2,578 research outputs found

    Logical Concurrency Control from Sequential Proofs

    Full text link
    We are interested in identifying and enforcing the isolation requirements of a concurrent program, i.e., concurrency control that ensures that the program meets its specification. The thesis of this paper is that this can be done systematically starting from a sequential proof, i.e., a proof of correctness of the program in the absence of concurrent interleavings. We illustrate our thesis by presenting a solution to the problem of making a sequential library thread-safe for concurrent clients. We consider a sequential library annotated with assertions along with a proof that these assertions hold in a sequential execution. We show how we can use the proof to derive concurrency control that ensures that any execution of the library methods, when invoked by concurrent clients, satisfies the same assertions. We also present an extension to guarantee that the library methods are linearizable or atomic

    Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs

    Full text link
    Previous work has shown that there are two major complexity barriers in the synthesis of fault-tolerant distributed programs: (1) generation of fault-span, the set of states reachable in the presence of faults, and (2) resolving deadlock states, from where the program has no outgoing transitions. Of these, the former closely resembles with model checking and, hence, techniques for efficient verification are directly applicable to it. Hence, we focus on expediting the latter with the use of multi-core technology. We present two approaches for parallelization by considering different design choices. The first approach is based on the computation of equivalence classes of program transitions (called group computation) that are needed due to the issue of distribution (i.e., inability of processes to atomically read and write all program variables). We show that in most cases the speedup of this approach is close to the ideal speedup and in some cases it is superlinear. The second approach uses traditional technique of partitioning deadlock states among multiple threads. However, our experiments show that the speedup for this approach is small. Consequently, our analysis demonstrates that a simple approach of parallelizing the group computation is likely to be the effective method for using multi-core computing in the context of deadlock resolution

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    Abstract Learning Frameworks for Synthesis

    Full text link
    We develop abstract learning frameworks (ALFs) for synthesis that embody the principles of CEGIS (counter-example based inductive synthesis) strategies that have become widely applicable in recent years. Our framework defines a general abstract framework of iterative learning, based on a hypothesis space that captures the synthesized objects, a sample space that forms the space on which induction is performed, and a concept space that abstractly defines the semantics of the learning process. We show that a variety of synthesis algorithms in current literature can be embedded in this general framework. While studying these embeddings, we also generalize some of the synthesis problems these instances are of, resulting in new ways of looking at synthesis problems using learning. We also investigate convergence issues for the general framework, and exhibit three recipes for convergence in finite time. The first two recipes generalize current techniques for convergence used by existing synthesis engines. The third technique is a more involved technique of which we know of no existing instantiation, and we instantiate it to concrete synthesis problems

    Formal Derivation of Concurrent Garbage Collectors

    Get PDF
    Concurrent garbage collectors are notoriously difficult to implement correctly. Previous approaches to the issue of producing correct collectors have mainly been based on posit-and-prove verification or on the application of domain-specific templates and transformations. We show how to derive the upper reaches of a family of concurrent garbage collectors by refinement from a formal specification, emphasizing the application of domain-independent design theories and transformations. A key contribution is an extension to the classical lattice-theoretic fixpoint theorems to account for the dynamics of concurrent mutation and collection.Comment: 38 pages, 21 figures. The short version of this paper appeared in the Proceedings of MPC 201

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    Specification of Synchronizing Processes

    Get PDF
    The formalism of temporal logic has been suggested to be an appropriate tool for expressing the semantics of concurrent programs. This paper is concerned with the application of temporal logic to the specification of factors affecting the synchronization of concurrent processes. Towards this end, we first introduce a model for synchronization and axiomatize its behavior. SYSL, a very high-level language for specifying synchronization properties, is then described. It is designed using the primitives of temporal logic and features constructs to express properties that affect synchronization in a fairly natural and modular fashion. Since the statements in the language have intuitive interpretations, specifications are humanly readable. In addition, since they possess appropriate formal semantics, unambiguous specifications result

    Parameterized Synthesis

    Full text link
    We study the synthesis problem for distributed architectures with a parametric number of finite-state components. Parameterized specifications arise naturally in a synthesis setting, but thus far it was unclear how to detect realizability and how to perform synthesis in a parameterized setting. Using a classical result from verification, we show that for a class of specifications in indexed LTL\X, parameterized synthesis in token ring networks is equivalent to distributed synthesis in a network consisting of a few copies of a single process. Adapting a well-known result from distributed synthesis, we show that the latter problem is undecidable. We describe a semi-decision procedure for the parameterized synthesis problem in token rings, based on bounded synthesis. We extend the approach to parameterized synthesis in token-passing networks with arbitrary topologies, and show applicability on a simple case study. Finally, we sketch a general framework for parameterized synthesis based on cutoffs and other parameterized verification techniques.Comment: Extended version of TACAS 2012 paper, 29 page
    • …
    corecore