13,568 research outputs found

    Quantum Computing and Nuclear Magnetic Resonance

    Full text link
    Quantum information processing is the use of inherently quantum mechanical phenomena to perform information processing tasks that cannot be achieved using conventional classical information technologies. One famous example is quantum computing, which would permit calculations to be performed that are beyond the reach of any conceivable conventional computer. Initially it appeared that actually building a quantum computer would be extremely difficult, but in the last few years there has been an explosion of interest in the use of techniques adapted from conventional liquid state nuclear magnetic resonance (NMR) experiments to build small quantum computers. After a brief introduction to quantum computing I will review the current state of the art, describe some of the topics of current interest, and assess the long term contribution of NMR studies to the eventual implementation of practical quantum computers capable of solving real computational problems.Comment: 8 pages pdf including 6 figures. Perspectives article commissioned by PhysChemCom

    An Introduction to Quantum Computing for Non-Physicists

    Full text link
    Richard Feynman's observation that quantum mechanical effects could not be simulated efficiently on a computer led to speculation that computation in general could be done more efficiently if it used quantum effects. This speculation appeared justified when Peter Shor described a polynomial time quantum algorithm for factoring integers. In quantum systems, the computational space increases exponentially with the size of the system which enables exponential parallelism. This parallelism could lead to exponentially faster quantum algorithms than possible classically. The catch is that accessing the results, which requires measurement, proves tricky and requires new non-traditional programming techniques. The aim of this paper is to guide computer scientists and other non-physicists through the conceptual and notational barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe quantum cryptography, teleportation, and dense coding. Various approaches to harnessing the power of quantum parallelism are explained, including Shor's algorithm, Grover's algorithm, and Hogg's algorithms. We conclude with a discussion of quantum error correction.Comment: 45 pages. To appear in ACM Computing Surveys. LATEX file. Exposition improved throughout thanks to reviewers' comment

    Logical operations with Localized Structures

    Get PDF
    We show how to exploit excitable regimes mediated by localized structures (LS) to perform AND, OR, and NOT logical operations providing full logical functionality. Our scheme is general and can be implemented in any physical system displaying LS. In particular, LS in nonlinear photonic devices can be used for all-optical computing applications where several reconfigurable logic gates can be implemented in the transverse plane of a single device, allowing for parallel computing.Comment: 11 pages, 6 figure

    Renyi entropies as a measure of the complexity of counting problems

    Full text link
    Counting problems such as determining how many bit strings satisfy a given Boolean logic formula are notoriously hard. In many cases, even getting an approximate count is difficult. Here we propose that entanglement, a common concept in quantum information theory, may serve as a telltale of the difficulty of counting exactly or approximately. We quantify entanglement by using Renyi entropies S(q), which we define by bipartitioning the logic variables of a generic satisfiability problem. We conjecture that S(q\rightarrow 0) provides information about the difficulty of counting solutions exactly, while S(q>0) indicates the possibility of doing an efficient approximate counting. We test this conjecture by employing a matrix computing scheme to numerically solve #2SAT problems for a large number of uniformly distributed instances. We find that all Renyi entropies scale linearly with the number of variables in the case of the #2SAT problem; this is consistent with the fact that neither exact nor approximate efficient algorithms are known for this problem. However, for the negated (disjunctive) form of the problem, S(q\rightarrow 0) scales linearly while S(q>0) tends to zero when the number of variables is large. These results are consistent with the existence of fully polynomial-time randomized approximate algorithms for counting solutions of disjunctive normal forms and suggests that efficient algorithms for the conjunctive normal form may not exist.Comment: 13 pages, 4 figure

    Experimental Heat-Bath Cooling of Spins

    Get PDF
    Algorithmic cooling (AC) is a method to purify quantum systems, such as ensembles of nuclear spins, or cold atoms in an optical lattice. When applied to spins, AC produces ensembles of highly polarized spins, which enhance the signal strength in nuclear magnetic resonance (NMR). According to this cooling approach, spin-half nuclei in a constant magnetic field are considered as bits, or more precisely, quantum bits, in a known probability distribution. Algorithmic steps on these bits are then translated into specially designed NMR pulse sequences using common NMR quantum computation tools. The algorithmicalgorithmic cooling of spins is achieved by alternately combining reversible, entropy-preserving manipulations (borrowed from data compression algorithms) with selectiveselective resetreset, the transfer of entropy from selected spins to the environment. In theory, applying algorithmic cooling to sufficiently large spin systems may produce polarizations far beyond the limits due to conservation of Shannon entropy. Here, only selective reset steps are performed, hence we prefer to call this process "heat-bath" cooling, rather than algorithmic cooling. We experimentally implement here two consecutive steps of selective reset that transfer entropy from two selected spins to the environment. We performed such cooling experiments with commercially-available labeled molecules, on standard liquid-state NMR spectrometers. Our experiments yielded polarizations that bypassbypass Shannon′sShannon's entropyentropy-conservationconservation boundbound, so that the entire spin-system was cooled. This paper was initially submitted in 2005, first to Science and then to PNAS, and includes additional results from subsequent years (e.g. for resubmission in 2007). The Postscriptum includes more details.Comment: 20 pages, 8 figures, replaces quant-ph/051115

    Layered architecture for quantum computing

    Full text link
    We develop a layered quantum computer architecture, which is a systematic framework for tackling the individual challenges of developing a quantum computer while constructing a cohesive device design. We discuss many of the prominent techniques for implementing circuit-model quantum computing and introduce several new methods, with an emphasis on employing surface code quantum error correction. In doing so, we propose a new quantum computer architecture based on optical control of quantum dots. The timescales of physical hardware operations and logical, error-corrected quantum gates differ by several orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems independently, demonstrating the value of our layered architectural approach. Using this concrete hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for integer factoring and quantum simulation, finding that the quantum dot architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure

    Hybrid quantum computing with ancillas

    Get PDF
    In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.Comment: Review paper. An introduction to quantum computation with qudits and continuous variables, and a review of ancilla-based gate method

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay
    • …
    corecore