3,033 research outputs found

    Geophysical methods to detect tunnelling at a geological repository site : Applicability in safeguards

    Get PDF
    ABSTRACT Generating power with nuclear energy accumulates radioactive spent nuclear fuel, anticipated not to be diversified into any unknown purposes. Nuclear safeguards include bookkeeping of nuclear fuel inventories, frequent checking, and monitoring to confirm nuclear non-proliferation. Permanent isolation of radionuclides from biosphere by disposal challenges established practices, as opportunities for monitoring of individual fuel assemblies ceases. Different concepts for treatment and geological disposal of spent nuclear fuel exist. Spent nuclear fuel disposal facility is under construction in Olkiluoto in Southwest Finland. Posiva Oy has carried out multidisciplinary bedrock characterization of crystalline bedrock for siting and design of the facility. Site description involved compilation of geological models from investigations at surface level, from drillholes and from underground rock characterization facility ONKALO. Research focused on long term safety case (performance) of engineered and natural barriers in purpose to minimize risks of radionuclide release. Nuclear safeguards include several concepts. Containment and surveillance (C/S) are tracking presence of nuclear fuel through manufacturing, energy generation, cooling, transfer, and encapsulation. Continuity of knowledge (CoK) ensures traceability and non-diversion. Design information provided by the operator to the state and European Commission (Euratom), and further to IAEA describes spent nuclear fuel handling in the facility. Design information verification (DIV) using timely or unannounced inspections, provide credible assurance on absence of any ongoing undeclared activities within the disposal facility. Safeguards by design provide information applicable for the planning of safeguards measures, e.g., surveillance during operation of disposal facility. Probability of detection of an attempt to any undeclared intrusion into the repository containment needs to be high. Detection of such preparations after site closure would require long term monitoring or repeated geophysical measurements within or at proximity of the repository. Bedrock imaging (remote sensing, geophysical surveys) would serve for verifying declarations where applicable, or for characterization of surrounding rock mass to detect undeclared activities. ASTOR working group has considered ground penetrating radar (GPR) for DIV in underground constructed premises during operation. Seismic reflection survey and electrical or electromagnetic imaging may also apply. This report summarizes geophysical methods used in Olkiluoto, and some recent development, from which findings could be applied also for nuclear safeguards. In this report the geophysical source fields, involved physical properties, range of detection, resolution, survey geometries, and timing of measurements are reviewed for different survey methods. Useful interpretation of geophysical data may rely on comparison of results to declared repository layout, since independent understanding of the results may not be successful. Monitoring provided by an operator may enable alarm and localization of an undeclared activity in a cost-effective manner until closure of the site. Direct detection of constructed spaces, though possible, might require repeated effort, have difficulties to provide spatial coverage, and involve false positive alarms still requiring further inspection

    Intelligent Systems Supporting the Use of Energy Systems and Other Complex Technical Objects, Modeling, Testing and Analysis of Their Reliability in the Operation Process

    Get PDF
    The book focuses on a novel application of Intelligent Systems for supporting the operation and maintenance of power systems or other technical facilities within wind farms. Indicating a different perception of the reliability of wind farm facilities led to the possibility of extending the operation lifetime and operational readiness of wind farm equipment. Additionally, the presented approach provides a basis for extending its application to the testing and analysis of other technical facilities

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    Advances in Intelligent Vehicle Control

    Get PDF
    This book is a printed edition of the Special Issue Advances in Intelligent Vehicle Control that was published in the journal Sensors. It presents a collection of eleven papers that covers a range of topics, such as the development of intelligent control algorithms for active safety systems, smart sensors, and intelligent and efficient driving. The contributions presented in these papers can serve as useful tools for researchers who are interested in new vehicle technology and in the improvement of vehicle control systems

    Comprehensive concept-phase system safety analysis for hybrid-electric vehicles utilizing automated driving functions

    Get PDF
    2019 Summer.Includes bibliographical references.Automotive system safety (SS) analysis involving automated driving functions (ADFs) and advanced driver assistance systems (ADAS) is an active subject of research but highly proprietary. A comprehensive SS analysis and a risk informed safety case (RISC) is required for all complex hybrid-vehicle builds especially when utilizing ADFs and ADAS. Industry standard SS procedures have been developed and are accessible but contain few detailed instructions or references for the process of completing a thorough automotive SS analysis. In this work, a comprehensive SS analysis is performed on an SAE-Level 2 autonomous hybrid-vehicle architecture in the concept phase which utilizes lateral and longitudinal automated corrective control actions. This paper first outlines a proposed SS process including a cross-functional SS working group procedure, followed by the development of an item definition inclusive of the ADFs and ADAS and an examination of 5 hazard analysis and risk assessment (HARA) techniques common to the automotive industry that were applied to 11 vehicle systems, and finally elicits the safety goals and functional requirements necessary for safe vehicle operation. The results detail functional failures, causes, effects, prevention, and mitigation methods as well as the utility of, and instruction for completing the various HARA techniques. The conclusion shows the resulting critical safety concerns for an SAE Level-2 autonomous system can be reduced through the use of the developed list of 116 safety goals and 950 functional safety requirements

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications

    A robust, reliable and deployable framework for In-vehicle security

    Full text link
    Cyber attacks on financial and government institutions, critical infrastructure, voting systems, businesses, modern vehicles, etc., are on the rise. Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. This is due to the fact that the protocols used for in-vehicle communication i.e. controller area network (CAN), FlexRay, local interconnect network (LIN), etc., lack basic security features such as message authentication, which makes it vulnerable to a wide range of attacks including spoofing attacks. This research presents methods to protect the vehicle against spoofing attacks. The proposed methods exploit uniqueness in the electronic control unit electronic control unit (ECU) and the physical channel between transmitting and destination nodes for linking the received packet to the source. Impurities in the digital device, physical channel, imperfections in design, material, and length of the channel contribute to the uniqueness of artifacts. I propose novel techniques for electronic control unit (ECU) identification in this research to address security vulnerabilities of the in-vehicle communication. The reliable ECU identification has the potential to prevent spoofing attacks launched over the CAN due to the inconsideration of the message authentication. In this regard, my techniques models the ECU-specific random distortion caused by the imperfections in digital-to-analog converter digital to analog converter (DAC), and semiconductor impurities in the transmitting ECU for fingerprinting. I also model the channel-specific random distortion, impurities in the physical channel, imperfections in design, material, and length of the channel are contributing factors behind physically unclonable artifacts. The lumped element model is used to characterize channel-specific distortions. This research exploits the distortion of the device (ECU) and distortion due to the channel to identify the transmitter and hence authenticate the transmitter.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/154568/1/Azeem Hafeez Final Disseration.pdfDescription of Azeem Hafeez Final Disseration.pdf : Dissertatio

    CCTV Technology Handbook

    Get PDF
    This CCTV Technology Handbook provides emergency responders, law enforcement security managers, and other security specialists with a reference to aid in planning, designing, and purchasing a CCTV system. This handbook includes a description of the capabilities and limitations of CCTV components used in security applications
    • …
    corecore