
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

11-1-1983

Specification of Synchronizing Processes
Krithivasan Ramamritham
University of Massachusetts - Amherst

Robert M. Keller
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Ramamritham, K., and R.M. Keller. "Specification of synchronizing processes." IEEE Transactions on Software Engineering Vol. SE-9,
Issue 6 (November 1983): 722-733. DOI: 10.1109/TSE.1983.235435

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

[9] D. 1. Good et al., "Principles of proving concurrent programs in
GYPSY," Univ. Texas, Austin, Tech. Rep. ICSCA-CMP-15, Jan.
1979.

[10] 1. Greif, "A language for formal problem specification," Commun.
Ass. Comput. Mach., vol. 20, pp. 931-935, Dec. 1979.

[11] B. Hailpern and S. Owicki, "Verifying network protocols using
temporal logic," in Proc. Trends and Appl. 1980: Comput. Net-
work Protocols, IEEE Comput. Soc., May 1980.

[12] C. Hewitt and H. J. Baker, "Laws for communicating parallel
processes,"IFIP, pp. 987-992, 1977.

[13] C. A. R. Hoare, "A model for communicating sequential pro-
cesses," Comput. Lab., Oxford Univ., Dec. 1978.

[14] L. Lamport, "Time clocks, and the ordering of events in a dis-
tributed system," Commun. Ass. Comput. Mach., vol. 21, pp.
558-565, July 1978'.

[15] J. Misra and K. M. Chandy, "Proofs of networks of processes,"
IEEE Trans. Software Eng., vol. SE-7, pp.417-526, July 1981.

[16] S. Owicki and L. Lamport, "Proving liveness properties of con-
current programs," ACM Trans. Programming Lang. Syst., vol. 4,
pp. 455-495, July 1982.

[17] J. L. Peterson, "Petri nets," ACM Comput. Surveys, vol. 9, pp.
223-253, Sept. 1977.

[181 A. Pnueli, "The temporal logic of programs," in Proc. 18th IEEE
Symp. Foundation of Comput. Sci., Province, Nov. 1977, pp.
46-57.

[19] L. Robinson and D. Roubine, "SPECIAL: A SPECIfication and
Assertion Language," Stanford Res. Inst., Tech. Rep. CSL-46,
1977.

[20] R. L. Schwartz, and P. M. Melliar-Smith, "Temporal logic specifi-
cation of distributed systems," in Proc. 2nd Int. Conf. Distributed
Comput. Syst., Paris, France, Apr. 1981, pp. 446 -454.

[21] N. V. Stenning, "A data transfer protocol," Comput. Networks,
vol. 1, pp. 99-110, Sept. 1976.

[22] C. Sunshine, "Formal methods for communication protocol speci-
fication and verification," Rand Corp., Working Draft WD-335-
ARPA/NBS, Sept. 1979.

[23] R. T. Yeh and P. Zave, "Specifying software requirements," Proc.
IEEE, Oct. 1980.

[241 P. Zave and R. T. Yeh, "Executable requirements for enbedded
systems," in Proc. 5th Int. Conf. Software Eng., San Diego, CA,
1981.

[25] C. C. Zhoa and C. A. R. Hoare, "Partial correctness of communi-
cating sequential processes," in Proc. 2nd Int. Conf. Distributed
Comput. Syst., Paris, France, Apr. 1981, pp. 1-12.

Bo-Shoe Chen .(S'79-M'82) received the B.S.
degree in electrical engineering from the National
Taiwan University, Taipei, Taiwan, in 1975,
and the M.S. and the Ph.D. degrees in computer
science from the University of Maryland,
College Park, in 1980 and 1982, respectively.
He has worked on the design, development,

modeling, and performance measurements of
Bell system packet-switched networks since he
joined Bell Laboratories,Naperville, IL in 1982.
His current interests include software tools,

distributed computing, and integrated service of digital networks. He
was an instructor in the University College, University of Maryland,
Hyttsville, from 1980 to 1981; and worked on Chinese input/output
processors for a database system in Taiwan Automation Corporation
before he came to the U.S. in 1978.

Dr. Chen is a member of the IEEE Computer Society.

Raymond T. Yeh (S'64-M'72-SM'78-F'83) is
currently a Professor of Computer Science at
the University of Maryland, College Park. He
is also sharing the CDC Endowed Chair of
Distinguished Professor in Computer Science
at the University of Minnesota this year. He
has been Department Chairman both at the
University of Texas at Austin, and at Mary-
land. His current research interests include

* ~~~programming environment, distributed soft-
ware, and software maintenance methodology.

He was founding Editor-in-Chief of IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING.

Specification of Synchronizing Processes
KRITHIVASAN RAMAMRITHAM AND ROBERT M. KELLER

Abstract-The formalism of temporal logic has been suggested to be
an appropriate tool for expressing the semantics of concurrent programs.
This paper is concerned with the application of temporal logic to the
specification of factors affecting the synchronization of concurrent
processes. Towards this end, we first introduce a model for synchroniza-
tion and axiomatize its behavior. SYSL, a very high-level language for
specifying synchronization properties, is then described. It is designed
using the primitives of temporal logic and features constructs to express
properties that affect synchronization in a fairly natural and modular

Manuscript received June 15, 1981; revised March 15, 1983. This
work was supported by the National Science Foundation under Grants
MCS-77-09369 and MCS-82-02586. A preliminary version of this paper
appeared as [27].
K. Ramamritham is with the Department of Computer and Informa-

tion Science, University of Massachusetts, Amherst, MA 01003.
R. M. Keller is with the Department of Computer Science, University

of Utah, Salt Lake City, UT 84112.

fashion. Since the statements in the language have intuitive interpreta-
tions, specifications are humanly readable. In addition, since they
possess appropriate formal semantics, unambiguous specifications
result.

Index Terrns-Abstract model, concurrent processing, specification
language, synchronization, temporal logic.

I. INTRODUCTION

PROCESSES executing in parallel interact with each other
reither by sending messages or by modifying states of
shared resources. When message passing is the means of inter-
action, one process sends a message to another and synchroniza-
tion of the receiving process occurs through the message [15].
On the other hand, processes that communicate by sharing
resources do so by executing specific operations which change

0098-5589/83/1100-0722$01.00 i 1983 IEEE

722

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

RAMAMRITHAM AND KELLER: SPECIFICATION OF SYNCHRONIZING PROCESSES

the state of the resource. Execution of these operations is
synchronized by some appropriate mechanism, e.g., monitors
[14]. As a result, the processes that share the resource are
also synchronized. In this paper we address issues related to
the shared resource paradigm of interaction.
To maintain the integrity of a shared resource, an answer

to the question, "who is to access the resource, when, and
how?," is essential. A protection mechanism is responsible
for who accesses the resource and a typing mechanism for
how the resource is accessed. On the other hand, the synchro-
nizer is responsible for when the access actually takes place.
This paper concerns only the synchronization of accesses to a
shared resource. In particular, we are interested in

1) modeling the behavior of a synchronizer of concurrent
processes and
2) designing a language to specify the synchronization of

concurrent processes accessing a shared resource.

The requisite formalism is provided by temporal logic, its
chief advantage being that it facilitates a unified approach to
specification and verification of both safety and liveness
properties of software systems [18], [24] .

Our view of synchronization is based on the assumption of
one synchronizer per shared resource. All accesses to a shared
resource are controlled by the synchronizer for that resource.
In this model an access operation goes through four phases.
They are the request phase, the service phase, the active phase,
and the termination phase. The model takes into accout the
temporal ordering of the phases of operations when users
make concurrent requests. In Section II, the behavior of a
synchronizer that conforms to such a model is axiomatized by
means of temporal logic assertions.
Section III introduces SYnchronizer Specification Language

(SYSL) which includes constructs designed to express various
aspects of synchronization control, such as constraints govern-
ing access to shared resources, priority of various types of
access, mutual exclusion of access, invariance of the resource
state, absence of starvation, and other relevant properties.
Constructs in SYSL have intuitive interpretations and due to
their temporal logic basis possess unambiguous semantics.
Thus, our approach to specification of synchronization is at a
level reasonably close to a human conceptual model. One of
the motivations behind the design of SYSL is the automatic
synthesis of synchronization code [28]. Thus, language fea-
tures in SYSL are motivated by the need to provide pro-
grammers an easy to use specification language and to facilitate
the synthesis of synchronization code. Evaluation of the lan-
guage features precedes concluding remarks on our approach
to the specification of synchronization.

II. THE SEMANTICS OF SYNCHRONIZERS
This section formalizes the notion of a synchronizer. We

introduce an operational model for a synchronizer and define
the terms associated with the domain of synchronization.
This sets the stage for the development of the specification
language in the next section.

A. Temporal Logic
Pnueli first applied temporal logic for reasoning about safety

and liveness properties of concurrent programs [24], [25].

Following along those lines, concurrency is modeled by a
nondeterministic interleaving of computations of individual
processes. Each computation changes the system state which
consists of values assigned to program variables and the instruc-
tion pointer of each of the processes. Using temporal logic
operators, one can specify and reason about the properties of
the sequence of states that results from the execution of the
concurrent processes.
Since temporal logic is an extension of predicate calculus, a

temporal logic statement can involve the usual logical operators
V (or), A (and), -1 (not), and => (implication) besides the
temporal operators El, O, and UNTIL. The operator o is pro-
nounced "always." oP states that P is true now and will remain
true throughout the future. The operator O is pronounced
"eventually" and is the dual of C in that

0P IFF 2u7P.

Thus, OP if P is true now or will be true sometime in the
future. A requirement such as "every request will be serviced"
can be specified as

o {"request for service exists" => O "request serviced"}.

The operator UNTIL has the following interpretation:

(P UNTIL Q) IFF P will be true as long as Q is false.

(The truth value of P once Q becomes true is not indicated
by UNTIL.) The UNTIL operator is typically used for expressing
temporal orderings. For example, the fact that a service can
not be provided until there is a request for that service can be
stated as

- ("request serviced") UNTIL ("request for service exists")
The semanitcs of C and < are identical to those of the corre-
sponding linear time logic operators of [18] whereas UNTIL iS

related to Lamport's binary o operator (read AS LONG AS) in
the following manner:

(P UNTIL Q)(Q ° P)

Also, our definition of UNTIL does not assert that eventually
Q becomes true and hence differs from the definition of
UNTIL given in [25].
Certain operators are derived from these primitives, and are

introduced to enhance the readability of specifications in SYSL.
They are

P ONLYAFTER Q

P AFTER1 Q

(- P UNTIL Q),
P can become true only after Q does.

(-1P UNTIL Q)A OP
i.e., P will become true after Q.

where P and Q are arbitrary assertions.

B. The Concept ofa Synchronizer
By a synchronizer, we mean a sequential process which guar-

antees disciplined access to a shared resource. Each distinct
type of access on the resource is called an operation class. All
instances of a particular type are said to be operations in that
operation class. Any access to the resource is through the

1 In fact, given our definition of UNTIL, P AFTER Q asserts that P
will become true the same time as or after Q.

723

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

execution of one of the operations. Furthermore, each of the
operations can execute only when the synchronizer permits it
to do so.
Constraints essential for maintaining the integrity of a

resource are built into a synchronizer for it. Thus, it is useful
to perceive the synchronizer as a process guarding a shared
resource from improper use by the concurrent processes. In
short, a shared resource comprises of the following:

* the resource that is shared,
* the operations on the resource, and
* the synchronizer of the operations.

Hence a shared resource can be considered to be an abstract
data type [11] with additional synchronization restrictions.
Execution of an operation goes through four distinct phases
in sequence: Request: Service, Active, and Termination. The
request phase for an operation begins after a synchronizer
recognizes that a user program requests execution of that
operation. The request phase ends when the synchronizer's
internal data structures reflect the fact that a request is waiting
for service. The time at which the synchronizer permits
execution of a requested operation depends on the state of
the shared resource, priority associated with the request,
invariant properties of the resource, etc. These determine the
necessary conditions for executing an operation. The service
phase begins when and if the necessary conditions hold and the
synchronizer decides to permit the execution of the operation.
Thus, by requiring that the necessary conditions must hold
when the operation is serviced, the synchronizer guarantees
that the specified properties are maintained. At the end of
the service phase, the synchronizer's internal data structures
reflect the fact that permission has been granted for the execu-
tion of the operation. Thus the term "service" is equivalent
to "granting of permission." The active phase begins after the
service phase ends. It is in this phase that the resource access
defined by the operation takes place. The active phase ends
when access is complete. The termination phase begins after
the active phase ends. At the end of the termination phase the
synchronizer's internal data structures reflect the fact that the
operation has completed execution.
The synchronizer has been described as a sequential process.

This implies that there is a single locus of control within the
synchronizer. From an operational viewpoint, all actions of
the synchronizer are serialized. Thus, since one of the main
actions of the synchronizer is to service requests, only one
request can be serviced at a time. However, at any given time,
two or more operations may have satisfied their necessary
conditions, in which case, the synchronizer chooses one among
them to be serviced next. This choice may be made to obey
a fairness specification.

C. A Formal Model for a Synchronizer
To precisely define the model, we introduce some notation.

plop
will be used to refer to phase p of operation op. If process pr
executes phase p of operation op,

at (plop) IFF control of pr is at the beginning of p.

in (plop) IFF control of pr is within p.

after (plop) IFF control of pr is at the end of p.

reust

sevce

atie

req(op)
service(op)

-f wait-active(op)

H-
active(op)

T--- wait-term(op)

term |
term(op)

Fig. 1. Sequence of phases of an operation.

These three predicates are mutually exclusive and become true
in the above order. Now we examine the temporal ordering of
phases of operations. The four phases associated with any
operation "op" are totally ordered in time as follows:

at (service lop) ONLYAFTER after (requestlop)

at (activelop) ONLYAFTER after (service lop)

at (term lop) ONLYAFTER after (active lop).

The use of ONLYAFTER (instead of IFF) in the above state-
ments reflects the possibility of delays between the execution
of two consecutive phases. The above statements, in addition
to the fact that

after (plop) ONLYAFTER at (plop)
for all phases p of operation op, define the sequential ordering
of the phases of any operation op.
To precisely specify the state of each operation we introduce

the following predicates:

req (op)

service (op)

wait-active (op)

active (op)

wait-term (op)

term (op)

is true when operation op is waiting to
be serviced.
is true when permission is granted for
executing a.

becomes true after op is serviced and
remains true until after op becomes
active.

is true when the access defined by op
takes place.

becomes true after access op is com-
pleted and remains true until after the
termination phase begins.
is true when termination phase of op is
completed.

The truth values of the predicates are depicted in Fig. 1.
Specifications in SYSL will involve these predicates as well

as predicates on the resource state. The model does not intro-
duce any major restrictions on the class of synchronization
problems that can be solved, or the mechanisms that can be
used for synchronization, but are motivated by a desire to
achieve a suitable abstraction of synchronization. Structured
mechanisms for achieving synchronization such as moni-
tors [14], serializers [3], sentinels [17], and synchronizing
resources [2] fit this model.

724

=4

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

RAMAMRITHAM AND KELLER: SPECIFICATION OF SYNCHRONIZING PROCESSES

III: THE SPECIFICATION LANGUAGE
This section is devoted to the development of SYSL-a

language for specifying the synchronization properties of con-
current processes. The temporal logic based specification
language facilitates expressing synchronization properties
while satisfying the following desirderata.

* The language should be capable of specifying synchroniza-
tion constraints of concurrent programs.

* The language should have intuitive interpretations as well
as unambiguous semantics.

* The language should be modular, so that distinct properties
are specifiable independent of each other.

Said differently, human engineering considerations are as
consequential as considerations of expressive completeness.
The strategy espoused by this paper is as follows. Since, in

our experience, there appears to be only a limited number of
characteristic properties affecting the synchronization of con-
current processes, the formal statements of these properties
can be packaged by employing appropriate keywords. For
instance, suppose execution of all operations in class A have to
exclude execution of operations in class B. This fact can be
expressed by a statement involving the names A and B, and
the keyword excludes. This statement is to be endowed with
the semantics of the temporal logic expression that asserts
exclusion.
This section shows the development of the specification lan-

guage in the following way. We begin with a discussion of the
parameters of synchronization. Then we introduce constructs
for specifying characteristic properties affecting synchroniza-
tion. In a concurrent environment, quick response of the syn-
chronizer to individual requests is of predominant importance.
This response is dependent on how fair the synchronizer is in
servicing requests. Specification of fairness in SYSL is discussed
in Section III-B2. In SYSL, each distinct property can be
specified independent of the rest and hence specifications must
be checked for their consistency. Detection of inconsistencies
and other errors in a set of specifications is the subject of Sec-
tion Ill-C. Specifications in SYSL have been used for a
dichotomy of purposes: analyzing an extant synchronizer with
respect to given specifications, and synthesizing code for a
synchronizer that matches the given specifications. These two
uses of SYSL specifications are discussed in Section III-D.
Questions relating to completeness and human engineering
aspects of SYSL are dealt with at the end of the paper.
We will use the alarm clock problem [14] to illustrate

important aspects of SYSL. The alarm clock is a system
facility that is shared by processes that need to be awakened
after a specified time period. Executing the wakeup operation
restarts a process. An argument to a wakeup request specifies
when the process is to be awakened. Time is maintained by
the alarm clock through the program variable "time." "Time"
advances when a tick operation is executed. (Henceforth time
will refer to the time maintained by the alarm clock.)

In the following description of SYSL constructs, "expr"
enclosed within braces as in {expr} stands for an arbitrary
number of textual occurrences of "expr."

A. Parameters of Synchronization
We distinguish between the terms operation and operation-

class. This distinction is typified by the following example:

in the alarm clock, two operation-classes are involved, wakeup
and tick. A wakeup (tick) operation is an instance of the
operation-class wakeup (tick). Every tick operation increments
time by one. A wakeup operation is serviced at the end of the
time period specified with the request for the operation.
Type of Requested Access: In general, constraints on servic-

ing an operation will depend upon various characteristics of
the operation, for example, how the operation modifies the
state of the resource. Evidently, the synchronizer should be
cognizant of the identity of individual operations.
The operation classes declaration lists the names of various

classes of operations that a given synchronizer is expected to
service as in

OPERATION-CLASSES {<operation-class>4;

In some problems, a set of operation classes possess exactly
the same specifications. A natural way of specifying such
problems is to consider one such class and indicate that the
specifications for that class are applicable to all operation
classes in a given set of operation classes.

In a similar vein, since all operations in a particular class
must satisfy similar synchronization constraints, it should be
sufficient to specify constraints for a single operation in that
class. Hence we permit universal quantification over opera-
tions in a given class.
Arguments to Operations: The specification language should

permit declaration of the argument(s) to an operation and pro-
vide some means to refer to these arguments in the course of
specifying constraints. Arguments to operations in a particular
class can be specified by extending the declaration of operation
classes as in

OPERATION-CLASSES
{<operation-class> (<argument> {, <argument>});}

The construct

<operation>. <argument>

refers to the argument of the named operation.
Example: Consider the following declaration for the alarm

clock problem:

OPERATION-CLASSES tick;
wakeup(interval);

This declares that

* tick and wakeup are two operation classes, and
* interval is the argument to a wakeup operation.

Arguments need be specified only when their value is required
for synchronization. If arguments are included, specifications
can be constrained to apply only to operations whose argu-
ments satisfy certain requirements. If the identity of a calling
process affects synchronization, it can be included as an
argument.
State of the Shared Resource: This is an important factor

affecting synchronization. In particular, there may be a need
to know the state of a shared resource either when the request
for an operation arrives or is serviced. For example, in the
alarm clock problem, time constitutes the state of the alarm
clock and determines when a wakeup operation is serviced.
Resource state variables are declared using the following

725

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

specification:

RESOURCE-STATE-SPECIFICATION

{<resource-state-var> INITIALLY <initial-value>}.

Example:

RESOURCE-STATE-SPECIFICATION

time INITIALLY 0

declares that time is the resource state. The clause INITIALLY
0 provides information required for initializing the alarm clock.
The specification language facilitates referring to the state of a
resource at the beginning and end of each phase of an operation.
This is made possibe by qualifying the resource state name by
the point of interest as in

time AT requestla

which returns the value of time at the beginning of operation
a s request phase. The general form of this construct is

<resource-state-var> <where> <phase>J<operation>.
<where> could be AT or AFTER.
State of the Synchronizer: As opposed to the parameter

just described, the state of the synchronizer refers to the
status of the synchronized operations. In general, actions of
a synchronizer can be affected by

* the operations waiting for service,
* the operation being serviced,
* the active operations, and
* the termination of operations

and hence the predicates request, service, active, and term may
be involved in the specifications.
The above parameters of synchronization appear in SYSL

constructs to be introduced next.

B. Language Constructs
SYSL is a high-level specification language in which properties

that are normally relevant to synchronization are expressible
in a readable form. Statements in SYSL can be considered to
be macros with appropriate definitions in terms of temporal
logic statements. This section describes the constructs in this
language. Broadly speaking, synchronization depends on

1) the properties of the resource being shared,
2) the properties of the operations on the resource, and
3) the expected response.
This categorization is not meant to imply that these factors

are mutually exclusive. Often since resource state is modified
by the operations on the resource, the interaction of factors
1) and 2) is vital to the servicing of operations.
Questions relating to the responsiveness of the synchronizer, a

factor which determines the performance of concurrent proc-
esses, are usually neglected in the specification and construction
of synchronization code. One often comes across the state-
ment, "if there are multiple requests waiting for service, the
synchronizer will handle the requests with fairness," with
the statement within quotes left unexplained. The subject
of responsiveness will be developed further in the next
subsection.

1) Properties ofa Resource and Operations on theResource:
State-Invariant of the Shared Resource: A very important

property which affects synchronization is the state-invariance
of a resource. By this we mean those aspects of a resource
which should always hold. For instance, given a pool of
resources, the synchronizer should service allocate and free
requests from user processes such that the number of resources
allocated is always less than or equal to the maximum number
of resources in the pool. In general, such requirements are
specified as

ALWAYS <resource-state-invariant>

where <resource-state-invariant> is a predicate on resource
state variables.
Resource State Changes: During the execution of an opera-

tion, the state of the shared resource may be altered; for
instance, in an alarm clock, tick increments time. In SYSL
this would be specified as

FOR EACH t IN Tick: time <- time + 1.

The above specification has the following semantics:

VtEtick,
o {term (t) => [time = (time AT service It) + 1I1

This expresses the fact that a tick operation increments time
by 1. As we shall see, the fact that ticks execute in exclusion
will have to be specified independently. The abstract syntax
for the above specification is

FOR EACH Op IN <operation-class>:
<resource-state-var> <- <newvalue>

<Newvalue> is an expression that involves values of the
<resource-state-var> when the request for op arrives or when
op is serviced, or arguments to op. Any resource state variable
which appears in <newvalue>, unless explicitly qualified,
refers to the value of the resource state variable when op is
serviced.
In addition, SYSL also permits the specification of changes

to resource state due to the execution of individual phases.
SYSL syntax for such specifications is

FOR EACH Op IN <operation-class>:
IF <predicate 1> AT <phase>lop

THEN <predicate2> AFTER <phase>Iop

where <predicatel> and <predicate2> are predicates on the
resource state and may involve arguments to "op." Thus the
phase specified in <phase> changes the resource state such
that if <predicatel> holds at the beginning of the phase then
<predicate2> holds at the end of that phase. The semantics
of the above statement is

VopE<operation-class>,
o {(at (<phase>!op) A <predicatel>)

o (after (<phase>Iop) => <predicate2>)}

Mutual Exclusion of Operations: Each tick operation incre-
ments time by one. Clearly, for the alarm clock to maintain
the correct time, two tick operations should not be concurrently
active. This exclusion between tick operations is specified in
SYSL as

tick OPERATIONS EXCLUDE EACH OTHER.

726

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

RAMAMRITHAM AND KELLER: SPECIFICATION OF SYNCHRONIZING PROCESSES

This specification has the following semantics:

Vtl, t2Ctick, tl t2,
n {active(tl) A active(t2)}.

The general syntax for exclusion between operations in a class
is

<operation-class> OPERATIONS EXCLUDE EACH OTHER.

The other type of exclusion occurs between operations in
different classes. The temporal assertion

VoplEOPCl, Vop2EOPC2,
o {active(opl) A active(op2)}

expresses exclusion between executions of operations in OPCl
and those in OPC2.

OPC1 OPERATIONS EXCLUDE OPC2 OPERATIONS

is the corresponding SYSL specification.
For example, since execution of a wakeup operation depends

on time, a variable changed by tick,

tick OPERATIONS EXCLUDE wakeup OPERATIONS

is a necessary specification for the alarm clock problem.
If there is no specification requiring the exclusion of two

operations then they can be concurrently active.
Operation Sequences: There are synchronization situations

in which a set of operations are required to always execute in
a strict sequence. By a sequence we mean that some operation
is to be serviced only after some other operation is serviced.
When a particular set of operations is to execute in a fixed
sequence, it is useful to be able to specify this explicitly rather
than in terms of necessary conditions for servicing operations.

If operations of a particular class are numbered in the order
in which they are serviced, then by Ai we refer to the ith tem-
poral instance of the operation class A. (We are numbering
instances of operations for the sole purpose of giving the
semantics of sequences.) The ith execution of a sequence S
consists of execution of ith instance of each operation class
belonging to the sequence S.
Suppose in a sequence S, operations in class A follow those

in class B. Then

ViE {natural number},
[service(Ai) ONLYAFTER service(Bi)]

One would specify this sequence in SYSL as

OPERATION SEQUENCE S: A FOLLOWS B.

Such specifications express the order in which operations can

be serviced. Here, the number of A's serviced is never -more
than the number of B's serviced.

It is possible for two instances of a sequence to execute
concurrently or in exclusion. If a sequence excludes itself
then the (i + l)th execution of the initial operations of the
sequence can be serviced only after the termination of the ith
execution of the terminal operations of the sequence. Exclu-
sion of a sequence can be specified in the same way operation
exclusion is specified.
Notice that these specifications sequence only the servicing

of operations. That is, operations within a sequence can execute
concurrently if other specifications permit. So if operations

within a sequence should exclude, there have to be additional
specifications so stating.
Service-Constraints: These are the specifications of explicit

conditions under which an operation can be serviced. Since
exclusion, resource-state-invariance and other high-level
properties can be expressed independently, a service-constraint
specification need exist only if constraints not implied by other
specifications are required.
The SYSL specification

SERVICE-CONSTRAINT
FOR EACH Op IN <operation-class>:<predicatel>

requires <predicatel> to be true when op is serviced. This is
equivalent to the following temporal logic assertion

Vope<operation-class>,
El {service(op) => <predicatel>}.

Example: In the alarm clock problem, the interval specified
by the argument to the operation should have elapsed when a
wakeup operation is serviced, i.e.,

SERVICE-CONSTRAINT
FOR EACH W IN wakeup:

time = ((time AT requestlw)+w.interval)
Here we notice two language constructs at work:

(time AT requestlw) stands for the value of time when
request for w arrives

w.interval stands for the argument to w.

One of the required constraints for an operation to be serviced
is that there be a request for the operation. Since this is implied
by the semantics of predicate "service," this constraint need
not be specified.

It is not always the case that all operations in a class have
the same set of constraints. Constraints could depend on the
arguments to a request or on the state of the resource at the
time a request arrives. To facilitate specifications such as these,
the above statement can be extended as follows:

SERVICE-CONSTRAINT
FOR EACH op in <operation-class>:

IF <predicate 1> AT request/oP THEN <predicate2>
which specifies the following:

VopE<operation-class>,
ci {<predicate 1> A at (request lop)

o {service(op) => <predicate2>}}
whereby if <predicate 1> holds at the beginning of the request
phase of op, then <predicate2> is a constraint for servicing
op. In general, <predicatel> and <predicate2> above are
predicates on resource state variables and arguments to the
operations.
The specifications of mutual exclusion, sequencing, resource-

state-invariant, and service-constraints determine the necessary
conditions for servicing an operation. We say that enabled (op)
is true if necessary conditions for servicing operation op are
satisfled. In Section III-D we discuss some of the transforma-
tion rules for determining enabled (op) for each synchronized
operation op.

727

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

In our language, by convention, priority specifications do
not contribute to the necessary conditions. Priority specifica-
tions are used only to order operations that have satisfied their
necessary conditions.
Priority: In general, when we say that an operation (say b)

has higher priority than another (say a), we mean that a can
be serviced only after b, i.e.,

o { [req(a) A req(b) A (pr(a) < pr(b))]

[service(a) ONLYAFTER service(b)] }

where pr (a) stands for the priority of operation a. Of course,
whenever either a or b is serviced, it must be enabled. The
priority we are discussing here belongs to the genre of non-
preemptive priority. Thus, once serviced, an operation is
permitted to complete execution even if a higher priority
operation arrives in the meantime.
We classify priority into the following two categories:
1) priority within requests of a particular operation class,

otherwise known as intraclass priority and
2) priority between different operation classes, otherwise

known as interclass priority.
We consider the former category first. Normally, priority

between operations in a particular class is given by some rule
(expr in the following expression) and evaluating the rule for
each operation gives the priority for that operation.

Vop 1, op2E<operation-class>,
c { [req(opl) A req(op2) A (expr(opl) < expr(op2))]

[service(opl) ONLYAFTER service(op2)] }

where expr(a) stands for the value of expr evaluated for opera-
tion a.
In the case of interclass priority, operations in a class having

a lower priority can be serviced only after all operations in
higher priority classes have been serviced. Thus, if class OPC2
has a priority higher than OPC 1, then

VoplEOPC1, Vop2eOPC2,
a { [req(opl) A req(op2)]
=> [service(op I) ONLYAFTER service(op2)] }.

So far we have assumed that the priority of a particular opera-
tion is static. In general however, both interclass and intraclass
priorities can depend on resource state. This dependence can
be specified in SYSL through the use of resource-state-predi-
cates which are predicates on the state of the resource. Using
resource-state-predicates, it is possible to specify resource state
dependent priority rules and priority relationships between
operation classes.
Specification:

INTRACLASS PRIORITY AMONG REQUESTS
<operation-class> <priority-rule>

WHEN <resource-state-predicate>

Informal Semantics:

If "OP: expr WHEN r" is an intraclass priority specification,
then expr gives the priority rule applicable to operations
in class OP when the resource state satisfies r.

Formal Semantics:

Vopl, op2COP,
o { [r A req(opl) A req(op2) A (expr(opl) < expr(op2))]

[service(opl) ONLYAFTER service(op2)] }

where, as before, expr(a) stands for the value of expr evaluated
in the context of req(a). Now we turn our attention to speci-
fying interclass priority in SYSL.
Specification:

INTERCLASS PRIORITY AMONG REQUESTS

<operation-class-2> > <operation-class-l>
WHEN <resource-state-predicate>

Informal Semantics:

Given an inter-class priority statement "OPC2 > OPC 1
WHEN r," if current resource state satisfies r, then
operations in class OPC2 have higher priority than those
in OPC1.

Formal Semantics:

VoplEOPC1, Vop2eOPC2,
o { [r A req(opl) A req(op2)]

[service(op l) ONLYAFTER service(op2)] }.

Priority specifications without the WHEN clause are applicable
under all resource states.
Another classification of priority is based on whether it applies

to all requests or only to those which have satisfied their nec-
essary conditions. So far we have been discussing the first
category. In the latter category, an operation can be serviced
only after servicing enabled operations with higher priority.
Formal semantics in this case is obtained by substituting
enabled(op) for req(op) in the definitions above.
Example: In the alarm clock problem, we need to ensure

that all eligible processes are awakened before time is incre-
mented. So we have

INTERCLASS PRIORITY AMONG ENABLED OPERATIONS

wakeup > tick.

This ensures that requests for ticks are not serviced while
enabled wakeup operations exist.

Policies adopted in operating systems for process scheduling
[5] are based on the priority of the processes and the system
state. Normally, it is not essential for the server of a shared
resource to know the identity of the customer processes.
However, in situations where servicing of operations takes
place based on the priority assigned to individual processes,
the following simple strategy can be employed: the priority
of a process is passed as an argument to the requested opera-
tion and the priority specification for the server expressed in
terms of this argument.
2) Specification of Fairness: These specifications express

the required behavior of the synchronizer so that no operation
is unduly delayed. We give below various versions of such
fairness specifications [25]. One chooses a fairness criterion
appropriate for the problem being specified.
Fairness-i: One way of servicing operations is by considering

them in the order of arrival of their requests. The earliest

728

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

RAMAMRITHAM AND KELLER: SPECIFICATION OF SYNCHRONIZING PROCESSES

to arrive will always be chosen for service. Formally, the
expression

Vop 1, op2C<operation-class>,
o { [at(request lop2) AFTER at(request lop 1)]

[service(op2) ONLYAFTER service(opl)] }

states that if the request phase of op2 began after that of opl
then op2 can be serviced only after opl. Thus requests for
operations in <operation-class> are serviced in the order of
their arrival. In SYSL, such a requirement would be expressed
as

SERVICE EACH Op IN <operation-class>
FIRST-COME-FIRST.

However, fairness-I may not always be consistent with the
rest -of the specifications, especially if the operations have
dependent constraints.
More general are situations where the holding of some condi-

tion implies the eventual servicing of some operation op, that
is,

<expression> => O service(op)

where <expression> is an assertion dependent on enabled(op).
Given the existence of various fairness criteria, the obvious

issue to be examined is: under what circumstances is a particular
fairness criterion admissible? A given type of fairness is said to
be admissible if some synchronizer for the problem can guar-
antee such a fairness. As we introduce various fairness criteria,
we also examine their admissibility. In what follows, predi-
cate(op) involves no temporal operators.
Fairness-2: A strong form of fairness is

VopE<operation-class>,
o {predicate(op) => O service(op)}.

Thus once predicate(op) holds, op has to be eventually ser-
viced. In SYSL this would be expressed as

SERVICE EACH Op IN <operation-class>
IF predicate(op) IS TRUE.

Consider the following situation:

Suppose fairness-2 is specified for two operations, say op2
and opl. Assume that both operations are enabled and
that predicate(opl) and predicate(op2) hold. Suppose
opI and op2 are such that serving any one of them will
permanently disable the other.

In this case, Fairness-2 will not be admissible. The truth of
one of the following is sufficient to show the admissibility of
this fairness to an operation opl.

* When predicate(opl) is true, no other operation is enabled.
* Even if another operation op2 is enabled, enabled(opl)

remains true until opl is serviced.
* Even if another operation op2 is serviced, enabled(opl)

will eventually become true again.
Fairness-3: One way to weaken the previous version of

fairness is by requiring that an operation be eventually serviiced
if the predicate holds repeatedly, that is,

VopE<operation-class>,
o { Opredicate(op) => Oservice(op)}.

Here it will suffice if predicate(op) is enabled infinitely often,
i.e., repeatedly, for op to be serviced. This would be specified
in SYSL as

SERVICE EACH op IN <operation-class>
IF predicate(op) IS REPEATEDLY TRUE.

When priority specifications are present, only a still weaker
form of fairness is admissible. The sequential model assumed
for the synchronizer precludes the immediate recognition of
enabled operations. This implies that although at a given time
an operation may be eligible for service, a request for a higher
priority operation may have arrived before the synchronizer
recognizes this fact, thus preventing the synchronizer from
servicing the former. Hence we have the following type of
fairness which is typically used- for lower oriority operations.
Fairness-4:

VopE<operation-class>,
- {(predicate(op) UNTIL service(op)) => O service(op)}.

This states that if predicate(op) remains true until op is ser-
viced, then op should be eventually serviced. This essentially
means that predicate(op) remain true (as opposed to being
repeatedly true) till the sychronizer recognizes it and takes
appropriate action. The corresponding SYSL specification is

SERVICE EACH Op IN <operation-class>
IF predicate(op) IS ALWAYS TRUE.

Example: In the alarm clock problem, we require that once
enabled, every wakeup operation be eventually serviced. Tick
requests are required to be serviced in the order of their arrival.
Also, due to its lower priority, a tick operation is required to
be serviced according to fairness-4:

SERVICE EACH W IN wakeup IF enabled(w) IS TRUE.
SERVICE EACH t IN tick FIRST-COME-FIRST.

SERVICE EACH t IN tick
IF [enabled(t) A FOR EACH w in wakeup, -1enabled(w)]

IS ALWAYS TRUE.

The current version of SYSL permits only the above four
versions of fairness. The implications of using arbitrary tem-
poral logic statements for expressing fairness are being investi-
gated from the viewpoint of readability and synthesis.
Given below is the overall specification for the alarm clock

problem. Note that the specification for the problem is the
conjunction of the specifications of individual properties.

SYNCHRONIZER Alarm-Clock IS

OPERATION-CLASSES Tick;
Wakeup(interval);

RESOURCE-STATE-SPECIFICATION
time: INITIALLY 0;

RESOURCE-STATE-CHANGES
FOR EACH t IN tick: time <- time +1;

EXCLUSION
Tick OPERATIONS EXCLUDE wakeup OPERATIONS;
Tick OPERATIONS EXCLUDE EACH OTHER;

SERVICE-CONSTRAINTS
FOR EACH W IN wakeup:

time = ((time AT requestlw) + w.interval)
INTERCLASS PRIORITY AMONG ENABLED REQUESTS

wakeup > tick;

729

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

FAIRNESS

SERVICE EACH W IN wakeup IF enabled(w) IS TRUE

SERVICE EACH t IN tick FIRST-COME-FIRST
SERVICE EACH t IN tick

IF [enabled(t) A FOR EACH w in wakeup,
-1enabled(w)] IS ALWAYS TRUE.

But for the dependence of fairness and priority on the remain-
ing specifications, each distinct property of the problem is
specified independently of the rest. This attests so the modu-
larity and ease of use of SYSL. In the next subsection we
discuss the detection of inconsistencies between independent
specifications.
As an additional example of use of this specification language,

let us specify the behavior of a resource manager which manages
a fixed number (say 10) of similar resources. User processes
acquire a resource by executing the operation allocate, and
release the resource by executing the operation free. The
number of resources free at any given time is maintained by
avail. Maxavail gives the maximum number of available
resources. To expedite release of resources, free is given priority
over allocate. This is a typical problem which arises in the
context of resource management and involves resource state,
and changes to resource state. Given below is the SYSL
specification for the resource manager.

SYNCHRONIZER Resource-Manager IS
OPERATION-CLASSES Allocate;

Free;
RESOURCE-STATE-SPECIFICATION

maxavail: CONSTANT 10;
avail: INITIALLY maxavail;

RESOURCE-STATE-CHANGES
FOR EACH a IN allocate: avail <- avail - 1;
FOR EACH f IN free: avail <- avail + 1;

RESOURCE-STATE-INVARIANCE

ALWAYS {(avail < maxavail) A (avail > 0)};
OPERATION EXCLUSION

Allocate OPERATIONS EXCLUDE Free OPERATIONS;
Free OPERATIONS EXCLUDE EACH OTHER;

Allocate OPERATIONS EXCLUDE EACH OTHER;
INTERCLASS PRIORITY AMONG ENABLED OPERATIONS

Free > Allocate;
FAIRNESS
-SERVICE EACH f IN free IF nec-cond(f) IS TRUE

SERVICE EACH f IN free FIRST-COME-FIRST
SERVICE EACH a IN allocate FIRST-COME-FIRST
SERVICE EACH a IN allocate

IF [nec-cond(a) A FOR EACH f IN free, -1nec-cond(f)]
IS ALWAYS TRUE.

In [28] several standard synchronization problems have been
specified in SYSL.

C. Erroneous Specifications and Their Detection
In SYSL, distinct properties are specified independently

of each other. This permits users to focus on one property at
a time. However, this could result in inconsistent, incomplete,,
or deadlock-prone specifications. Here we briefly outline
techniques for detecting the presence of such errors. Further
details may be found in [28].
Specifications may be inconsistent if no synchronizer can

have the required behavior. For instance, interclass priority

specifications may be such that on taking the transitive closure
of the priority relationship between operation-classes, one may
find that an operation-class has higher priority than itself,
thereby revealing an inconsistent set of priority specifications.
A similar form of inconsistency can arise in sequence specifica-
tions also. Inconsistencies may also occur in the specification
of fairness. In Section III-B, we introduced the notion of
admissibility of a fairness criterion in order to detect inconsis-
tent fairness specifications.
A set of specifications is said to be incomplete if further

specifications are required to completely specify the problem.
For example, in the alarm clock problem, since tick increments
time, it is necessary to specify the exclusion between tick opera-
tions and between tick and wakeup operations. In general,
only a specifier can answer questions regarding the com-
pleteness of a set of specifications since two distinct sets of
specifications may be specifying two different synchronization
problems.
A set of specifications for a synchronization problem is

deadlock-prone if processes that access a shared resource con-
trolled by a synchronizer are liable to deadlock. It is possible
to give sufficient conditions for the absence ofdeadlock among
the processes being synchronized. For this purpose, we con-
sider each subset of the set of operation-classes. Processes
requesting operations in that subset will not deadlock if at
least one such request can be serviced. To show this to be the
case, we prove that the disjunction of the necessary conditions
of the operations in the subset is always true. For this purpose,
we make use of the temporal order in which user processes
access the resource.
Algorithmic detection of erroneous specifications is, in

general, difficult. However, some of these error detection tech-
niques have been built into our synthesis system [28] such
that errors are detected during preanalysis of the specifications
and yet others as synthesis progresses.

D. Use ofSYSL Specifications
Specifications in SYSL serve a dichotomy of purposes:

synthesis and analysis of synchronization code. Now we
briefly discuss how each is accomplished.
Synthesis: Synchronization properties expressed in SYSL

serve as input to a system which automatically generates code
for a synchronizer that guarantees the specified properties
[28]. This system uses meaning-preserving transformation rules
to transform input specifications into code for a synchronizer.
Hence the resulting code guarantees the specified properties
thus eliminating the need for verification.
The first task is to determine the necessary conditions for

servicing each synchronized operation. This is done via trans-
formation rules such as the following.
The Mutual Exclusion Transformation Rule: This rule

specifies sufficient conditions for servicing operations in
order to satisfy mutual exclusion requirements:

Vopl, op2,
{o {service(op 1) => f[active(op2) OR wait-active(op2)] } A
o {service(op2) => - [active(opl) OR wait-active(op 1)] }}

u {active(opl) A active(op2)}
Note that the consequent of this rule expresses the exclusion
between op 1 and op2.

730

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

RAMAMRITHAM AND KELLER: SPECIFICATION OF SYNCHRONIZING PROCESSES

:The Priority Transformation Rule: Priority specifications
will be satisfied ifan operation is serviced only when no requests
for operations of higher priority are present.

Vopl, op2, opiI op2,

o {service(opl) => -nreq(op2)}

o { [req(opl) A req(op2)] =>
[service(opl) ONLYAFTER service(op2)] }.

The consequent of this rule expresses the priority for op2 over

opl .

The constraints on servicing an operation is the conjunction
of 1) the constraints derived by the application of the transfor-
mation rules, 2) the implicit requirement that

vop 0 {service(op) => req(op)},

and 3) the service-constraint specifications.
Code is synthesized such that necessary conditions of requests

are evaluated and appropriate actions taken so as to satisfy the
specified fairness. Details of the synthesis algorithm can be
found in [28]. Manna and Wolper [22] as well as Clarke and
Emerson [8] have also attempted the synthesis of synchronizing
processes starting from temporal logic specifications. The
differences between our approach and the above arise from
the human-engineering features of SYSL. In addition, while
Manna and Wolper use temporal logic to specify synchronizing
processes by abstracting-concurrent computation to sequence

of events and Clarke and Emmerson utilize branching time
logic for specifying synchronizing processes, our specification
language is based on linear time temporal logic and utilizes the
notion of states.
Analysis: When analysis of synchronizers is undertaken, the

conditions imposed by the synchronizer are first determined
by deriving the conditions that exist when an operation is
serviced. These should imply the necessary conditions obtained
from the specifications using the transformation rules above.
Fairness is proven using the control flow properties of the
synchronizer. Details of this method can be found in [26].

IV. SUMMARY AND EVALUATION

We have used the formalism of temporal logic to precisely
define synchronizers for concurrent processes. This has been
done through the introduction of an operational model for a

synchronizer. Most structured mechanisms for synchroniza-
tion fit this model.
We have systematized and abstracted features of synchroniza-

tion control into a set of language constructs based on tem-
poral logic, which seems to be a natural tool to express both
safety and liveness properties of concurrent systems. Use of
temporal constructs such as always, eventually, and until
along with those constructs derivable from them, result in
intuitive specifications for synchronization problems. It
concentrates on the human-engineering features such as:

* properties usually relevant to synchronization, e.g., mutual
exclusion, resource-state-invariance, sequence and priority are

specified through high-level constructs which have intuitive
interpretations and precise semantics, and

* users need concern themselves with only one aspect of
the problem at a time since each property can be expressed
independent of the rest.

In practice, there may be a wide gap between the informal
notion of a synchronization problem and the corresponding
formal specification. Hence, often one is not sure of the
correctness of the specifications themselves. We believe that
our approach to specifying synchronization via SYSL is a
step towards bridging this gap.
As we summarize our temporal logic based specification

language, we shall evaluate it against our own requirements
as well as compare it with existing specification methods.
Precise Semantics: Since precise semantics was one of the

underlying design requirements, every high-level specification
statement in the language has formal temporal semantics.
Temporal logic has been used for specifying concurrent
systems [4], [23] for specifying protocols in distributed
systems [13], [30], and for specifying synchronizing processes
[8], [22].
As regards other proposals, expression based languages [31]

are attractive due to their denotational orientation. Of these,
path expressions [12] are perhaps the most widely referenced.
However, due to the proliferation of various versions of path
expressions [1], [16], [20], it is not clear whether any single
implementation of path expressions conforms to any proposed
formal semantics [6], [19].
Due to the inability of the other languages to express live-

ness properties, fairness is often expressed in ambiguous and
informal terms such as

every request should be serviced.

As we have demonstrated earlier (Section III-B), no single
fairness criterion is applicable to all synchronization situations.
So such statements are essentially unsatisfiable and due to their
informality, unverifiable for a given system. Our language,
due to its ability to specify eventual behavior, is capable of
expressing a variety of responsiveness criteria.
Expressiveness: This measure relates to whether a specifica-

tion language can express any synchronization situation.
Obviously, it is not possible to answer this question in absolute
terms due to the absence of a composite list of synchronization
situations.
Following [29], we conjecture that conditional critical

regions in which the conditions and assignments are linear
expressions involving shared variables is adequate to code syn-
chronization problems. These conditions and actions are
expressible in our language by means of specifications of service-
constraints and state changes (Section III-B). Clearly then,
our language is complete in this sense. In addition, users
directly specify higher level properties such as mutual exclusion
of operations since SYSL permits the specification of properties
themselves as opposed to the conditions that they imply.
Transformation rules of the synthesis system synthesize the
conditions for each critical region.
Considering path expressions once again, since sequencing of

operations has been considered as their chief property, in pref-
erence to exclusion or resource-state-invariance, to specify the
latter, the influence of exclusion or invariance on the ordering
of operations has to be first determined. Needless to say, this
is a nontrivial exercise. In Greif's approach to the specifica-
tion of synchronization [9], synchronization requirements are
specified as partial orderings of key events pertaining to an
operation. Laventhal [21] utilizes this approach to specify the

731

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

properties of synchronizers. Here again, properties such as

mutual exclusion have to be specified in terms of orderings
of the key events.
Modifiability: This factor relates to the ease with which

modifications can be incorporated in a set of specifications.
It also concerns the modularity and extensibility of the specifi-
cations. For instance, suppose it is found necessary to extend
the specifications for a synchronization problem by giving
priority to a class of operations.

* In languages where explicit conditions for servicing opera-
tions are to be specified [10], it is necessary to determine the
influence of the added priority on servicing operations.

* In Laventhal's language, specified orderings of key events
have to be modified, or further constrained, to take priority
into consideration.

* In some versions of path etpressions, the priority operator
can be used for this purpose.

* In our language, since priority is specified as a distinct
property, such an addition would mean an additional specifica-
tion statement, without regard to other specifications (as long
as the added priority specification does not contradict another
priority or fairness specification).
Since each property is specified independently of others, our

specification language produces readable, modular, and exten-
sible specifications.
Ease of Use: This relates to the facility with which a user can

specify in this language, which admittedly is a subjective factor.
Nevertheless, it can be said without any apprehension of being
contradicted, that the closer the statements in a language are

to a human conceptualization of the properties being specified,
the easier it is to use the language. Certain germane points
have already been made in this regard during the discussion of
expressiveness and modifiability.
SYSL has been designed by abstracting properties of interest

through keywords that correspond to the property being
specified. This, in addition to the modular nature of the
specifications makes it intuitively appealing and hence, easy

to use. On the other hand, current specification languages,
due to their lack of facilities to specify relevant proper-

ties in a modular, natural manner, often produce contrived
specifications.
Another criterion which determines the ease of use of a

given specification language concerns the details a user is
expected to specify. Let us consider an example to clarify
this criterion. In the notation used in [7] and [10], mutual
exclusion is expressed through the specifications of

* all distinct states of a shared resource,

* preconditions for each type of access, and
* state transitions corresponding to each access.

In SYSL, a user is expected to specify state changes only if
they affect synchronization. High-level properties such as

mutual exclusion are specified not through the specifications
of state changes but using a specification involving the name(s)
of operation classes and the keyword "excludes," thereby
conveying a greater degree of abstraction than state transition
based specifications.
A closely related issue is the notion of correctness of the

specifications. In practice, specifications tend to be either

totally informal or very formal. The first suffers from ambigu-
ities and hence users could be unsure of whether a specification
stands for what they want to specify. In the latter case, due
to the conceptual gap between users' view of the problem and
the formal specifications, it is not obvious to casual users
whether their specifications are correct. The statements in
our specification language provide a semblance of informality
while having precise semantics. Also, we provide techniques
for the detection of errors in SYSL specifications.

ACKNOWLEDGMENT

Our thanks to the referees whose constructive remarks
considerably influenced the present form of the paper.

REFERENCES

[1] S. Andler, "Predicate path expressions," in Proc. 6th Annu.
Symp. POPL, Jan. 1979, pp. 226-236.

[2] G. R. Andrews, "Synchronizing resources," ACM Trans. Pro-
gramming Languages Syst., vol. 3, pp. 405-430, Oct. 1981.

[31 R. R. Atkinson and C. E. Hewitt, "Specification and proof
techniques for serializers," IEEE Trans. Software Eng., vol. SE-
5, pp. 10-23, Jan. 1979.

[4] M. Ben-Ari and A. Pnueli, "Temporal logic proofs of concurrent
programs," Tel Aviv Univ., Tech. Rep., Nov. 1980.

[5] A. J. Bernstein and J. C. Sharp, "A policy-driven scheduler for a
time-sharing system," Commun. Ass. Comput. Mach., vol. 2, pp.
74-78, Feb. 1971.

[6] V. Berzins and D. Kapur, "Denotational and axiomatic defini-
tions for path expressions," Massachusetts Inst. Technol., Comput.
Structures Group Memo. 15 3-1, Nov. 1977.

[71 P. Brinch-Hansen and J. Staunstrup, "Specification and imple-
mentation of mutual exclusion," IEEE Trans. Software Eng., vol.
SE-4, pp. 365-370, Sept. 1978.

[8] E. M. Clarke and E. A. Emerson, "Design and synthesis of syn-
chronization skeletons using branching time temporal logic," in
Proc. Workshop Logics of Programs (Springer- Verlag Lecture
Notes in Comput. Sci.), vol. 131, 1981.

[9] I. Greif, "A language for formal problem specification," Commun.
Ass. Comput. Mach., vol. 20, pp. 931-935, Mar. 1977.

[10] P. Griffiths, "SYNVER: A system for the automatic synthesis
and verification of synchronization processes," Harvard Univ.,
TR Tech. Rep. 22-74, 1974.

[11] V. Guttag, E. Horowitz, and D. Musser, "Abstract data types and
software validation,'' Commun. Ass. Comput. Mach., vol. 21, pp.
1048-1064, Dec. 1978.

[12] A. N. Habermann, "Path expressions," Carnegie-Mellon Univ.,
June 1975.

[13] B. T. Hailpern and S. Owicki, "Verifying network protocols
using temporal logic," in Proc. NBS/IEEE Conf. Trends and
Applications on Comput. Network Protocols, 1980.

[14] C.A.R. Hoare, "Monitors: An operating system structuring con-
cept," Commun. Ass. Comput. Mach., vol. 17, pp. 540-557,
Oct. 1974.

[151] -, "Communicating sequencial processes," Commun. Ass.
Comput. Mach., vol. 21, pp. 666-677, Aug. 1978.

[16] B. Jayaraman and R. M. Keller, "Resource expressions for appli-
cative languages," in Proc. Int. Conf. Parallel Processing, June
1980, pp. 160-167.

[171 R. M. Keller, "Sentinels: A concept for multiprocess coordina-
tion," Univ. Utah, UUCS-78-104, June 1978.

[18] L. Lamport, "'Sometime' is sometimes 'not never'," in Proc. 7th
Annu. Symp. POPL, Jan. 1980, pp. 174-185.

[191 P. E. Lauer and R. H. Campbell, "Formal semantics of a class of
primitives for coordinating concurrent processes," Acta Infor-
matica, vol. 5, pp. 297-332, 1975.

[20] P. E. Lauer, P. R. Torrigiani, and M. W. Shields, "COSY-A sys-
tem specification language based on paths and processes," Acta
Informatica, vol. 12, pp. 109-158, Apr. 1979.

[21] M. S. Laventhal, "Synthesis of synchronization code for data
abstractions," Massachusetts Inst. Technol., MIT/LCS/TR-203,
June 1978.

732

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 6, NOVEMBER 1983

[22] Z. Manna and P. Wolper, "Synthesis of communicating processes
from temporal logic specifications," in Proc. Workshop Logics of
Programs (Springer-Verlag Lecture Notes in Comput. Sci.), vol.
131, 1981.

[23] S. Owicki and L. Lamport, "Proving liveness properties of con-
current programs," ACM Trans. Programming Languages Syst.,
vol. 4, pp. 455-495, July 1982.

[24] A. Pnueli, "The temporal semantics of concurrent programs," in
Semantics of Concurrent Computation (Springer Lecture Notes
in Comput. Sci.), vol. 70, June 1979, pp. 1-20.

[25] -, "On the temporal analysis of fairness," in Proc. 7th Annu.
Symp. POPL, Jan. 1980, pp. 163-173.

[261 K. Ramamritham and R. M. Keller, "Specifying and proving
properties of sentinel processes," in Proc. 5th Int. Conf Software
Eng., Mar. 1981, pp. 374-382.

[27] -, "On synchronization and its specification," in Springer
Lecture Notes in Comput. Sci., vol. 111, June 1981.

[281 K. Ramamritham, "Specification and synthesis of synchronizers,"
Ph.D. dissertation, Univ. Utah, Aug. 1981.

[29] H. A. Schmid, "On the efficient implementation of conditional
critical regions and the construction of monitors," Act Infor-
matica, vol. 6, pp. 227-249, 1976.

[30] R. L. Schwartz and P. M. Melliar-Smith, "Temporal logic specifi-
cations of distributed systems," inProc. 2ndlnt. Conf Distributed
Syst., Apr. 1981.

[31] A. C. Shaw, "Software specification languages based on regular
expressions," in Proc. Software Tools Workshop, May 1979, pp.
1-39.

Krithivasan Ramamritham received the B.Tech
A degree in electrical engineering and the M.Tech

degree in computer science from the Indian
Institute of Technology, Madras, India, in 1976
and 1978, respectively, and the Ph.D. degree in
computer science from the University of Utah,
Salt Lake City, in 1981.
Currently, he is an Assistant Professor in the

Department of Computer and Information
Science, University of Massachusetts, Amherst.
His research interests include software engi-

neering, operating systems and distributed computing.
Dr. Ramamritham is a member of the Association for Computing

Machinery and the IEEE Computer Society.

Robert M. Keller received the B.S. and M.S.E.E.
degrees from Washington University, St. Louis,
MO, and the Ph.D. degree from the University
of California, Berkeley.
Currently, he is a Professor of Computer

Science at the University of Utah, Salt Lake
City. From 1970-1976 he was an Assistant
Professor of Electrical Engineering at Princeton
University. His current research interests deal
with numerous topics relating to multiprocessor
implementations of functional languages, par-

ticularly using reduction and data-flow computation models.

Distributed Software System Design Representation
Using Modified Petri Nets

STEPHEN S. YAU, FELLOW, IEEE, AND MEHMET U. CAGLAYAN, MEMBER, IEEE

Abstract-A model for representing and analyzing the design of a
distributed software system is presented. The model is based on a mod-
ified form of Petri net, and enables one to represent both the structure
and the behavior of a distributed software system at a desired level of
design. Behavioral properties of the design representation can be veri-
fied by translating the modified Petri net into an equivalent ordinary
Petri net and then analyzing that resulting Petri net. The model empha-
sizes the unified representation of control and data flows, partially
ordered software components, hierarchical component structure, ab-
stract data types, data objects, local control, and distributed system
state. At any design level, the distributed software system is viewed as
a collection of software components. Software components are exter-
nally described in terms of their input and output control states, abstract
data types, data objects, and a set of control and data transfer specifica-
tions. They are interconnected through the shared control states and
through the shared data objects. A system component can be viewed
internally as a collection of subcomponents, local control states, local
abstract data types, and local data objects.

Manuscript received November 6, 1981; revised March 21, 1983. This
work was supported by the U.S. Army Research Office under Contract
DAA-C29-80-K-0092.

S. S. Yau is with the Department of Electrical Engineering and Com-
puter Science, Northwestern University, Evanston, IL 60201.
M. U. Caglayan was with the Department of Electrical Engineering

and Computer Science, Northwestern University, Evanston, IL 60201.
He is now with the University of Petroleum and Minerals, Dhahran,
Saudi Arabia.

Index Tenns-Control flow and data flow, design analysis, distributed
software system, modified Petri net, software design representation.

I. INTRODUCTION

WlrE CONSIDER that a distributed computer system has
Wa number of processing nodes connected by a message-

based communication network. In addition to the physical
distribution of hardware, conceptual distribution of both data
and control is an essential characteristic of the system. To em-
phasize decentralized control, processing nodes will be highly
autonomous in their availability, type of service they provide,
their concern for protection of resources, and their reliability.
The effects of actual choice of processing and communication
hardware and system topology on design issues are not con-
sidered here.
The design of distributed software systems continues to be a

challenging area of software engineering. A number of infor-
mal and formal design methods, which are primarily concerned
with sequential software systems, have been proposed [1] - [5].
These methods do not directly address the design problems
associated with parallel and distributed systems. Although

0098-5589/83/1100-0733$01.00 © 1983 IEEE

733

Authorized licensed use limited to: to the Claremont Colleges!. Downloaded on June 11, 2009 at 17:52 from IEEE Xplore. Restrictions apply.

	Claremont Colleges
	Scholarship @ Claremont
	11-1-1983

	Specification of Synchronizing Processes
	Krithivasan Ramamritham
	Robert M. Keller
	Recommended Citation

	tmp.1318372926.pdf.kdcZo

