the solution is rational, since the gap between the storage capacity need and 

provided is kept at minimum. 

 

Figure 6 Storage Capacity Needed, and Capacity Provided at Each Period 

The result for this deterministic numerical example will be used to analyze the stochastic 

model in the next section. 
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6.2. Numerical Example II 

 

In this section, a numerical example is presented on the stochastic model derived earlier in 

a previous chapter. The problem used in this section is the same one used by the previous 

deterministic numerical example, except for the assumption of demand uncertainty, which 

is reflected by the following probability mass function for products’ demands at each 

period k, and the additional parameter 𝛾𝑔 = 0.01 : 

Table 9  Probability Mass Function (PMF) For Products' Demands at Each Period k 

k 𝐷1
I 𝐷2

I  𝐷3
I  P(k, 𝐷𝑔

I ) 𝐷1
II 𝐷2

II 𝐷3
II P(k, 𝐷𝑔

II) 

1 200 300 1000 0.5 200 300 1000 0.5 

2 330 700 1000 0.9 30 1700 1000 0.1 

3 700 100 1000 0.55 100 2100 1000 0.45 

4 157 1500 100 0.65 137 8550 100 0.35 

5 2000 500 10 0.20 750 750 10 0.80 

6 2100 10 900 0.35 100 610 900 0.65 

7 1100 90 700 0.30 100 390 700 0.70 

8 330 30 200 0.80 180 130 200 0.20 

9 250 60 0 0.70 50 260 0 0.30 

10 500 4 100 0.25 100 12 100 0.75 

 

Notice that the expression P(k, 𝐷𝑔
I ) × 𝐷𝑔

I  + P(k, 𝐷𝑔
II) × 𝐷𝑔

II is equal 𝐷𝑔𝑘 from the 

deterministic numerical example for any g and k. Hence, the demand grid in the 

deterministic numerical example is basically the expectation demand grid, not the actual 

demand. This choice of numbers is to study the difference between the practice of replacing 

demand uncertainty with their expectation, and the practice of representing demand 

uncertainty through the extensive stochastic form, at least for this numerical example.  

The problem was solved using EMP-CPLEX as the solver, and the solution is as follows: 

The maximum possible expected total profit is $218,523.23. The solution was found to be 
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the best solution to behave against 512 possible demand scenarios given their probability 

of occurring and is feasible for all 512 scenarios. The solution is represented as 512 

products’ ordering and warehouse leasing schemes, which each differ in their reaction to 

the demand realized at each period. For instance, all planning schemes will have the 

following part in their solution, which is made at time zero, and when no products demands 

have been realized yet: 𝑞1,1 = 530, 𝑞2,1 = 1100, 𝑞3,1 = 2922, 𝑋1,7,1 = 163, 𝑋1,8,1 = 47, 

𝑋1,9,1 = 14, 𝑋1,10,1 = 65, 𝑋4,2,1 = 82, 𝑋5,1,1 = 61. However, as the products’ demands 

start to unveil at each period, the complete solution starts to form up at each period as a 

reflex to the realized demand. The complete solution is in Appendix A. To illustrate, 

following is a comparison for the highest possible total profit scenario (the best-case 

scenario), and the least possible total profit scenario (the worst-case scenario):  

▪ The best-case scenario (S18, Probability = 0.005, profit = $350,059.457):   

Table 10 Best Case-Scenario's Products Demand Grid (Numerical Example II) 

Demand Periods  

10 9 8 7 6 5 4 3 2 1  

100 250 330 1100 100 2000 157 700 330 200 1 

Products 12 60 30 90 610 500 1500 100 700 300 2 

100 0 200 700 900 10 100 1000 1000 1000 3 

 

Table 11 Best Case-Scenario's Products Ordering Plan (Numerical Example II) 

Ordering Plan  

10 9 8 7 6 5 4 3 2 1  

   680 470 410 1910  857 530 1 

Products      187  669 1674 1100 2 

     300 700 900  2922 3 
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The warehouses leasing scheme:  

𝑋1,7,1 = 163, 𝑋1,8,1 = 47, 𝑋1,9,1 = 14, 𝑋1,10,1 = 65, 𝑋4,2,1 = 82, 𝑋5,1,1 = 61, 𝑋4,3,4 = 2 

 

Figure 7 Plot for the Best-Case Scenario Stochastic Solution 

▪ The worst-case scenario (S5121, Probability = 2.58 × 10−4, profit = $14,351.94):   

Table  12 Worst Case-Scenario's Products Demand Grid (Numerical Example II) 

Demand Periods  

10 9 8 7 6 5 4 3 2 1  

100 50 180 100 100 750 137 100 30 200 1 

Products 12 260 130 390 610 750 8550 2100 1700 300 2 

100 0 200 700 900 10 100 1000 1000 1000 3 

 
Table  13 Worst Case-Scenario's Products Ordering Plan (Numerical Example II) 

Ordering Plan  

10 9 8 7 6 5 4 3 2 1  

      1330  557 530 1 

Products      393  666 1674 1100 2 

     300 700 900  2922 3 

                                                 
1 S512 refers to scenario number 512 in the solution report 
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The warehouses leasing scheme:  

𝑋1,7,1 = 163, 𝑋1,8,1 = 47, 𝑋1,9,1 = 14, 𝑋1,10,1 = 65, 𝑋4,2,1 = 82, 𝑋5,1,1 = 61 

 

Figure 8 Plot for the Worst-Case Scenario Stochastic Solution 

Notice the difference between the two above cases, both started with the same ordering and 

warehouse selection plan, but as the products’ demands being realized, the plan starts to 

change. In the best-case scenario, the ordering and warehouse selection plan better 

succeeds in matching the products’ anticipated demands as oppose to the worst-case 

scenario, where the plan fails to match the anticipated demands, resulting in high level of 

lost sales. This is attributed to the high probability the best-case scenario has in comparison 

to the probability of the worst-case scenario. Hence, the model was swayed to give more 

emphasis in optimization on scenario 18 (the best-case scenario) and other similar 

scenarios with high probability of occurring, on the account of scenarios with low 

probability of occurring (e.g. scenario 512, the worst-case scenario). Furthermore, notice 
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the difference between the deterministic numerical example solution, and the stochastic 

numerical example solution. Although, they share the same problem parameters, and the 

fact that the deterministic problem’s products demands are actually the expectation of the 

stochastic problem’s products uncertain demands, they have completely two different 

solutions and expected profit. This is because attempting to remedy demand uncertainty 

through demand expectation is a misleading approach. It simply makes the optimization 

process exclusive only for a single scenario that is the expectation, while neglecting the 

totality of all the 512 possible scenarios. Actually, feeding the deterministic model solution 

to the stochastic model as fixed parameters resulted in the solution being infeasible to all 

512 scenarios due to the high variation in demand uncertainty. The infeasibility is caused 

by the violation of the products’ capacity requirement constraints by all 512 scenarios. This 

is because in some periods, actual demand can be lower than the expectation causing more 

inventory to be carried out to future periods, while the capacity of the leased warehouses 

cannot accommodate for the additional inventory, since they are tailored for the capacity 

requirements of the expected demand. To illustrate, observe Figure 8, where the 

deterministic solution was used in a stochastic environment, and assuming scenario 18 (the 

best case scenario) happened to take place. Notice the infeasibility highlighted in red, 

which is described by the capacity–needed line exceeding the capacity–provided line for 

around six periods. Similarly, all 512 scenarios will have the same issue with the 

deterministic model solution. This observation is very important because it reveals a very 

effective pre–solution procedure that could reduce the solution time considerably. The 

procedure suggested is to eliminate before solving any solution with 𝑋𝑖𝑗𝑘 that cannot 

provide storage capacity to the maximum possible demand in Table 9. The solutions 
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removed are all infeasible solutions, since feasibility is mainly affected by the capacity 

provided at each period. This procedure will surely improve the solution time, since the 

number of integer variables will drop. Now, since deterministic solution is 100% infeasible 

as shown earlier, and computing a real value for the decision–making tool VSS (value of 

stochastic solution, mentioned in previous chapters) is impossible. However, if infeasibility 

is avoided by penalizing the additional inventory by a negligible amount, say $0.001 per 

unit per time period, then a rough estimate of the VSS tool can be computed. 

 

Figure 9 Infeasibility of the Deterministic Solution used in the Stochastic Problem 

First, the mathematical expression for VSS is written as follows:  

VSS =  𝑍𝑠 − 𝑍𝐷              (6.1) 
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where, 𝑍𝑠 is the stochastic model's optimal objective function value, and 𝑍𝑑 is the 

stochastic model's objective function value, given the solution is the deterministic 

expectation model's optimal solution. 𝑍𝑠 is already computed, and it is equal to 

$218,523.23, while 𝑍𝑑 is computed by adding a dummy positive variable to the right–hand 

side of the capacity constraint, and then is used to penalize the objective function by $0.001 

per infeasible unit, and 𝑍𝑑 becomes equal to – $32939.12. Hence, the monetary value for 

investing in solving the stochastic model is roughly VSS =  𝑍𝑠 − 𝑍𝐷 =  $251,462.35. The 

second key measurement indicator is EVPI, which simply attempts to give a monetary 

value for collecting perfect information that reduce demand uncertainty toward complete 

certainty. This is accomplished by evaluating the following mathematical expression for 

EVPI:  

EVPI = ∑ 𝑃(𝑛) ∙ 𝑍𝑛
𝑑

𝑛 − 𝑍𝑠            (6.2) 

where 𝑍𝑛
𝑑 is the optimal solution objective function for scenario n given that all demand 

uncertainty is realized at Stage 1. This is simply accomplished by introducing a dummy 

stage as the first stage with dummy variables, while changing all the previous EMP 

annotations stage numbers to two. This will tell the model that all the information will be 

reveled and all the non–dummy decisions will have to be made together after the dummy 

stage. 𝑍𝑠 is already computed, and it is equal to $218,523.23, while ∑ 𝑃(𝑛) ∙ 𝑍𝑛
𝑑

𝑛  is equal 

to $454,310.92. Hence, EVPI = ∑ 𝑃(𝑛) ∙ 𝑍𝑛
𝑑

𝑛 − 𝑍𝑠 = $235,787.7, which is the monetary 

value for obtaining perfect information at the beginning of the planning horizon. This 

information is very valuable when deciding whether to invest in seeking perfect 

information or settle with the existing information.  
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 VSS and EVPI are key measures that are consistently reintroduced or redeveloped 

mathematically in the literature whenever a new stochastic problem is introduced. The 

above calculations are a guide toward recomputing these two key measurements to any 

stochastic WSIO problem. 

Now, inspired by both the VSS and EVPI decision–making tool, we introduce in this work 

another new decision–making tool called the Expected Value for Reduce Lead Time 

(EVRLT), which is a very relevant decision–making tool to the WSIO problem. EVRLT 

seeks to measure the monetary value for investing in reducing the lead time for a certain 

product, which will result in improving the reaction time toward demand realization, and 

ultimately better solutions with higher total profit. Following is the mathematical 

expression for EVRLT:  

EVRLT( 𝑔, 𝑢 )  = 𝑍𝑔,𝑢
𝑠 − 𝑍𝑠             (6.3) 

where 𝑍𝑔,𝑢
𝑠  is the stochastic model's optimal objective function value, when the lead time 

for product g is reduced by u. Both Tables 14 and 15 show the summary computations of 

𝑍𝑔,𝑢
𝑠 , and EVRLT on the stochastic numerical example presented earlier in this section. 

Table 14 Zg,u Values for g, and u For Numerical Example II 

  Lead Time Reduction (u) 

 
𝑍𝑔,𝑢

𝑠  0 1 2 3 

Product (g) 

1 $218,523.23 $254,000.97 NA NA 

2 $218,523.23 $276,997.28 
$458,2  

65.46 
NA 

3 $218,523.23 $218,527.00 $296,771.41 $330,550.81 
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Table 15 EVRLT (g, u) Values for g, and u for Numerical Example II 

  Lead Time Reduction (u) 

 EVRLT 0 1 2 3 

Product (g) 

1 $0.00 $35,477.74 NA NA 

2 $0.00 $58,474.05 $239,742.23 NA 

3 $0.00 $3.77 $78,248.18 $112,027.58 

 

Table 15 provides very useful information for the decision–maker concerning which 

product should be invested in reducing its lead time, and how much is expected in return 

on that investment. For instance, if the investment amount of reducing the lead time for 

any product by one period is the same, then clearly from Table 15, Product 2 should be 

made top priority, while Product 3 should be avoided entirely. Furthermore, although Table 

15 shows the EVRLT values for each product separately, EVRLT can be extended to study 

the effect of reducing the lead time for multiple products simultaneously.  

 

6.3. Numerical Example III 

 

In this section, a numerical example is presented on the heuristic algorithm developed in 

the preceding chapter. The problem used in this section is similar to the one used in the 

previously discussed deterministic numerical example. This is to allow for a comparative 

analysis between the heuristic solution, and the actual optimal solution.  

Now, the first step in the reduced capacity heuristic is to generate many feasible solutions 

to the uncapacitated WSIO problem, preferably variant model E (without the capacity 
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constraint). This is because model E contain all the optimality conditions as constraints. 

The generated solutions from variant model E have better quality compared to solutions 

generated from other variant models. Now, assume one of the possible generated solutions 

is the following solution, call it 𝑆1
1: 

Ordering Periods  

10 9 8 7 6 5 4 3 2 1  

  390  700 800 1000  550 500 1 

Products      480 400 700 4000 2100 2 

     300 700 900  3000 3 

 

Although, the heuristic algorithm uses multiple starting solutions (seeds), and then 

improves them toward feasibility and optimality, and ultimately chooses the best among 

them, the above solution is the only solution that will be used during this numerical 

example (c = 1). This is because the main goal for this numerical example is to show how 

the heuristic algorithm will be applied step by step toward each single starting solution. 

Hence, the steps will be shown are for 𝑆1
1, the above single starting solution only.  

Now, the step that comes after generating the starting solutions is to compute their capacity 

requirements grids. Following is the grid for the above starting solution, 𝑆1
1: 

1 2 3 4 5 6 7 8 9 10 

21800 15700 8550 12150 3100 6500 5640 2340 1280 730 

 

Next step is to compute the reduced capacity requirements grid, which goes as follow: 

1 2 4 6 7 8 9 10 

21800 15700 12150 6500 5640 2340 1280 730 
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Next step is to start with the end 𝑇𝐶𝑘
(1)

, and compare between all the possible different 

warehousing plans to satisfy this capacity requirement from all the periods. Then, pick the 

least expensive and add it to the solution. Following is all the possible warehousing plans 

to satisfy 𝑇𝐶10
(1)

= 730 : 

Plan (1): 𝑋1,10,1
(1)

= 37 with a cost equal to $20,075. 

Plan (2): 𝑋4,3,1
(1)

 = 10 and 𝑋1,7,4
(1)

= 37 with a cost equal to $27,466. 

Plan (3): 𝑋1,7,1
(1)

= 37 and 𝑋4,3,8
(1)

= 37 with a cost equal to $27,466. 

Plan (4): 𝑋4,3,1
(1)

= 10, 𝑋1,4,4
(1)

= 37 and 𝑋4,3,8
(1)

= 37 with a cost equal to $31,572. 

The plans are generated as follows: observe plan (1), the last index in 𝑋1,10,1
(1)

 refers to the 

first leasing period, the second index refers to the lease duration required to reach the 

targeted period, and the first index refers to the warehouse size, and it was set to be equal 

to one, because 𝑊𝑁1 × ℎ1,10 was the least expensive compared to the other 𝑊𝑁𝑖 × ℎ𝑖,10, 

and finally the 37 is actually 𝑊𝑁1. For plan (2), the same process is repeated but with a 

different chosen path that is leasing at Period 1, and then at Period 4. Similarly, the same 

process with a similar variation choosing the path was done to compute Plan (3) and (4). 

Now, notice that Plan (1) is the least expensive plan, hence, add the term 𝑋1,10,1
(1)

= 37 to 

the solution 𝑆1
1. Now, the newly provided capacity by 𝑋1,10,1

(1)
= 37 is subtracted from all 

the capacity requirements 𝑇𝐶𝑘
(1)

 in the reduced grid, and 𝑇𝐶10
(1)

 is taken out. Following is 

the updated grid: 

1 2 4 6 7 8 9 

21060 14960 11410 5760 4900 1600 540 
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Similarly, we compute the different warehousing plans to satisfy the last period total 

capacity requirements, 𝑇𝐶9
(1)

= 540. The plans are as follow:  

Plan (1)  𝑋1,9,1
(1)

= 27, with a cost equal to $14,580.  

Plan (2)  𝑋4,3,1
(1)

= 7 and 𝑋1,6,4
(1)

= 27, with a cost equal to $19,238. 

Plan (3) 𝑋1,7,1
(1)

= 27 and 𝑋4,2,8
(1)

= 7, with a cost equal to $18,023. 

Plan (4) 𝑋4,3,1
(1)

= 7   and 𝑋1,4,4
(1)

= 27, and 𝑋4,2,8
(1)

= 7 , with a cost equal to $21,061. 

 

Since plan (1) is the least expensive, the term 𝑋1,9,1
(1)

= 27 is added to the solution 𝑆1
1. Also, 

the newly provided capacity by 𝑋1,9,1
(1)

= 27  is subtracted from all the capacity 

requirements 𝑇𝐶𝑘
(1)

 in the reduced grid, and 𝑇𝐶9
(1)

 is taken out. This process is repeated 

until all 𝑇𝐶𝑘
(1)

= 0. Following are the remaining solution details.  

The updated reduced capacity requirements grid is as follows: 

1 2 4 6 7 8 

20520 14420 10870 5220 4360 1060 

 

The possible plans to satisfy 𝑇𝐶8
(1)

= 1060:  

Plan (1) 𝑋1,8,1
(1)

= 53, $27,560. ( ✔ ) 

Plan (2) 𝑋4,3,1
(1)

= 14 and 𝑋1,5,4
(1)

= 53, $34,393. 

Plan (3) 𝑋1,7,1
(1)

= 53 and 𝑋4,1,8
(1)

= 14, $30,740. 

Plan (4) 𝑋4,3,1
(1)

= 14 and 𝑋1,4,4
(1)

= 53 and 𝑋4,1,8
(1)

= 14, $36,703. 
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The updated reduced capacity requirements grid is as follows: 

1 2 4 6 7 

19460 13360 9810 4160 3300 

 

The possible plans to satisfy 𝑇𝐶7
(1)

= 3300:  

Plan (1) 𝑋1,7,1
(1)

= 165, $80,850. ( ✔ ) 

Plan (2) 𝑋4,3,1
(1)

= 42   and 𝑋1,4,4
(1)

= 165, $99,413. 

The updated reduced capacity requirements grid is as follows: 

1 2 4 6 

16160 10060 6510 860 

 

The possible plans to satisfy 𝑇𝐶6
(1)

= 860:  

Plan (1) 𝑋1,6,1
(1)

= 43, $19,350. ( ✔ ) 

Plan (2) 𝑋4,3,1
(1)

= 11   and 𝑋4,3,4
(1)

= 11, $22,576. 

The updated reduced capacity requirements grid is as follows: 

1 2 4 

15300 9200 5650 

 

The possible plans to satisfy 𝑇𝐶4
(1)

= 5650:  
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Plan (1) 𝑋1,4,1
(1)

= 283, $96,050. ( ✔ ) 

Plan (2) 𝑋4,3,1
(1)

= 71   and 𝑋4,1,4
(1)

= 71, $99,581. 

The updated reduced capacity requirements grid is as follows: 

1 2 

9650 3550 

 

The possible plans to satisfy 𝑇𝐶2
(1)

= 3550:  

Plan (1) 𝑋4,2,1
(1)

= 45, $31,506. ( ✔ ) 

The updated reduced capacity requirements grid is as follows: 

1 

6100 

 

The possible plans to satisfy 𝑇𝐶1
(1)

= 6100:  

Plan (1) 𝑋4,1,1
(1)

= 77, $27,450. ( ✔ ) 

Eventually, the solution 𝑆1
1 becomes: 

𝑋1,10,1
(1)

= 37, 𝑋1,9,1
(1)

= 27, 𝑋1,8,1
(1)

= 53,  𝑋1,7,1
(1)

= 165,  𝑋1,6,1
(1)

= 43,  𝑋1,4,1
(1)

= 283,  

 𝑋4,2,1
(1)

= 45,  𝑋4,1,1
(1)

= 77, 

Table  16 Heuristic Solution's Products Ordering Plan for Numerical Example III 

Ordering Periods  

10 9 8 7 6 5 4 3 2 1  

  390  700 800 1000  550 500 1 

Products      480 400 700 4000 2100 2 

     300 700 900  3000 3 
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Now, the total profit for 𝑆1
1 is 𝑍1

1 = $450,052.1. Notice that 𝑍1
1 is relatively very close to 

Z* (the optimal from the deterministic numerical example) with an absolute gap difference 

equal to 𝑍∗− 𝑍1
1 = $19,024.75, and a relative gap equal to 𝑍∗− 𝑍1

1/𝑍∗ = 4%. This is an 

indication that this hurestic has good potentials to yield more suboptimal solutions, once 

given good uncapacitated starting solutions. In the algorithm, it is suggested that 𝑆1
1 can be 

checked for further possible improvements in its 𝑍1
1 by causing lost sales in the least 

important product at the product order that spans the most demand periods. This is 

accomplished by first updating n = 1 to n = 2, and computing the new 𝑆1
2 and 𝑍1

2 as follows: 

[1] First, compute the priority index for each product:  

PI1
1 = 2 , PI2

1 = 3, PI3
1 = 1. 

[2] Then, Identify the order that spans the most demand periods for the least important 

product, that becomes Q31
(1)

= 3000. 

Demand Periods  

10 9 8 7 6 5 4 3 2 1  

  390  700 800 1000  550 500 1 

Products      480 400 700 4000 2100 2 

     300 700 900  3000 3 

730 1280 2340 5640 6500 3100 12150 8550 15700 21800 
Capacity 

Needed 

740 1280 2340 5640 6500 6500 12160 12160 15760 21920 
Available 

Capacity 

 

[3] Then, cause lost sales in Q31
(1)

 so it becomes Q31
(1)

= 2984 which save enough space 

to eliminate a single warehouse from 𝑋421
(1)

= 45, so it becomes 𝑋421
(1)

= 44. The 

changes in Q31
(1)

= 2984, and 𝑋421
(1)

= 44 makes the new solution 𝑆1
2. 
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[4] Then, compute the total profit for 𝑆1
2 that is 𝑍1

2 = $449,963.06. Hence, this 

direction negatively affects the total profit. Hence, we return to the solution 𝑆1
1 and 

try a different similar change to a different order, and then to a different product. 

[5] All products orders were checked is accordance to the steps shown above, no 

resulting 𝑆1
𝑛 provided a better total profit than 𝑆1

1's total profit. 
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CHAPTER 7  

CONCLUSIONS 

In this thesis, the literature concerning the topic "capacitated inventory optimization and 

warehousing" was extensively reviewed, and consequently a gap was successfully 

identified. The gap revealed that although the literature is rich with published papers about 

capacitated inventory optimization, the bulk of these papers are actually extensions to few 

well–known inventory optimization problems. Hence, the variety of the original models 

these papers are based upon is limited, there is a need to introduce new models, which can 

accommodate for other real–life inventory problems. The objective of this thesis is to 

introduce a new capacitated inventory optimization and warehousing problem. The 

problem introduced is named as the Warehouses Selection and Inventory Optimization 

(WSIO) problem. The WSIO problem is unique in the way capacity is viewed as a resource, 

along with the assumptions made for this problem. In the WSIO problem, business owners 

are seeking to find the optimal ordering plan for multiple products, along with the optimal 

warehousing plan. It is assumed that a variety of warehousing options exist, which mainly 

differ in storage space, and in their reward system for longer contracts. The thesis has 

successfully introduced the problem, developed both a deterministic and a stochastic model 

for the problem, suggested exact methods to solve both models, developed and tested 

possible modeling techniques to improve the exact methods' efficiency, developed 

heuristic methods to solve the models, and finally drew important insights about the WSIO 

problem through performing experiments and analyzing the results. The motivation behind 
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this accomplishment is twofold: First, the anticipated need for this work in the not so far 

future in highly–populated land–scarce regions like Honk–Kong and Tokyo. Second, the 

lack of past research on this area as reveled by the literature review. Furthermore, this work 

is considered novel in not only introducing the WSIO problem, but in the other 

accomplishments that accompanied this introduction. This involved developing a variety 

of novel mathematical formulations for several existing optimality conditions of the 

inventory problem dynamic model. Then, developing an elaborate test to examine whether 

adding these newly fashioned mathematical formulations would improve solution time or 

not, which was initially hypothesized that they would improve solution time, but instead 

they were proven to worsen solution time. Furthermore, this work is novel in developing a 

GAMS code for the stochastic model using the newly added EMP tool, which was first 

introduced in late 2017. Also, the work is novel in developing a heuristic approach to the 

WSIO problem that was shown to have good potentials but require further testing, along 

with a new decision tool called the Expected Value for Reduced Lead Time (EVRLT). In 

addition to the previous accomplishments, this work provides experimental data that can 

be citied, and used for other researches, such as the data concerning the solution 

performance of the optimality conditions' models, and the data concerning the difference 

between using the deterministic model solution and the stochastic model solution. Most 

importantly, this work might be able to shed the light on an uncharted or forgotten territory 

in the capacitated inventory optimization research area. 

The future work for this thesis is to develop a software program for the reduced capacity 

heuristic and have it tested for performance against the exact MIP solution methods. In 
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addition, looking up for other real–life application that can utilize the work presented by 

this thesis, not necessarily inventory and warehousing applications. 
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Appendix A  

Numerical Example II Solution Report 

 

The solution report consists of over than 190 pages. Hence, it was enclosed on a CD 

accompanying this document. 
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