6,835 research outputs found

    ENSEMBLE MACHINE LEARNING APPROACH FOR IOT INTRUSION DETECTION SYSTEMS

    Get PDF
    The rapid growth and development of the Internet of Things (IoT) have had an important impact on various industries, including smart cities, the medical profession, autos, and logistics tracking. However, with the benefits of the IoT come security concerns that are becoming increasingly prevalent. This issue is being addressed by developing intelligent network intrusion detection systems (NIDS) using machine learning (ML) techniques to detect constantly changing network threats and patterns. Ensemble ML represents the recent direction in the ML field. This research proposes a new anomaly-based solution for IoT networks utilizing ensemble ML algorithms, including logistic regression, naive Bayes, decision trees, extra trees, random forests, and gradient boosting. The algorithms were tested on three different intrusion detection datasets. The ensemble ML method achieved an accuracy of 98.52% when applied to the UNSW-NB15 dataset, 88.41% on the IoTID20 dataset, and 91.03% on the BoTNeTIoT-L01-v2 dataset

    ENSEMBLE MACHINE LEARNING APPROACH FOR IOT INTRUSION DETECTION SYSTEMS

    Get PDF
    The rapid growth and development of the Internet of Things (IoT) have had an important impact on various industries, including smart cities, the medical profession, autos, and logistics tracking. However, with the benefits of the IoT come security concerns that are becoming increasingly prevalent. This issue is being addressed by developing intelligent network intrusion detection systems (NIDS) using machine learning (ML) techniques to detect constantly changing network threats and patterns. Ensemble ML represents the recent direction in the ML field. This research proposes a new anomaly-based solution for IoT networks utilizing ensemble ML algorithms, including logistic regression, naive Bayes, decision trees, extra trees, random forests, and gradient boosting. The algorithms were tested on three different intrusion detection datasets. The ensemble ML method achieved an accuracy of 98.52% when applied to the UNSW-NB15 dataset, 88.41% on the IoTID20 dataset, and 91.03% on the BoTNeTIoT-L01-v2 dataset

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    Optimal Ensemble Learning Based on Distinctive Feature Selection by Univariate ANOVA-F Statistics for IDS

    Get PDF
    Cyber-attacks are increasing day by day. The generation of data by the population of the world is immensely escalated. The advancements in technology, are intern leading to more chances of vulnerabilities to individual’s personal data. Across the world it became a very big challenge to bring down the threats to data security. These threats are not only targeting the user data and also destroying the whole network infrastructure in the local or global level, the attacks could be hardware or software. Central objective of this paper is to design an intrusion detection system using ensemble learning specifically Decision Trees with distinctive feature selection univariate ANOVA-F test. Decision Trees has been the most popular among ensemble learning methods and it also outperforms among the other classification algorithm in various aspects. With the essence of different feature selection techniques, the performance found to be increased more, and the detection outcome will be less prone to false classification. Analysis of Variance (ANOVA) with F-statistics computations could be a reasonable criterion to choose distinctives features in the given network traffic data. The mentioned technique is applied and tested on NSL KDD network dataset. Various performance measures like accuracy, precision, F-score and Cross Validation curve have drawn to justify the ability of the method

    Optimal Ensemble Learning Based on Distinctive Feature Selection by Univariate ANOVA-F Statistics for IDS

    Get PDF
    Cyber-attacks are increasing day by day. The generation of data by the population of the world is immensely escalated. The advancements in technology, are intern leading to more chances of vulnerabilities to individual’s personal data. Across the world it became a very big challenge to bring down the threats to data security. These threats are not only targeting the user data and also destroying the whole network infrastructure in the local or global level, the attacks could be hardware or software. Central objective of this paper is to design an intrusion detection system using ensemble learning specifically Decision Trees with distinctive feature selection univariate ANOVA-F test. Decision Trees has been the most popular among ensemble learning methods and it also outperforms among the other classification algorithm in various aspects. With the essence of different feature selection techniques, the performance found to be increased more, and the detection outcome will be less prone to false classification. Analysis of Variance (ANOVA) with F-statistics computations could be a reasonable criterion to choose distinctives features in the given network traffic data. The mentioned technique is applied and tested on NSL KDD network dataset. Various performance measures like accuracy, precision, F-score and Cross Validation curve have drawn to justify the ability of the method

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    Time series classification based on fractal properties

    Full text link
    The article considers classification task of fractal time series by the meta algorithms based on decision trees. Binomial multiplicative stochastic cascades are used as input time series. Comparative analysis of the classification approaches based on different features is carried out. The results indicate the advantage of the machine learning methods over the traditional estimating the degree of self-similarity.Comment: 4 pages, 2 figures, 3 equations, 1 tabl

    In-depth comparative evaluation of supervised machine learning approaches for detection of cybersecurity threats

    Get PDF
    This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for testing intrusion detection systems. The data set is divided into several days, each pertaining to different attack classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learning algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter optimization, using a voting mechanism that includes five classification metrics, was employed to select optimal parameters. These results were interpreted to discover whether certain parameter choices were dominant for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to obtain the final classification scores. During the review of these results, execution time, both on consumerand corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this paper establishes a novel supervised machine learning performance baseline for CICIDS2017
    corecore