5,323 research outputs found

    Intuitionistic fixed point logic

    Get PDF
    The logical system IFP introduced in this paper supports program extraction from proofs, unifying theoretical and practical advantages: Based on first-order logic and powerful strictly positive inductive and coinductive definitions, IFP support abstract axiomatic mathematics with a large amount of classical logic. The Haskell-like target programming language has a denotational and an operational semantics which are linked through a computational adequacy theorem that extends to infinite data. Program extraction is fully verified and highly optimised, thus extracted programs are guaranteed to be correct and free of junk. A case study in exact real number computation underpins IFP's effectiveness

    Intuitionistic Fixed Point Logic

    Full text link
    We study the system IFP of intuitionistic fixed point logic, an extension of intuitionistic first-order logic by strictly positive inductive and coinductive definitions. We define a realizability interpretation of IFP and use it to extract computational content from proofs about abstract structures specified by arbitrary classically true disjunction free formulas. The interpretation is shown to be sound with respect to a domain-theoretic denotational semantics and a corresponding lazy operational semantics of a functional language for extracted programs. We also show how extracted programs can be translated into Haskell. As an application we extract a program converting the signed digit representation of real numbers to infinite Gray-code from a proof of inclusion of the corresponding coinductive predicates.Comment: 65 page

    Fixed-point elimination in the intuitionistic propositional calculus

    Full text link
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the ÎĽ\mu-calculus based on intuitionistic logic is trivial, every ÎĽ\mu-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given ÎĽ\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal

    Reasoning on Assembly Code using Linear Logic

    Get PDF
    We present a logic for reasoning on assembly code. The logic is an extension of intuitionistic linear logic with greatest fixed points, pointer assertions for reasoning about the heap, and modalities for reasoning about program execution. One of the modality corresponds to the step relation of the semantics of an assembly code interpreter. Safety is defined as the greatest fixed point of this modal operator. We can deal with first class code pointers, in a modular way, by defining an indexed model of the logic

    Extracting nondeterministic concurrent programs

    Get PDF
    We introduce an extension of intuitionistic fixed point logic by a modal operator facilitating the extraction of nondeterministic concurrent programsfrom proofs. We apply this extension to program extraction in computable analysis, more precisely, to computing with Tsuiki's infinite Gray code for real numbers

    Fixed-point elimination in the Intuitionistic Propositional Calculus (extended version)

    Get PDF
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the alge- braic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the ÎĽ\mu-calculus based on intuitionistic logic is trivial, every ÎĽ\mu-formula being equiv- alent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given ÎĽ\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed- point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal.Comment: extended version of arXiv:1601.0040

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page
    • …
    corecore