8,124 research outputs found

    A Convex Polynomial Force-Motion Model for Planar Sliding: Identification and Application

    Full text link
    We propose a polynomial force-motion model for planar sliding. The set of generalized friction loads is the 1-sublevel set of a polynomial whose gradient directions correspond to generalized velocities. Additionally, the polynomial is confined to be convex even-degree homogeneous in order to obey the maximum work inequality, symmetry, shape invariance in scale, and fast invertibility. We present a simple and statistically-efficient model identification procedure using a sum-of-squares convex relaxation. Simulation and robotic experiments validate the accuracy and efficiency of our approach. We also show practical applications of our model including stable pushing of objects and free sliding dynamic simulations.Comment: 2016 IEEE International Conference on Robotics and Automation (ICRA

    Discrete spherical means of directional derivatives and Veronese maps

    Get PDF
    We describe and study geometric properties of discrete circular and spherical means of directional derivatives of functions, as well as discrete approximations of higher order differential operators. For an arbitrary dimension we present a general construction for obtaining discrete spherical means of directional derivatives. The construction is based on using the Minkowski's existence theorem and Veronese maps. Approximating the directional derivatives by appropriate finite differences allows one to obtain finite difference operators with good rotation invariance properties. In particular, we use discrete circular and spherical means to derive discrete approximations of various linear and nonlinear first- and second-order differential operators, including discrete Laplacians. A practical potential of our approach is demonstrated by considering applications to nonlinear filtering of digital images and surface curvature estimation

    A comparison of the average prekernel and the prekernel

    Get PDF
    We propose positive and normative foundations for the average prekernel of NTU games, and compare them with the existing ones for the prekernel. In our non-cooperative analysis, the average prekernel is approximated by the set of equilibrium payoffs of a game where each player faces the possibility of bargaining at random against any other player. In the cooperative analysis, we characterize the average prekernel as the unique solution that satisfies a set of Nash-like axioms for two-person games, and versions of average consistency and its converse for multilateral setting

    Symmetry groups, semidefinite programs, and sums of squares

    Full text link
    We investigate the representation of symmetric polynomials as a sum of squares. Since this task is solved using semidefinite programming tools we explore the geometric, algebraic, and computational implications of the presence of discrete symmetries in semidefinite programs. It is shown that symmetry exploitation allows a significant reduction in both matrix size and number of decision variables. This result is applied to semidefinite programs arising from the computation of sum of squares decompositions for multivariate polynomials. The results, reinterpreted from an invariant-theoretic viewpoint, provide a novel representation of a class of nonnegative symmetric polynomials. The main theorem states that an invariant sum of squares polynomial is a sum of inner products of pairs of matrices, whose entries are invariant polynomials. In these pairs, one of the matrices is computed based on the real irreducible representations of the group, and the other is a sum of squares matrix. The reduction techniques enable the numerical solution of large-scale instances, otherwise computationally infeasible to solve.Comment: 38 pages, submitte
    • 

    corecore