242 research outputs found

    Interval valued intuitionistic fuzzy evaluations for analysis of a student's knowledge in university e-learning courses

    Full text link
    © The Korean Institute of Intelligent Systems. In the paper a method is proposed for evaluation of the students' knowledge obtained in the university e-learning courses and an evaluation of the whole student class. For the assessment of the student's solution of the respective assessment units the theory of intuitionistic fuzzy sets is used, while for the class evaluation, interval valued intuitionistic fuzzy sets is used. The obtained intuitionistic fuzzy estimations reflect the degree of each student's good or poor performances, for each assessment unit. The interval valued intuitionistic fuzzy evaluations are based on the separate student's evaluations. We also consider a degree of uncertainty that represents such cases wherein the student is currently unable to solve the problem. The method presented here provides the possibility for the algorithmization of the process of forming the student's evaluations

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Full Issue

    Get PDF

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc

    New Trends in Neutrosophic Theory and Applications Volume II

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Single valued neutrosophic sets have found their way into several hybrid systems, such as neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert set, rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful applications of single valued neutrosophic sets have been developed in multiple criteria and multiple attribute decision making. This second volume collects original research and application papers from different perspectives covering different areas of neutrosophic studies, such as decision making, graph theory, image processing, probability theory, topology, and some theoretical papers. This volume contains four sections: DECISION MAKING, NEUTROSOPHIC GRAPH THEORY, IMAGE PROCESSING, ALGEBRA AND OTHER PAPERS. First paper (Pu Ji, Peng-fei Cheng, Hongyu Zhang, Jianqiang Wang. Interval valued neutrosophic Bonferroni mean operators and the application in the selection of renewable energy) aims to construct selection approaches for renewable energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed

    An Integrated Decision-Making Method Based on Neutrosophic Numbers for Investigating Factors of Coastal Erosion

    Get PDF
    The recent boom of various integrated decision-making methods has attracted many researchers to the field. The recent integrated Analytic Network Process and Decision Making Trial and Evaluation Laboratory (ANP–DEMATEL) methods were developed based on crisp numbers and fuzzy numbers. However, these numbers are incapable of dealing with the indeterminant and inconsistent information that exists in real-life problems

    A SPHERICAL FUZZY BASED DECISION MAKING FRAMEWORK WITH EINSTEIN AGGREGATION FOR COMPARING PREPAREDNESS OF SMEs IN QUALITY 4.0

    Get PDF
    Researchers work hard to embrace technological changes and redefine the quality management as Quality 4.0 (Q 4.0). In this context, the purpose of the current work is twofold. First, it aims to compare the preparedness of the small and medium enterprises (SMEs) for sustaining in Q4. Second, it intends to propose a novel hybrid spherical fuzzy based multi-criteria group decision-making (MAGDM) framework with Einstein aggregation (EA). A real-life case study on six SMEs is carried out with the help of three experts. For aggregating the individual responses (using spherical fuzzy numbers or SFNs), EA is used. Then two very recent models such as Simple Ranking Process (SRP) and Symmetry Point of Criterion (SPC) are extended using SFN to rank the SMEs. Finally, the validation tests and sensitivity analysis are carried out. It is noted that the application of analytical tools, knowledge management and use of technology under the support and mentorship of visionary leadership are the key criteria for building up the capability to embrace Q 4.0. Interestingly, it is noted that medium scale firms are better prepared than small-scale enterprises. This work is apparently a first of its kind that focuses on SMEs for assessing their quality management practices in Industry 4.0 era
    corecore