Counting problems such as determining how many bit strings satisfy a given
Boolean logic formula are notoriously hard. In many cases, even getting an
approximate count is difficult. Here we propose that entanglement, a common
concept in quantum information theory, may serve as a telltale of the
difficulty of counting exactly or approximately. We quantify entanglement by
using Renyi entropies S(q), which we define by bipartitioning the logic
variables of a generic satisfiability problem. We conjecture that
S(q\rightarrow 0) provides information about the difficulty of counting
solutions exactly, while S(q>0) indicates the possibility of doing an efficient
approximate counting. We test this conjecture by employing a matrix computing
scheme to numerically solve #2SAT problems for a large number of uniformly
distributed instances. We find that all Renyi entropies scale linearly with the
number of variables in the case of the #2SAT problem; this is consistent with
the fact that neither exact nor approximate efficient algorithms are known for
this problem. However, for the negated (disjunctive) form of the problem,
S(q\rightarrow 0) scales linearly while S(q>0) tends to zero when the number of
variables is large. These results are consistent with the existence of fully
polynomial-time randomized approximate algorithms for counting solutions of
disjunctive normal forms and suggests that efficient algorithms for the
conjunctive normal form may not exist.Comment: 13 pages, 4 figure