147,194 research outputs found

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: – Probabilistic Inference: Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. – Decision Making: Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. – Operational Relevance: Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: – Probabilistic Inference: Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. – Decision Making: Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. – Operational Relevance: Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes

    Bayes Factors for Forensic Decision Analyses with R

    Get PDF
    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability—keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information—scientific evidence—ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes. This book is Open Access

    Bayesian approaches to technology assessment and decision making

    Get PDF
    Until the mid-1980s, most economic analyses of healthcare technologies were based on decision theory and used decision-analytic models. The goal was to synthesize all relevant clinical and economic evidence for the purpose of assisting decision makers to efficiently allocate society's scarce resources. This was true of virtually all the early cost-effectiveness evaluations sponsored and/or published by the U.S. Congressional Office of Technology Assessment (OTA) (15), Centers of Disease Control and Prevention (CDC), the National Cancer Institute, other elements of the U.S. Public Health Service, and of healthcare technology assessors in Europe and elsewhere around the world. Methodologists routinely espoused, or at minimum assumed, that these economic analyses were based on decision theory (8;24;25). Since decision theory is rooted in—in fact, an informal application of—Bayesian statistical theory, these analysts were conducting studies to assist healthcare decision making by appealing to a Bayesian rather than a classical, or frequentist, inference approach. But their efforts were not so labeled. Oddly, the statistical training of these decision analysts was invariably classical, not Bayesian. Many were not—and still are not—conversant with Bayesian statistical approaches

    Revisiting maximum-a-posteriori estimation in log-concave models

    Get PDF
    Maximum-a-posteriori (MAP) estimation is the main Bayesian estimation methodology in imaging sciences, where high dimensionality is often addressed by using Bayesian models that are log-concave and whose posterior mode can be computed efficiently by convex optimisation. Despite its success and wide adoption, MAP estimation is not theoretically well understood yet. The prevalent view in the community is that MAP estimation is not proper Bayesian estimation in a decision-theoretic sense because it does not minimise a meaningful expected loss function (unlike the minimum mean squared error (MMSE) estimator that minimises the mean squared loss). This paper addresses this theoretical gap by presenting a decision-theoretic derivation of MAP estimation in Bayesian models that are log-concave. A main novelty is that our analysis is based on differential geometry, and proceeds as follows. First, we use the underlying convex geometry of the Bayesian model to induce a Riemannian geometry on the parameter space. We then use differential geometry to identify the so-called natural or canonical loss function to perform Bayesian point estimation in that Riemannian manifold. For log-concave models, this canonical loss is the Bregman divergence associated with the negative log posterior density. We then show that the MAP estimator is the only Bayesian estimator that minimises the expected canonical loss, and that the posterior mean or MMSE estimator minimises the dual canonical loss. We also study the question of MAP and MSSE estimation performance in large scales and establish a universal bound on the expected canonical error as a function of dimension, offering new insights into the good performance observed in convex problems. These results provide a new understanding of MAP and MMSE estimation in log-concave settings, and of the multiple roles that convex geometry plays in imaging problems.Comment: Accepted for publication in SIAM Imaging Science

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page
    corecore