77,117 research outputs found

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Design: One, but in different forms

    Full text link
    This overview paper defends an augmented cognitively oriented generic-design hypothesis: there are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (related to the design process, the designers, and the artefact) introduce specificities in the corresponding cognitive activities and structures that are used, and in the resulting designs. We thus augment the classical generic-design hypothesis with that of different forms of designing. We review the data available in the cognitive design research literature and propose a series of candidates underlying such forms of design, outlining a number of directions requiring further elaboration

    Both Generic Design and Different Forms of Designing

    Get PDF
    This paper defends an augmented cognitively oriented "generic-design hypothesis": There are both significant similarities between the design activities implemented in different situations and crucial differences between these and other cognitive activities; yet, characteristics of a design situation (i.e., related to the designers, the artefact, and other task variables influencing these two) introduce specificities in the corresponding design activities and cognitive structures that are used. We thus combine the generic-design hypothesis with that of different "forms" of designing. In this paper, outlining a number of directions that need further elaboration, we propose a series of candidate dimensions underlying such forms of design

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details

    Architecture for spacecraft operations planning

    Get PDF
    A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed
    • …
    corecore