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Revisiting Maximum-A-Posteriori Estimation in Log-Concave Models\ast 

Marcelo Pereyra\dagger 

Abstract. Maximum-a-posteriori (MAP) estimation is the main Bayesian estimation methodology in imaging
sciences, where high dimensionality is often addressed by using Bayesian models that are log-concave
and whose posterior mode can be computed efficiently by convex optimization. However, despite its
success and wide adoption, MAP estimation is not theoretically well understood yet. In particular,
the prevalent view in the community is that MAP estimation is not proper Bayesian estimation in the
sense of Bayesian decision theory because it does not minimize a meaningful expected loss function
(unlike the minimum mean squared error (MMSE) estimator that minimizes the mean squared loss).
This paper addresses this theoretical gap by presenting a general decision-theoretic derivation of
MAP estimation in Bayesian models that are log-concave. A main novelty is that our analysis
is based on differential geometry and proceeds as follows. First, we use the underlying convex
geometry of the Bayesian model to induce a Riemannian geometry on the parameter space. We
then use differential geometry to identify the so-called natural or canonical loss function to perform
Bayesian point estimation in that Riemannian manifold. For log-concave models, this canonical loss
coincides with the Bregman divergence associated with the negative log posterior density. Following
on from this, we show that the MAP estimator is the only Bayesian estimator that minimizes
the expected canonical loss, and that the posterior mean or MMSE estimator minimizes the dual
canonical loss. We then study the question of MAP and MMSE estimation performance in high
dimensions. Precisely, we establish a universal bound on the expected canonical error as a function
of image dimension, providing new insights on the good empirical performance observed in convex
problems. Together, these results provide a new understanding of MAP and MMSE estimation in log-
concave settings, and of the multiple beneficial roles that convex geometry plays in imaging problems.
Finally, we illustrate this new theory by analyzing the regularization-by-denoising Bayesian models,
a class of state-of-the-art imaging models where priors are defined implicitly through image denoising
algorithms, and an image denoising model with a wavelet shrinkage prior.
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1. Introduction. We consider the estimation of an unknown image x \in \BbbR n from some data
y, related to x by a statistical model with likelihood p(y| x). Adopting a Bayesian statistical
approach, we postulate a prior distribution p(x) modeling the prior knowledge available and
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REVISITING MAP ESTIMATION IN LOG-CONCAVE MODELS 651

base our inferences on the posterior distribution [32]

p(x| y) = p(y| x)p(x)\int 
\BbbR n p(y| x)p(x)dx

,

which models our knowledge about x after observing y. In this paper we focus on the case
where p(x| y) belongs to the class of log-concave distribution, i.e.,

(1) p(x| y) = exp\{  - \phi (x)\} \int 
\BbbR n exp\{  - \phi (s)\} ds

,

for some proper convex function \phi : \BbbR n \rightarrow ( - \infty ,\infty ] [9], and where we note that for notational
convenience we do not write explicitly the dependence of \phi on y.

Log-concave models (1) are ubiquitous in modern imaging sciences. For instance, many
imaging methods to solve linear imaging inverse problems involving additive Gaussian noise
use models of the form \phi (x) = \| y - Ax\| 2/2\sigma 2+\psi (Bx)+1\scrS (x) for some linear operators A and
B, convex regularizer \psi , and convex set \scrS (see [1, 6, 5] for examples related to image deblurring,
inpainting, compressive sensing, superresolution, and tomographic reconstruction, with total-
variation and wavelet priors). Similar log-concave Bayesian models can be considered for
problems involving other observation noise models, such as Poisson noise [26], and for phase
retrieval problems [11]. Log-concave models (1) are also used extensively in other areas of
data science such as machine learning [41].

Because drawing conclusions directly from p(x| y) is difficult, Bayesian imaging methods
deliver summaries of p(x| y)---namely Bayes point estimators---that summarize p(x| y) opti-
mally in a single value \^x. This estimated value is optimal in the following decision-theoretic
sense [38].

Definition 1. Let L : \BbbR n\times \BbbR n \rightarrow \BbbR +
0 be a loss function that quantifies the difference between

two points in \BbbR n. A Bayes estimator associated with L is any estimator that minimizes the
posterior expected loss, i.e.,

\^xL = argmin
u\in \BbbR n

Ex| y[L(u, x)].

Recall that the posterior expectation Ex| y[L(u, x)] \triangleq 
\int 
\BbbR n L(u, x)p(x| y)dx. Sensible loss

functions L usually verify the following three desiderata [38]:
\bullet L(u, x) \geq 0 \forall u, x \in \BbbR n ,
\bullet L(u, x) = 0 \Leftarrow \Rightarrow u = x ,
\bullet L is strictly convex w.r.t. its first argument (to guarantee estimator uniqueness).
Estimator uniqueness is important because it implies admissibility (i.e., Bayesian estimator

\^xL is not dominated by any other estimator) [38]. Observe that L is not necessarily symmetric;
that is, L(u, x) \not = L(x, u). We do not enforce symmetry because the arguments of L have
clearly different roles in the decision problem.

In a purely theoretical Bayesian exercise, L should be chosen based on specific aspects of
the problem and application considered. This is particularly important in imaging problems
that are ill-posed or ill-conditioned, as the choice of L can significantly impact estimationD
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652 MARCELO PEREYRA

results. However, specifying a bespoke loss function for high dimensional problems is not
easy. Consequently, most methods in the imaging literature use default losses and estimators.

In particular, Bayesian imaging methods have traditionally used the minimum mean
squared error (MMSE) estimator, given by the posterior mean \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} =

\int 
\BbbR n p(x| y)xdx. This

estimator is widely regarded as a gold standard in the field, in part because of its good em-
pirical performance and favorable theoretical properties, and also perhaps in part because of
cultural heritage. From Bayesian decision theory, MMSE estimation is optimal with respect
to the entire class of Euclidean or Mahalanobis squared distances, given by quadratic loss
functions of the form L(u, x) = (u - x)\top Q(u - x) with Q \in \scrS n++ (i.e., the set of n\times n positive
definite matrices), which includes the popular mean square loss L(u, x) = \| u  - x\| 22 when
Q = In [38]. This gives \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} a straightforward geometric interpretation. Moreover, MSE
estimation is optimal w.r.t. a more general class of functions [7] that provides a second order
approximation to any strongly convex loss function; hence \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} can act as a universal proxy
for other Bayesian estimators in this sense.

Unfortunately, calculating \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} in high dimensional models can be very difficult because
it requires solving integrals that are often too computationally expensive. This has stimulated
much research on the topic, from fast Monte Carlo simulation methods to efficient approxi-
mations with deterministic algorithms [37, 25]. But with ever increasingly large problems and
datasets, many imaging methods have focused on alternatives to MMSE estimation.

In particular, modern methods rely strongly on maximum-a-posteriori (MAP) estimation,

\^x\mathrm{M}\mathrm{A}\mathrm{P} = argmax
x\in \BbbR n

p(x| y),

= argmin
x\in \BbbR n

\phi (x),

whose calculation is a convex problem that can often be solved very efficiently, even in very
high dimensions (e.g., n > 106), by using proximal convex optimization techniques [19, 13,
21, 27]. Modern nonstatistical imaging methods also predominately solve problems by convex
optimization, and their solutions are often equivalent to performing MAP estimation for some
implicit Bayesian model. The precise sense in which these solutions are equivalent to MAP
estimators is an interesting discussion topic that is beyond the scope of this paper.

Following a decade of intensive activity, there is now abundant evidence that MAP es-
timation delivers accurate results for a wide range of imaging problems. However, from a
theoretical viewpoint MAP estimation is not well understood. Currently the predominant
view is that MAP estimation is not formal Bayesian estimation in the decision-theoretic sense
postulated by Definition 1 because it does not generally minimize a known expected loss. The
prevailing interpretation is that MAP estimation is in fact an approximation arising from the
degenerate loss L\epsilon (u, x) = 1\| x - u\| <\epsilon with \epsilon \rightarrow 0 [38] (this derivation holds for all log-concave
models but is not generally true [8]). However, this asymptotic derivation does not lead to a
proper Bayesian estimator. More importantly, the resulting loss is very difficult to motivate
for inference problems in continuous domains such as \BbbR n and does not help explain the good
empirical performance reported in the literature.

Furthermore, most other theoretical results for MAP estimation only hold for very specific
models, or have been derived by adopting analyses that are extrinsic to the Bayesian decisionD
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REVISITING MAP ESTIMATION IN LOG-CONCAVE MODELS 653

theory framework (e.g., by analyzing MAP estimation as constrained or regularized least-
squares regression; see, for example, [18, 17]). As a trivial example of results that only hold for
specific models, when p(x| y) is symmetric we have \^x\mathrm{M}\mathrm{A}\mathrm{P} = \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, and thus MAP estimation
inherits the favorable properties of MMSE estimation. This result has been partially extended
to some denoising models of the form p(x| y) \propto exp\{ \| y  - x\| 2/2\sigma 2 + \lambda h(x)\} in [28], where
it is shown that MAP estimation coincides with MMSE estimation with a different model
\~p(x| y) \propto exp\{  - \| y  - x\| 2/2\sigma 2  - \~\lambda \~h(x)\} involving a different prior distribution. It follows
that for these models MAP estimation is decision-theoretic Bayesian estimation w.r.t. the
weighted loss L(u, x) = \| u  - x\| exp\{ \~\lambda \~h(x)  - \lambda h(x)\} . This is of course a post-hoc loss, but
the result is interesting in that it highlights that a single estimator may have a plurality of
origins. More importantly, it raises the question of whether MAP estimation is merely a
computational proxy for MMSE estimation, which unlike \^x\mathrm{M}\mathrm{A}\mathrm{P} has an appealing theoretical
underpinning. This question was recently answered in Burger and Lucka [15]: MAP estimation
is proper decision-theoretic Bayesian estimation for all models of the form p(x| y) \propto exp\{  - \| y - 
Ax\| 2\Sigma  - 1/2  - \lambda h(x)\} , with known linear operator A and noise covariance \Sigma , and where h is
convex and Lipschitz continuous. More precisely, that paper shows that for this class of models
MAP estimation is optimal w.r.t. the loss L(u, x) = \| A(u  - x)\| 2\Sigma  - 1 + 2\lambda Dh(u, x)\} , where
Dh(x) = h(u) - h(x) - \nabla h(x)\top (u - x) is the h-Bregman divergence [9]. The paper also shows
that \^x\mathrm{M}\mathrm{A}\mathrm{P} outperforms \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} w.r.t. the expected Bregman error Ex| y\{ Dh(u, x)\} , an error
measure that grasps some distinctive features of x (e.g., sparsity, regularity, smoothness, etc.).
It may appear that the loss identified in [15] is rather artificial and difficult to analyze and
motivate; however, the new results presented in section 3 show that it is a specific instance of
a more general loss that stems directly from the consideration of the geometry of the Bayesian
model.

It is also worth mentioning that several recent works have studied MAP estimation in
infinite-dimensional settings, which is important for our understanding of how the technique
behaves in increasingly large problems. An important advance in this area is the connection
of the topological description of the MAP estimate to a variational problem, developed in
[23] for nonlinear inverse problems in a Gaussian framework, and subsequently extended to
non-Gaussian settings in [31]. Agapiou et al. made another key contribution in this area
by studying infinite-dimensional MAP estimation with Besov priors, which are very relevant
to imaging sciences because they promote sparsity and preservation of edges [2]. We also
mention the recent work [33], which further improves our understanding of modes in infinite
dimensions.

In order to better understand MAP estimation, in this paper we first revisit the choice of
the loss function for Bayesian point estimation in the context of models that are log-concave,
where MAP is a convex problem (we limit our analysis to finite-dimensional problems). A
main novelty of our analysis is that, instead of specifying the loss directly, we use differential
geometry to derive the loss from the geometry of the model. Precisely, we show that under
some regularity assumptions, the log-concavity of p(x| y) induces a specific Riemannian dif-
ferential geometry on the parameter space, and that taking into account this space geometry
naturally leads to an intrinsic or canonical loss function to perform Bayesian point estimation
in that space. Following on from this, we establish that the canonical loss for the parameter
space is the Bregman divergence associated with \phi (x) =  - log p(x| y), and that the BayesianD
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654 MARCELO PEREYRA

estimator w.r.t. this loss is the MAP estimator. We then show that the MMSE estimator
is the Bayesian estimator associated with the dual canonical loss, and we propose universal
estimation performance guarantees for MAP and MMSE estimation in log-concave models.
We conclude by illustrating our theory with an application to linear inverse problems with
sparsity-promoting wavelet priors, and an analysis of the regularization-by-denoising models
proposed recently in [39].

The remainder of the paper is organized as follows: section 2 introduces the elements
of differential geometry that are essential to our analysis. In section 3 we present our main
theoretical results: a decision-theoretic and differential-geometric derivation of MAP and
MMSE estimation, with universal bounds on the estimation error involved. Section 5 discusses
the impact of relaxing the regularity assumptions adopted in section 3. Conclusions are finally
reported in section 6. Proofs are presented in the appendix.

2. Riemannian geometry and the canonical divergence function. In this section we
recall some elements of differential geometry that are necessary for our analysis. For a detailed
introduction to this topic we refer the reader to [3].

An n-dimensional Riemannian manifold (\BbbR n, g), with metric g : \BbbR n \rightarrow \scrS n++ and global
coordinate system x, is a vector space that behaves locally as a Euclidean space.1 More
precisely, at any point x \in \BbbR n, we have a tangent space \scrT x\BbbR n with inner product \langle u, x\rangle =
u\top g(x)x and norm \| x\| =

\sqrt{} 
x\top g(x)x. This tangent space describes how the manifold (\BbbR n, g)

behaves locally at x. The geometry is local and may vary smoothly from \scrT x\BbbR n to neighboring
tangent spaces (i.e., the inner product and norm used are local properties and vary spatially).
The variations are encoded in the affine connection \Gamma , with coefficients given by \Gamma ij, k(x) =
\partial kgi,j(x) describing the spatial evolution of the metric g.

A crucial property of (\BbbR n, g) is that, similarly to Euclidean spaces, manifolds support
divergence functions.

Definition 2. A function D : \BbbR n \times \BbbR n \rightarrow \BbbR is a divergence function on \BbbR n if the following
conditions hold for any u, x \in \BbbR n:

\bullet D(u, x) \geq 0 \forall u, x \in \BbbR n,
\bullet D(u, x) = 0 \Leftarrow \Rightarrow x = u,
\bullet D(u, x) is strongly convex w.r.t. u, and \scrC 2 w.r.t. u and x.

Observe that the class of divergence functions is equivalent to that of loss functions for
Bayesian point estimation specified in section 1, with some mild additional regularity condi-
tions. This suggests that divergence functions are sensible losses to define estimators. More-
over, divergence functions also provide a link to the differential geometry of the space, which
allows relating space geometry and Bayesian decision theory. This relationship has been used
previously to analyze Bayesian decision problems from a Riemannian geometric viewpoint,
leading to the so-called decision geometry framework [24]. Here we adopt an opposite per-
spective: we start by considering a Riemannian manifold (\BbbR n, g) and then use the relationship
to identify the divergence functions that arise naturally in that space. In particular, we fo-
cus on the so-called canonical divergence on (\BbbR n, g), which generalizes the Euclidean squared
distance to this kind of manifold [4].

1Recall that \scrS n
++ is the set of n\times n positive definite matrices.D
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Definition 3 (Canonical divergence [4]). For any two points u, x \in \BbbR n, the (\BbbR n, g)-canonical
divergence is given by

(2) D(u, x) =

\int 1

0
t \.\gamma t

\top g(\gamma t) \.\gamma tdt,

where \gamma t is the \Gamma -geodesic from u to x and \.\gamma t = d/dt \gamma t.

The reason D is the (\BbbR n, g)-canonical divergence is that it fully specifies the geometry of
(\BbbR n, g); i.e., there is a one-to-one relationship between D and the metric g.

Observe thatD has connections to the length of the \Gamma -geodesic between u and x. Precisely,
by noting that the squared length of a curve \zeta t : [0, 1] \rightarrow \BbbR n on the manifold (\BbbR n, g) is given
by

\int 1
0

\.\zeta t
\top 
g(\zeta t) \.\zeta tdt, we observe that D(u, x) is essentially the squared length of the \Gamma -geodesic

\gamma t weighted linearly along the path from u to x. This weighting in (2) is important because it
guarantees that D(u, x) is convex in u, a necessary condition to define a divergence function
(the weighting also leads to other important properties such as linearity w.r.t. g; see section
3). Note that the weighting also introduces an asymmetry, i.e., generally D(u, x) \not = D(x, u),
which will have deep implications for Bayesian estimation.

Finally, it is easy to check that (2) reduces to the Euclidean squared distance D(u, x) =
1
2(u - x)

\top g(u - x) when (\BbbR n, g) is the Euclidean space with product \langle u, x\rangle = u\top gx.2 More gen-
erally, D is always consistent with the local Euclidean geometry of the manifold (\BbbR n, g). That
is, for any point x+ dx in the neighborhood of x we have D(x+ dx, x) = \| dx\| 2/2+ o(\| dx\| 2),
where \| \cdot \| is the Euclidean norm of the tangent space \scrT x\BbbR n (a higher order approximation of
D(x+ dx, x) is also possible by using the connection \Gamma [3]). And because D is the canonical
divergence, if we use the decision geometry framework [24] to derive the Riemannian geometry
induced by D on \BbbR n, we obtain

g
(D)
i,j (x) \triangleq \partial i\partial jD(x, x) = gi,j(x),

\Gamma 
(D)
ij, k(x) \triangleq \partial i\partial j\partial 

\prime 
kD(x, x) = \Gamma ij, k(x)

(here \partial and \partial \prime denote differentiation w.r.t. the first and second components ofD, respectively),
indicating that D fully specifies the geometry of (\BbbR n, g), and vice versa.

3. A differential-geometric derivation of MAP and MMSE estimation.

3.1. Canonical Bayesian estimation: From differential geometry to decision theory. In
this section we use differential geometry to relate the geometry of p(x| y) to the loss functions
used for Bayesian estimation of x. Precisely, we exploit the log-concavity of p(x| y) to induce
a Riemannian geometry on the solutions space. This in turn defines a canonical loss for
that space and two Bayesian estimators: a primal estimator related to D(u, x) and a dual
estimator related to the dual divergence D\ast 

\phi (u, x) = D\phi (x, u). We focus on the case where
p(x| y) is smooth and strongly log-concave, and later we analyze the effect of relaxing these
assumptions.

2In the Euclidean case we have that case g is constant, and the \Gamma -geodesic is \gamma t = u + t(x  - u), so
D(u, x) =

\int 1

0
t(u - x)\top g(u - x)dt =

\int 1

0
tdt(x - u)\top g(x - u) = 1

2
(x - u)\top g(x - u).D
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Theorem 4 (Canonical Bayesian estimators). Suppose that \phi (x) =  - log p(x| y) is strongly
convex, continuous, and \scrC 3 on \BbbR n. Let (\BbbR n, g) denote the Riemannian manifold induced by \phi ,
with metric coefficients gi,j(x) = \partial i\partial j\phi (x). Then, the canonical divergence on (\BbbR n, g) is the
\phi -Bregman divergence, i.e.,

D\phi (u, x) = \phi (u) - \phi (x) - \nabla \phi (x)(u - x).

In addition, the Bayesian estimator associated with D\phi (u, x) is unique and is given by the
MAP estimator

\^xD\phi 
\triangleq argmin

u\in \BbbR n
Ex| y[D\phi (u, x)]

= argmin
x\in \BbbR n

\phi (x)

= \^xMAP .

The Bayesian estimator associated with the dual canonical divergence D\ast 
\phi (u, x) = D\phi (x, u) is

also unique and is given by the MMSE estimator

\^xD\ast 
\phi 
\triangleq argmin

u\in \BbbR n
Ex| y[D

\ast 
\phi (u, x)]

=

\int 
\BbbR n

xp(x| y)dx

= \^xMMSE .

The proof is reported in the appendix.
Theorem 4 provides several interesting new insights into MAP and MMSE estimation in

log-concave models. First and foremost, MAP estimation stems from Bayesian decision theory,
and hence it stands on the same theoretical footing as the core Bayesian methodologies such as
MMSE estimation (albeit w.r.t. a different class of loss functions). The MAP loss, D\phi (u, x), is
a generalization of the Euclidean squared distance that arises naturally from the consideration
of the geometry of p(x| y). Consequently, the conventional definition of the MAP estimator
as the maximizer \^x\mathrm{M}\mathrm{A}\mathrm{P} = argmaxx\in \BbbR n p(x| y) is mainly algorithmic for these models and
useful to highlight that these estimators take the form of a convex optimization problem. (Of
course, this is a key computational advantage over other Bayesian point estimators because it
allows computation of \^x\mathrm{M}\mathrm{A}\mathrm{P} by using modern proximal convex optimization algorithms that
scale very efficiently to high dimensions; see, e.g., [19] for details.) Moreover, Theorem 4
also reveals a surprising form of duality between MAP and MMSE estimation, with the two
estimators intimately related to each other by the (asymmetry of the) canonical divergence
function that p(x| y) induced on the solutions space. Note that Gaussian models are special
because (\BbbR n, g) is Euclidean in that case, which is a self-dual space; consequently D\phi (u, x) =
D\phi (x, u) = 1

2\| u  - x\| 2\Sigma  - 1 and the primal and dual canonical estimators coincide as a result.
Finally, Theorem 4 also shows that, under log-concavity and smoothness assumptions, the
posterior mode is a global property of p(x| y), similarly to the posterior mean.

The way in which the Bregman divergence D\phi (u, x) measures the similarity between u
and x is directly related to the geometry of p(x| y). Precisely, because \phi (x) =  - log p(x| y) isD
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strongly convex, then \phi (u) > \phi (x)  - \nabla \phi (x)(u  - x) for any u \not = x. The divergence D\phi (u, x)
essentially quantifies this gap, which, as mentioned previously, is directly related to the length
of the affine geodesic from u to x (and hence not only to the relative position of u and x but also
to the space geometry induced by p(x| y)). Moreover, this geometry can depend on the value
of y; however, for the important class of models of the p(x| y) \propto exp\{  - \| y - Ax\| 2\Sigma  - 1/2 - \lambda h(x)\} 
the geometry is completely specified by \Sigma and \lambda h independently of y. Furthermore, observe
that because D\phi is linear w.r.t. \phi , for any decomposition \phi = \alpha \phi 1 + \beta \phi 2 based on two convex
functions \phi 1 and \phi 2 and \alpha , \beta \in \BbbR , we obtain D\phi = \alpha D\phi 1 + \beta D\phi 2 . It follows that for the
specific case of Gaussian linear observation models, the canonical divergence D\phi is equivalent
to the specific loss identified in [15].

We also mention at this point that for Gaussian denoising models, i.e., \phi (x) = \| y  - 
x\| 22/2\sigma 2 + \psi (x), the estimator \^xD\phi 

= \^x\mathrm{M}\mathrm{A}\mathrm{P} results from the computation of the proximal
operator prox\sigma 2\psi (y) = argminx\in \BbbR n \| y  - x\| 22/2\sigma 2 + \psi (x) [19]. This is equivalent to a gradient

step on the Moreau--Yoshida regularization of \psi ; i.e., \^x\mathrm{M}\mathrm{A}\mathrm{P} = y + \sigma 2\nabla \~\phi (y), with \~\psi (y) =
infx\in \BbbR n \| y  - x\| 22/2\sigma 2 + \psi (x). Likewise, \^xD\ast 

\phi 
= \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} can be expressed as the gradient step

\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} = y + \sigma 2\nabla \=\phi (y), where \=\psi = log
\int 
exp\{  - \| y  - x\| 22/\sigma 2  - \psi (x)\} dx is a different smooth

approximation of \psi (please see [36] for details).
Also note that a different Bregman divergence, namely the KL divergence KL(u, x) =\int 

log
\Bigl[ 
p(y| x)
p(y| u

\Bigr] 
p(y| x)dy, is often used in Bayesian point estimation to define an estimator that

is independent of the parametrization of the likelihood [38]. This estimator is particularly
relevant when the object of interest is p(y| x), as opposed to the value of x itself, for example
in prediction problems. This estimator is not often used in imaging sciences.

Finally, we notice that because D\phi (u, x) is derived from p(x| y) it may depend on the
value of y, which is controversial in some lines of Bayesian thinking because it implies that
the decision problem underpinning the estimator is defined a posteriori. This can happen, for
example, in problems involving non-Gaussian observation models. Our view on this matter is
that although decision problems are generally defined a priori, the case of Bayesian estimators
is special because the decision involved is precisely how to summarize p(x| y), and this decision
can be considered a posteriori if this allows delivery of an estimator with favorable accuracy
or computational properties. Of course, loss functions that do not depend on the model
considered also have advantages, namely the mean squared error loss that also leads to an
estimator with good properties (albeit often very expensive to compute). In any case, it is
fundamental that one understands how the estimator that one uses summarizes p(x| y), and
the aim of this work is to improve our understanding of the widely used MAP estimator.

3.2. Error bounds for MAP and MMSE estimation. Theorem 4 establishes that under
certain conditions \^x\mathrm{M}\mathrm{A}\mathrm{P} is a proper Bayesian estimator. Following on from this, it is natural to
study the accuracy of \^x\mathrm{M}\mathrm{A}\mathrm{P} as a Bayesian estimator. The Bayesian approach to this question
is to infer the accuracy of \^x\mathrm{M}\mathrm{A}\mathrm{P} according to the posterior distribution p(x| y). For \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}

this generally corresponds to computing the expected mean squared error loss, related to the
posterior covariance. This type of analysis can be useful, for example, for identifying high
dimensional stability conditions (i.e., conditions under which the error grows linearly with
n = dim(x)).D
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Here we perform this type of analysis for \^x\mathrm{M}\mathrm{A}\mathrm{P} w.r.t. the canonical loss. Precisely, we
establish universal estimation error bounds w.r.t. the dual error function D\ast 

\phi (u, x) for MAP
and MMSE estimation, for which we have the following result.

Proposition 5 (Expected error bound). Suppose that \phi (x) =  - log p(x| y) is convex on \BbbR n
and \phi \in \scrC 1. Then,

Ex| y
\bigl[ 
D\ast 
\phi (\^xMMSE, x)

\bigr] 
\leq Ex| y

\bigl[ 
D\ast 
\phi (\^xMAP, x)

\bigr] 
\leq n.

Proof. The proof is reported in the appendix.

We read Proposition 5 as a high dimensional stability result for MAP and MMSE esti-
mation, stating that the expected estimation error, as measured by the dual loss D\ast 

\phi , grows
at most linearly with the number of image pixels. Therefore, even if the likelihood p(y| x)
is poorly identifiable because dim(y) \ll dim(x), or because the linear operator A is very
rank deficient, or because y is corrupted by Poison noise, in smooth log-concave settings the
expected error cannot grow polynomially or with a linear constant greater than 1.

To formally study the expected error as n increases we consider a generic log-concave
stochastic process \BbbX = \{ x(n), n \in \BbbN \} , where, for each n \in \BbbN , the random vector x(n) =
(x1, . . . , xn) \in \BbbR n has marginal distribution pn(x

(n)| y) \propto exp\{  - \phi n(x(n))\} for some convex
function \phi n : \BbbR n \rightarrow ( - \infty ,\infty ]. We also assume that the entropy rate of \BbbX is finite; i.e.,
limn\rightarrow \infty Ex(n+1)| y[\phi n+1(x

(n+1))]  - Ex(n)| y[\phi n(x
(n))] < \infty [22]. This limit captures the asymp-

totic information gain per pixel and characterizes global statistical features of the image,
particularly correlations at any rage. In log-concave settings, this condition holds, for exam-

ple, when limn\rightarrow \infty \phi n(\^x
(n)
\mathrm{M}\mathrm{A}\mathrm{P})/n < \infty ; it also holds when \BbbX is strongly stationary [12]. By

analyzing Proposition 5 in this setting we see that

Ex(n)| y

\Bigl[ 
D\ast 
\phi n(\^x

(n)
\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x

(n))
\Bigr] 
\leq Ex(n)| y

\Bigl[ 
D\ast 
\phi n(\^x

(n)
\mathrm{M}\mathrm{A}\mathrm{P}, x

(n))
\Bigr] 
\leq n .

Then, because the entropic rate of \BbbX is finite, limn\rightarrow \infty Ex(n)| y[\phi n(x
(n))]/n <\infty [22], and hence

the dimension-normalized expected errors verify

lim
n\rightarrow \infty 

Ex(n)| y

\Bigl[ 
D\ast 
\phi n(\^x

(n)
\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x

(n))/n
\Bigr] 
\leq lim

n\rightarrow \infty 
Ex(n)| y

\Bigl[ 
D\ast 
\phi n(\^x

(n)
\mathrm{M}\mathrm{A}\mathrm{P}, x

(n))/n
\Bigr] 
\leq 1 .

We emphasize again that this form of dimension stability is not generally available in estima-
tion problems, and is a direct consequence of the log-concavity of the model and its relationship
with the MAP and MMSE estimators. Finally, observe that the above error bounds are tight;
e.g., the trivial independent and identically distributed (i.i.d.) process xi| y \sim Exp(\lambda y), for
i \geq 1, \lambda y \in \BbbR +, attains the bound. We conjecture that this bound can be improved for
specific subclasses of log-concave models by using entropy rate results from the probability
literature; future work will investigate this.

3.3. Connections to other works. We conclude this section by discussing some connec-
tions between this paper and other theoretical works related to MAP estimation. As previously
explained, Theorem 4 directly builds on [15], which considered the class of log-concave models
p(x| y) \propto exp\{  - \| y  - Ax\| 2\Sigma  - 1/2  - \lambda h(x)\} with Gaussian likelihood y \sim \scrN (Ax,\Sigma ) and priorD
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p(x) \propto exp\{ \lambda h(x)\} , and establishes that in this case \^x\mathrm{M}\mathrm{A}\mathrm{P} is the Bayesian estimator for the
Bregman loss L(u, x) = \| A(u  - x)\| 2\Sigma  - 1 + 2\lambda Dh(u, x)\} . Theorem 4 generalizes this result to
a larger class of posterior distributions and provides motivation for this unconventional loss
function by showing that it stems directly from the consideration of the geometry of the pa-
rameter space. Proposition 5 provides further motivation for this loss by establishing explicit
bounds on the expected estimation error.

It is worth mentioning that the generalization of [15] to other log-concave models was
developed simultaneously and independently in Burger, Dong, and Sciacchitano [14] (see [14,
Theorem 3.2] for MAP estimation and [14, Theorem 4.3] for MMSE estimation, which is
also closely related to [7, Proposition 1]). Moreover, that work also analyzes the expected
estimation error involved in MAP and MMSE estimation but w.r.t. other divergence functions.
More precisely, Burger, Dong, and Sciacchitano [14] use the Bregman divergence Dh related
to the regularizer or negative log-prior, whereas we use the canonical Bregman divergence D\phi 

related to the negative log-posterior. As mentioned previously, Dh grasps important features
of x (e.g., sparsity, regularity, smoothness) and is always independent of the observed data
y, whereas D\phi is independent of y only in special cases (e.g., Gaussian linear observation
models).

Moreover, Burger, Dong, and Sciacchitano also show that Ex| y [D
\ast 
h(\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x)] \leq 

Ex| y [D
\ast 
h(\^x\mathrm{M}\mathrm{A}\mathrm{P}, x)] and conclude that \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} outperforms \^x\mathrm{M}\mathrm{A}\mathrm{P} when the estimation error

is measured in this way, which is independent of y. To analyze how these expected errors
behave as dimensionality increases, we combine this result with Proposition 5 and obtain the
following bound.

Corollary 6. Suppose that h(x) =  - log p(x) is convex on \BbbR n and \phi \in \scrC 1. Then,

Ex| y [D
\ast 
h(\^xMMSE, x)] \leq Ex| y [D

\ast 
h(\^xMAP, x)] \leq n .

Proof. The proof follows directly from combining [14, Theorem 5.1] with Proposition 5
and the fact that D\ast 

h \leq D\ast 
\phi for any splitting \phi = h + f where h and f are convex functions.

This result can also be derived from the integration by parts argument in [14].

Again, we read Corollary 6 as a high dimensional stability result for MAP and MMSE
estimation, stating that the expected estimation error, measured in this case by the dual loss
D\ast 
h, grows at most linearly with the number of image pixels. Polynomial growth or faster linear

growth is not possible within the class of smooth log-concave models, even if the problem is
very ill-conditioned. At the same time, this linear rate cannot be further improved, as any
i.i.d. process p(x| y)

\prod n
i=1 p(xi| y) will have an error that grows linearly with n.

4. Illustrative examples. As a way of illustrating our theory, we now analyze the geom-
etry of a simple image denoising model in the wavelet domain, and of the regularization-by-
denoising (RED) Bayesian models recently proposed in [39].

4.1. Wavelet image denoising model. In this example we analyze the behavior of MAP
estimation in linear inverse problems with sparsity-promoting or shrinkage priors. Without
loss of generality, we first consider a simple additive noise observation model y = x+w, with
noise w \sim \scrN (0, \sigma 2In) with variance \sigma 2 \in \BbbR +, that allows a detailed analysis. To recover x we
put a shrinkage prior on a wavelet representation z = Wx of x, where W is some orthogonalD
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wavelet transform. More precisely, we use the smoothed Laplace prior

(3) p(z) \propto exp

\biggl\{ 
 - \lambda 

n\sum 
i=1

\sqrt{} 
z2i + \alpha 2

\biggr\} 
,

where \lambda \in \BbbR + and \alpha \in \BbbR + are, respectively, scale and shape regularization parameters; this
prior is also known as the pseudo-Huber, Hardy, or Charbonnier prior [10, 20]. The likelihood
is p(y| z) \propto exp\{  - 1

2\sigma 2 \| y  - W\top z\| 22\} , and hence the posterior for the wavelet coefficients is

p(z| y) \propto exp

\biggl\{ 
 - 1

2\sigma 2
\| y  - W\top z\| 22  - \lambda 

n\sum 
i=1

\sqrt{} 
z2i + \alpha 2

\biggr\} 
.

To check that Theorem 4 and Proposition 5 apply, we note that \phi (z) =  - 1
2\sigma 2 \| y  - W\top z\| 22  - 

\lambda 
\sum n

i=1

\sqrt{} 
z2i + \alpha 2 belongs to \scrC \infty and has a diagonal Hessian matrix with elements given by

\partial 2

\partial z2i
\phi (z) =

1

\sigma 2
+

\lambda \alpha 2

(\alpha 2 + z2i )
3/2

.

Noticing that the elements \partial 2

\partial z2i
\phi (z) take values in [ 1

\sigma 2 ,
1
\sigma 2 +\lambda ] for all z \in \BbbR n, we conclude that

\phi (z) is strongly convex. Notice that, similarly to the previous example, the geometry of the
manifold \{ \BbbR n, g\} does not depend on the value of the observation y, and hence the canonical
divergences are independent of y, too.

Because of the action of the shrinkage prior (3), the Bayesian model p(z| y) will promote
solutions that have some large wavelet coefficients and some coefficients close to zero. This
behavior is controlled by the regularization parameter \lambda and also by the choice of the Bayesian
estimator used to summarize z| y. In particular, MAP estimation may significantly accentuate
shrinkage. This can be theoretically analyzed in different ways, and in particular by using
Theorem 4. Accordingly, \^zMAP minimizes the expected canonical divergence on \{ \BbbR n, g\} , given
by the \phi -Bregman divergence

D\phi (u, z) =\phi (u) - \phi (z) - \nabla \phi (z)\top (u - z)

= 1
2\sigma 2 \| W\top u - W\top z\| 22 + \lambda 

n\sum 
i=1

\left[  \sqrt{} u2i + \alpha 2  - 
\sqrt{} 
z2i + \alpha 2 +

z2i  - ziui\sqrt{} 
z2i + \alpha 2

\right]  .

Because WW\top = In we have that D\phi is fully separable, i.e., D\phi (u, z) =
\sum n

i=1D\psi (ui, zi) with

D\psi (ui, zi) =
1

2\sigma 2 (ui  - zi)
2 + \lambda 

\sqrt{} 
z2i + \alpha 2

\sqrt{} 
u2i + \alpha 2  - ziui  - \alpha 2\sqrt{} 
z2i + \alpha 2

.

BecauseD\psi is a divergence it promotes values of ui that are close to zi. To develop an intuition
for D\psi it is useful to analyze its behavior when zi is small and when it is large relative toD
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\alpha . Observe that D\phi has a quadratic term related to the likelihood and a nonquadratic term
related to the shrinkage prior. When zi \gg \alpha the nonquadratic term vanishes, and hence

D\psi (ui, zi) \approx 1
2\sigma 2 (ui  - zi)

2 .

As a result, if the observed data is such that the posterior distribution for zi| y has most of its
mass in large values of zi, the MAP estimate for zi will essentially coincide with the MMSE
estimate given by the posterior mean of zi| y. In this case there is no additional shrinkage
from the estimator. Conversely, when zi \ll \alpha the estimator will significantly boost shrinkage.
More precisely, when zi \ll \alpha , the nonquadratic term behaves as

D\psi (ui, zi) \approx 1
2\sigma 2 (ui  - zi)

2 + \lambda | ui| 
\approx 1

2\sigma 2u
2
i + \lambda | ui| 

for ui \gg \alpha , and for ui \ll \alpha it behaves as

D\psi (ui, zi) \approx 1
2\sigma 2 (ui  - zi)

2 + \lambda 

\biggl[ 
u2i
2\alpha 

+
z2i
2\alpha 

 -  - ziui
\alpha 

\biggr] 
=

\biggl( 
1

2\sigma 2
+

\lambda 

2\alpha 

\biggr) 
(ui  - zi)

2
2

\approx 
\biggl( 

1

2\sigma 2
+

\lambda 

2\alpha 

\biggr) 
u2i .

In these two cases D\psi strongly promotes ui values that are close to zero, either explicitly
via the shrinkage term \lambda | ui| , or by amplifying the convexity constant of the quadratic loss
from 1/2\sigma 2 to 1/2\sigma 2 + \lambda /2\alpha . As a result, if the posterior distribution for zi| y has mass in
small values of zi, then the MAP estimate will intensify the shrinkage effect of the prior. This
additional shrinkage is not observed with other loss functions, e.g., MMSE, and is consistent
with the empirical observation that MAP estimation performs well with shrinkage priors.

For illustration, Figure 1 shows an experiment with the House image of size 256\times 256 pixels.
Figure 1(a) shows a corrupted observation y = x+ w with noise w \sim \scrN (0, \sigma ) with \sigma = 0.08,
which has a signal-to-noise ratio of 17.1dB. The restored imaged obtained by MAP estimation
is displayed in Figure 1(b); this estimate has a signal-to-noise ratio of 22.3dB (we used a
Haar wavelet decomposition with four levels and \lambda = 12 and \alpha = 0.01 for all scales except
the coarse scale, for which we used a Jeffreys prior p(zi) \propto 1 to avoid excessively biasing the
estimates). For comparison, we also report \^xMMSE , which in this experiment performs poorly
(signal-to-noise ratio of 17.7dB). The MAP estimator obtained with a conventional Laplace
or \ell 1 prior (i.e., with \alpha \rightarrow 0) has a worse signal-to-noise ratio (21.4dB, not displayed).

Because p(z| y) is fully separable, i.e., p(z| y)
\prod n
i=1 p(zi| y), and thus D\psi =

\sum n
i=1D\psi (ui, zi),

the action of this estimator can be clearly visualized by plotting the estimation function
that performs the denoising of the wavelet coefficients: for MAP estimation this is given by
\^zi,MAP (y) : y \rightarrow argminui Ezi

\bigl[ 
D\psi (ui, zi)| w\top 

i y
\bigr] 
, where w\top 

i y is the ith wavelet coefficient of y;
and for MMSE estimation it is the marginal posterior mean \^zi,MMSE(y) : y \rightarrow 

\int 
zip(zi| y)dzi.

These functions, displayed in Figure 1(d), clearly show the importance of the choice of the
loss used to summarize p(z| y).

We emphasize at this point that this experiment has been selected to highlight the ad-
ditional shrinkage obtained by using MAP estimation instead of MMSE estimation. How-
ever, there are other models where, because of the likelihood and the choice of the waveletD
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(a) observation y (b) restored image \^xMAP

(c) restored image \^xMMSE (d) denoising functions for \^zMAP and \^zMMSE

Figure 1. Wavelet denoising experiment with the House image with the smoothed Laplace prior (3).

representation and the parameters used, shrinkage arises mainly from the prior. In that
case MAP and MMSE estimation perform equally well. To illustrate this point, Figure 2
below shows the reconstruction results obtained in [16] with MAP and MMSE estimation
for a radio-interferometric imaging problem with a very similar model of the form p(z| y) \propto 
exp\{  - 1

2\sigma 2 \| y - AW\top z\| 22 - \lambda 
\sum n

i=1 | zi| \} , where the difference is that the likelihood term involves
a linear operator A modeling the radio-telescope system (see [16] for more details about the
model and the algorithms used to compute the estimates). Observe that in this case both
MAP and MMSE estimation deliver excellent and remarkably similar results. A similar em-
pirical observation is reported in [15] for a sparse tomography experiment using the Besov
wavelet model of [30], which is closely related to the model considered here.

To conclude, shrinkage priors promote solutions that are sparse or approximately sparse
through two mechanisms: directly through the definition of the Bayesian model p(z| y), and
indirectly through the loss function used to summarize z| y. In the case of MAP estimation,
this loss function is a Bregman divergence that can significantly amplify shrinkage. In some
cases this may lead to better estimation performance. Therefore, when designing BayesianD
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(a) true image x (b) observation y

(c) restored image \^xMAP (d) restored image \^xMMSE

Figure 2. Bayesian radio-interferometric imaging experiment with the Cygnus A radio galaxy (size 256\times 512
pixels). See [16] for more details.

procedures for imaging problems, it is important to carefully consider both the model and the
Bayesian estimator used to summarize the information provided by the model.

4.2. Regularization-by-denoising (RED) Bayesian models. As a second illustrative ex-
ample we analyze the geometry of the RED Bayesian models [39]. In this class of models the
prior p(x) is defined implicitly through an image denoising algorithm. Precisely, starting from
some image denoising filter f : \BbbR n \rightarrow \BbbR n, we posit the prior

(4) p(x) \propto exp\{  - \lambda 
2x

\top [x - f(x)]\} ,

which promotes values of x that are approximately invariant to filtering by f (i.e., for which
f(x) \approx x), the rationale being that these are values that f considers to be realistic images.
Note that this approach has close connections to plug-and-play priors, which are also defined
through denoising algorithms [40].

The RED framework [39] assumes that f verifies three regularity conditions that are nec-
essary to make inference with (4) analytically and computationally tractable. First, f isD
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smooth---at least \scrC 2. Second, the Jacobian matrix Jf (x) is symmetric and has all its eigen-
values in [ - 1, 1] for all x \in \BbbR n. Third, f is locally homogeneous, i.e., lim\epsilon \rightarrow 0 \epsilon 

 - 1[f(x+ \varepsilon x) - 
f(x)] = f(x) \forall x \in \BbbR n; this property implies that f(x) = Jf (x)x. Under these assumptions, it
is possible to express (4) in the following pseudo-quadratic form:

(5) p(x) \propto exp\{  - \lambda 
2x

\top \Lambda f (x)x\} ,

where \Lambda f (x) = In  - Jf (x) plays the role of an image-adapted graph Laplacian operator,
highlighting the connection between f and the model geometry [39].

Notice that these regularity assumptions imply the regularizer or negative log-prior h(x) =
 - log p(x) is \scrC 3 and convex, which is important, for example, for the efficient computation of
xMAP by optimization. To show that h(x) \in \scrC 3 we first use the fact that\nabla h(x) = \nabla log p(x) =
 - \lambda [x - f(x)/2 - Jf (x)\top x/2] =  - \lambda [x - f(x)], where we have used the symmetry Jf (x)

\top = Jf (x)
and the identity f(x) = Jf (x)x related to the local homogeneity of f . Therefore, the Hessian
matrix of h(x) has elements given by \partial i\partial jh(x) =  - \Lambda f (x)i,j = Jf (x)  - In, which are also
continuously differentiable because f \in \scrC 2, and hence h(x) \in \scrC 3. Moreover, the Hessian
matrix of h(x), given by  - \Lambda f (x) = Jf (x) - In, is negative-semidefinite because Jf (x) has all
its eigenvalues in [ - 1, 1] \forall x \in \BbbR n, and consequently h(x) is convex. As a result, if the negative
log-likelihood  - log p(y| x) is \scrC 3 and convex w.r.t. x, then \phi (x) =  - log p(x| y) is also \scrC 3 and
log-concave, and Theorem 4 and Proposition 5 apply.

As an illustrative example, consider linear inverse problems of the form y = Ax+w, where
A is a known linear operator, and w \sim \scrN (0, \sigma 2In) with noise variance \sigma 2 \in \BbbR +. The resulting
RED Bayesian model has posterior density3

(6) p(x| y) \propto exp\{  - 1
2\sigma 2 \| y  - Ax\| 22  - \lambda 

2x
\top \Lambda (x)x\} .

This distribution is strongly log-concave and \scrC 3, and hence Theorem 4 and Proposition 5
apply. More precisely, we have \phi (x) = 1

2\sigma 2 \| y  - Ax\| 22 + \lambda 
2x

\top \Lambda (x)x, which induces the metric

(7) gi,j(x) = \partial i\partial j\phi (x) = \{ \sigma  - 2A\top A+ \lambda \Lambda (x)\} i,j .

Observe that (7) combines a Euclidean geometry term A\top A from the Gaussian likelihood and
a non-Euclidean term from the Laplacian \Lambda (x). Again, note that for this class of models the
geometry of the manifold \{ \BbbR n, g\} does not depend on the value of the observation y.

Moreover, from Theorem 4, the estimator \^x\mathrm{M}\mathrm{A}\mathrm{P} is the Bayesian estimator associated with
the canonical divergence on \{ \BbbR n, g\} , given by the \phi -Bregman divergence

D\phi (u, x) =\phi (u) - \phi (x) - \nabla \phi (x)\top (u - x)

= 1
2\sigma 2 \| y  - Au\| 22 + \lambda 

2u
\top \Lambda (u)u - 1

2\sigma 2 \| y  - Ax\| 22 + \lambda 
2x

\top \Lambda (x)x

 - [\sigma  - 2A\top (Ax - y) + \lambda x - \lambda f(x)]\top (u - x)

=\sigma  - 2[u\top A\top Au+ x\top A\top Ax - 2u\top A\top Ax] + \lambda [u\top \Lambda (u)u+ x\top \Lambda (x)x - 2u\top \Lambda (x)x]

=\sigma  - 2DA\top A(u, x) + \lambda D\Lambda (u, x) ,

3Because \Lambda (x) is potentially rank deficient, to guarantee that p(x| y) is a proper probability density function
we further assume that ker(A\top A) \cap ker(\Lambda (x)) = \{ 0\} for all x \in \BbbR n.D

ow
nl

oa
de

d 
04

/2
3/

19
 to

 1
37

.1
95

.8
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REVISITING MAP ESTIMATION IN LOG-CONCAVE MODELS 665

where the Mahalanobis (Euclidean) distance

DA\top A(u, x) = \| u - x\| A\top A

= u\top A\top Au+ x\top A\top Ax - 2u\top A\top Ax

is a measure of prediction of mean squared error related to the Gaussian likelihood, and

D\Lambda (u, x) = u\top \Lambda (u)u+ x\top \Lambda (x)x - 2u\top \Lambda (x)x

is related to the Laplacian \Lambda (x), which encodes the geometry of the prior (to compute D\Lambda we
used the local homogeneity property f(x) = Jf (x)x of the denoiser; see [39] for details).

Finally, observe that D\Lambda is very similar to the Euclidean loss DA\top A in that it measures the
difference between the squared norms of u and x and the projection of u on x, with the only
difference being that for D\Lambda (u, x) these norms and projections are measured on the tangent
spaces \scrT u\BbbR n and \scrT x\BbbR n of the manifold \{ \BbbR n,\Lambda \} , with inner products specified by \Lambda .

5. Relaxation of regularity conditions. We now examine the effect of relaxing the regu-
larity assumptions of Theorem 4. We consider three main cases: lack of smoothness, lack of
strong convexity, and lack of continuity.

5.1. Nonsmooth models. The results of Theorem 4 hold for nonsmooth models with
the following modifications. First, assume that \phi is almost everywhere \scrC 3 on \BbbR n; i.e., the
set of points of \BbbR n where \phi is not smooth has dimension n  - 1 and hence zero Lebesgue
measure. To check that \phi is \scrC 3 almost everywhere it is necessary to analyze the regularity of
the second order derivatives \partial i\partial j\phi (x) (e.g., if the second derivatives are Lipschitz continuous,
then \phi is almost everywhere \scrC 3 by Rademacher's theorem [34]). Because in models that
are almost everywhere smooth the set of nondifferentiable points has no probability mass,
this set can be simply omitted in the computation of expectations. Second, because the
nondifferentiable points do not have Euclidean tangent spaces, instead of a global manifold
we need to consider the collection local manifolds associated with the regions of \BbbR n where
p(x| y) is \scrC 3. Each one of these regions has a local canonical divergence given by the Bregman
divergence D(u, x) = D\phi (u, x) = \phi (u) - \phi (x) - \nabla \phi (x)\top (u - x). Therefore, for these models we
need to positD\phi (u, x) as the global loss function for any (u, x) \in \BbbR n\times \BbbR n (technically the global
loss is the generalized Bregman divergenceD\phi (u, x) = \phi (u) - \phi (x) - q\top x (u - x), where qx belongs
to the subdifferential set of \phi at x [9]; however, the expectation Ex| y[D\phi (u, x)] is taken over
the points where \phi is \scrC 3 and hence qx = \nabla \phi (x)). By calculating the primal and dual Bayesian
estimators related to this global loss, we obtain that \^x\mathrm{M}\mathrm{A}\mathrm{P} = argminu\in \BbbR n Ex| y[D\phi (u, x)] and
\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} = argminu\in \BbbR n Ex| y[D

\ast 
\phi (u, x)], similarly to Theorem 4. Observe that these modifications

do not affect the fact that \^x\mathrm{M}\mathrm{A}\mathrm{P} and \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} can correspond to nondifferentiable points. Also
note that despite not being a global canonical divergence, D\phi (u, x) is still consistent with the
space's Riemannian geometry which is local.

Many imaging models involve nonsmooth norms such as the \ell 1 and the nuclear norm,
or the total-variation pseudo-norm, which are almost everywhere \scrC 1 but not \scrC 3. More gen-
erally, all Lipschitz continuous functions are almost everywhere \scrC 1. In this case, only the
second and third parts of Theorem 4 hold. That is, we posit D\phi (u, x) as the loss func-
tion for any u \in \BbbR n and any x \in \BbbR n, excluding nondifferentiable points, and obtain thatD
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\^x\mathrm{M}\mathrm{A}\mathrm{P} = argminu\in \BbbR n Ex| y[D\phi (u, x)] and \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} = argminu\in \BbbR n Ex| y[D
\ast 
\phi (u, x)] by removing

nondifferentiable points from the calculation of the expectations. To recover the differen-
tial geometric derivation of D\phi it is necessary to use a smooth approximation of the model,
i.e., the smoothed L1 norm | s| =

\surd 
s2 + \alpha 2 for some arbitrarily small \alpha > 0.

Finally, also note that the bound Ex| y[D
\ast 
\phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}, x)] \leq n in Proposition 5 is straight-

forwardly extended to nonsmooth models by using the generalized dual Bregman divergence
D\ast 
\phi (u, x) = \phi (x) - \phi (u) - q\top u (x - u) with subgradient q\^x\mathrm{M}\mathrm{A}\mathrm{P}

= 0. Conversely, the other bound
Ex| y[D

\ast 
\phi (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x)] \leq n is lost (see the appendix for details).

5.2. Strictly log-concave models. For models that are strictly but not strongly log-
concave, only the second and third results of Theorem 4 remain true. It is easy to check
that the Bayesian estimators w.r.t. D\phi = \phi (u)  - \phi (x)  - \nabla \phi (x)\top (u  - x) are still \^x\mathrm{M}\mathrm{A}\mathrm{P} =
argminu\in \BbbR n Ex| y[D\phi (u, x)] and \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} = argminu\in \BbbR n Ex| y[D

\ast 
\phi (u, x)], similarly to strongly log-

concave models (see in the appendix that strong log-concavity is not required to prove the
second and third parts of Theorem 4). Thus, the decision-theoretic derivation of \^x\mathrm{M}\mathrm{A}\mathrm{P} remains
valid, and \^x\mathrm{M}\mathrm{A}\mathrm{P} and \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} remain dual to each other. The high dimensional performance
guarantees of Proposition 5 also hold because \phi is convex. However, without strong convexity,
g becomes semi-positive definite and (\BbbR n, g) becomes a singular manifold. Currently, the
validity of the interpretation of D\phi as a canonical divergence in singular manifolds is not
clear. The generalization of canonical divergences and of Theorem 4 to singular manifolds
is currently under investigation. In any case, without strong convexity D\phi is no longer a
divergence in the sense of Definition 2 as D\phi (x, u) = 0 does not imply x = u, which is an
important desired property for loss functions.

5.3. Models involving constraints. Finally, in cases where x| y is constrained to a con-
vex set \scrS \subset \BbbR n, only the first and the third results of Theorem 4 hold. Proceeding sim-
ilarly to the proof of Theorem 4, it is easy to show that D\phi is the canonical divergence
of the manifold (\scrS , g), and that the Bayesian estimator related to the dual divergence is
\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} = argminu\in \scrS Ex| y[D

\ast 
\phi (u, x)]. However, the Bayesian estimator that minimizes the

canonical divergence is now a shifted or tilted MAP estimator,

\^xD\phi 
= argmin

u\in \scrS 
D\phi (u, \^x\mathrm{M}\mathrm{A}\mathrm{P}) + u\top Ex| y[\nabla \phi (x)],

where generally Ex| y[\nabla \phi (x)] \not = 0 (see the appendix for details). It is not clear at this point
under what conditions \^x\mathrm{M}\mathrm{A}\mathrm{P} \approx \^xD\phi 

. Nevertheless, the high dimensional guarantees of Propo-
sition 5 still hold for \^x\mathrm{M}\mathrm{A}\mathrm{P}, providing some theoretical justification for using this estimator.

5.4. Models with heavy-tails. We conclude this section by discussing the difficulties of
extending our results to models that are heavy-tailed and hence not log-concave, such as
imaging models involving heavy-tailed priors related to compressible distributions [29]. Un-
fortunately, extending our results to heavy-tailed settings is extremely challenging for sev-
eral reasons. First, the Hessian matrix of \phi does not define a Riemannian metric because
there are regions of the space where it has negative eigenvalues. Also, directly postulating
D\phi = \phi (u) - \phi (x) - \nabla \phi (x)\top (u - x) as a loss function is not appropriate either because D\phi can
take negative values. The analysis is further complicated by the fact that p(x| y) may have an
infinite number of maximizers in disconnected areas of the parameter space. As mentionedD
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previously, the derivation of MAP estimation as an approximation arising from the degenerate
loss L\epsilon (u, x) = 1\| x - u\| <\epsilon with \epsilon \rightarrow 0 also fails in this case [8]. Interestingly, MMSE estimation
may also struggle here given that models in this class may not have a posterior mean [38].

6. Conclusion. MAP estimation is one of the the most successful Bayesian estimation
methodologies in imaging science, with a track record of accurate results across a wide range
of challenging imaging problems. Our aim here has been to contribute to the theoretical
understanding of this widely used methodology, particularly by placing it in the Bayesian
decision theory framework that underpins the core Bayesian inference methodologies.

In order to analyze MAP estimators, we have adopted an entirely new approach: we
allowed the model to specify the loss function, or equivalently the Bayesian estimator, that is
used to summarize the information that the model represents. This was achieved by using the
connections between model log-concavity, Riemannian geometry, and divergence functions.
We first established that if p(x| y) is strongly log-concave, continuous, and \scrC 3 on \BbbR n, then
\phi (x) =  - log p(x| y) induces a dually flat Riemannian structure on the parameter space, where
the canonical divergence is the Bregman divergence associated with \phi , and where the MAP
estimator is the unique Bayesian estimator w.r.t. to this loss function. We also established
that the MMSE estimator is the Bayesian estimator w.r.t. the dual canonical loss, and that
both estimators enjoy favorable stability properties in high dimensions. We then examined
the effect of relaxing these assumptions to models with weaker regularity conditions.

The theoretical results presented in this work provide several valuable new insights into
MAP and MMSE estimation. In particular, both estimators stem from Bayesian decision
theory and from the consideration of the geometry of the parameter space, and exhibit an
interesting form of duality. Also, the expected estimation error---as measured by the canon-
ical loss---is stable in high dimensions; this is in agreement with the remarkable empirical
performance observed imaging and other large scale settings. The fact that MAP estimators
are available as solutions to convex problems is a fundamental practical advantage. However,
our results also show that the predominant view of MAP estimators as hastily approximate
inferences, motivated only by computational efficiency, is fundamentally incorrect. We hope
that these results will provide some clarity to imaging scientists using MAP estimators, and
that they stimulate further research into the theory of this powerful Bayesian methodology.

Appendix A. Proofs of Theorem 4 and Proposition 5.

Proof of Theorem 4. The first part of Theorem 4 follows directly from differential geome-
try and from the regularity properties of \phi (see [3] for an introduction to differential geometry).
From differential geometry, under the conditions of Theorem 4, \phi induces a Riemannian metric
on \BbbR n with coefficients

gi,j(x) = \partial i\partial j\phi (x),

and where we note that g(x) is positive definite from the strong convexity of \phi . Similarly, we
have the affine connection coefficients \Gamma ij, k = \partial i\partial j\partial k\phi (x).

Moreover, because \phi is convex, it endows (\BbbR n, g) with a dual affine coordinate system \eta ,
related to the primal coordinate system by the duality \eta x = \nabla \phi (x) and x\eta = \nabla \phi  \star (\eta ), where
\phi  \star (\eta ) = maxx\in \BbbR n x\top \eta  - \phi (x) is the convex conjugate of \phi [3, Ch. 3]. As a result, we have aD
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dual Riemannian metric g \star w.r.t. \eta , with coefficients given by

g \star i,j(\eta ) = \partial i\partial j\phi 
 \star (\eta ),

and a dual affine connection \Gamma  \star with coefficients given by

\Gamma  \star ij, k(\eta ) = \partial i\partial j\partial k\phi 
 \star (\eta ).

Finally, it is easy the check that x and \eta are mutually dual w.r.t. g. That is, for all x \in \BbbR n

g \star (\eta x) = g(x) - 1,

which implies that (\BbbR n, g,\Gamma ,\Gamma  \star ) is a dually flat Riemannian manifold [3, Ch. 3]. Please see
[35, section 2] for an excellent introduction to dually flat structures and their main properties.

From [4], in such manifolds the \Gamma -geodesic connecting u \rightarrow x in (2) is given by \gamma t =
u + t(x  - u), and \.\gamma t = x  - u. The proof is then concluded by integration by parts of (2) to
obtain the Bregman divergence D\phi (u, x) = \phi (u) - \phi  \star (\eta x) - \eta \top x u, which also admits the more
familiar expression D\phi (u, x) = \phi (u) - \phi (x) - \nabla \phi (x)(u - x).

To prove the second part of Theorem 4, we use the linearity property of the expectation
operator to express the definition \^xD\phi 

= argminu\in \BbbR n Ex| y[D\phi (u, x)] as follows:

\^xD\phi 
= argmin

u\in \BbbR n
\phi (u) + Ex| y[\phi (x)] - u\top Ex| y[\nabla \phi (x)] - x\top Ex| y[\nabla \phi (x)]

= argmin
u\in \BbbR n

\phi (u) - u\top Ex| y[\nabla \phi (x)].

In a manner akin to [15], the proof is concluded by using the divergence theorem, together
with the fact that p(x| y) is continuous and vanishes at least exponentially as \| x\| \rightarrow 0, to
show that Ex| y[\nabla \phi (x)] =

\int 
\BbbR n \nabla p(x| y)dx = 0. Hence,

\^xD\phi 
= argmin

u\in \BbbR n
\phi (u)

= \^x\mathrm{M}\mathrm{A}\mathrm{P}.

Note that in the case where p(x| y) involves hard constraints on the parameter space, generally
Ex| y[\nabla \phi (x)] \not = 0, and we have \^xD\phi 

= argminu\in \BbbR n D\phi (u, \^x\mathrm{M}\mathrm{A}\mathrm{P})  - u\top Ex| y[\nabla \phi (x)] generally
different from \^x\mathrm{M}\mathrm{A}\mathrm{P}.

Finally, the proof of the third part of Theorem 4 follows directly from [7, Proposition 1],
which for completeness we detail below:

\^xD\ast 
\phi 
= argmin

u\in \BbbR n
Ex| y[D

\ast 
\phi (u, x)]

= argmin
u\in \BbbR n

Ex| y[D\phi (x, u)]

= argmin
u\in \BbbR n

Ex| y[D\phi (x, u)] - Ex| y[D\phi (x, \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E})]

= argmin
u\in \BbbR n

\phi (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}) - \phi (u) - (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}  - u)\top \nabla \phi (u)

= argmin
u\in \BbbR n

D\phi (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, u)

= \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}.

Notice that strict log-concavity suffices to prove the second and third parts of Theorem 4.D
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Proof of Proposition 5. Assume that \phi (x) =  - log p(x| y) is convex on \BbbR n and \scrC 1. From
the optimality condition of \^x\mathrm{M}\mathrm{A}\mathrm{P}, \nabla \phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}) = 0, and hence the dual divergence

D\ast 
\phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}, x) = \phi (x) - \phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}) .

Noting that Ex| y [\phi (x)] is the entropy of x| y, we use Proposition I.2 of [12] and obtain

Ex| y
\bigl[ 
D\ast 
\phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}, x)

\bigr] 
= Ex| y [\phi (x)] - \phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}) \leq n.

Finally, using that \^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E} minimizes the posterior expectation of D\ast 
\phi (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x), we obtain

Ex| y
\bigl[ 
D\ast 
\phi (\^x\mathrm{M}\mathrm{M}\mathrm{S}\mathrm{E}, x)

\bigr] 
\leq Ex| y

\bigl[ 
D\ast 
\phi (\^x\mathrm{M}\mathrm{A}\mathrm{P}, x)

\bigr] 
\leq n ,

concluding the proof.

Acknowledgments. The author is grateful to Yoann Altmann, Gavin Gibson, Peter Green,
Abderrahim Halimi, Bernd Schroers, Jonty Rougier, and Ben Powell for useful discussions.

REFERENCES

[1] M. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, An augmented Lagrangian approach to
the constrained optimization formulation of imaging inverse problems, IEEE. Trans. Image Process.,
20 (2011), pp. 681--695.

[2] S. Agapiou, M. Burger, M. Dashti, and T. Helin, Sparsity-promoting and edge-preserving maximum
a posteriori estimators in non-parametric Bayesian inverse problems, Inverse Problems, 34 (2018),
045002, https://doi.org/10.1088/1361-6420/aaacac.

[3] S.-I. Amari and H. Nagaoka, Methods of Information Geometry, Transl. Math. Monogr. 191, AMS,
Providence, RI, 2000.

[4] N. Ay and S.-I. Amari, A novel approach to canonical divergences within information geometry, Entropy,
17 (2015), pp. 8111--8129.

[5] S. D. Babacan, R. Molina, and A. Katsaggelos, Variational Bayesian super resolution, IEEE Trans.
Image Process., 20 (2011), pp. 984--999; available online at http://decsai.ugr.es/vip/files/journals/
2011SR.BMK.pdf.

[6] S. D. Babacan, R. Molina, and A. K. Katsaggelos, Bayesian compressive sensing using Laplace
priors, IEEE Trans. Image Process., 19 (2010), pp. 53--63.

[7] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, Clustering with Bregman divergences, J.
Mach. Learn. Res., 6 (2005), pp. 1705--1749.

[8] R. Bassett and J. Deride, Maximum A Posteriori Estimators as a Limit of Bayes Estimators, preprint,
https://arxiv.org/abs/1611.05917, 2016.

[9] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, Springer, New York, 2011.

[10] J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of
heavy-tailed priors, IEEE Trans. Image Process., 15 (2006), pp. 937--951.

[11] J. M. Bioucas-Dias and G. Valadao, Phase unwrapping via graph cuts, IEEE Trans. Image Process.,
16 (2007), pp. 698--709.

[12] S. Bobkov and M. Madiman, The entropy per coordinate of a random vector is highly constrained under
convexity conditions, IEEE Trans. Inform. Theory, 57 (2011), pp. 4940--4954.

[13] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK,
2004.

[14] M. Burger, Y. Dong, and F. Sciacchitano, Bregman Cost for Non-Gaussian Noise, preprint, https:
//arxiv.org/abs/1608.07483, 2016.

[15] M. Burger and F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave
priors are proper Bayes estimators, Inverse Problems, 30 (2014), 114004.D

ow
nl

oa
de

d 
04

/2
3/

19
 to

 1
37

.1
95

.8
.6

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1088/1361-6420/aaacac
http://decsai.ugr.es/vip/files/journals/2011SR.BMK.pdf
http://decsai.ugr.es/vip/files/journals/2011SR.BMK.pdf
https://arxiv.org/abs/1611.05917
https://arxiv.org/abs/1608.07483
https://arxiv.org/abs/1608.07483


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

670 MARCELO PEREYRA

[16] X. Cai, M. Pereyra, and J. D. McEwen, Uncertainty quantification for radio interferometric imaging:
I. Proximal MCMC methods, Monthly Notices Roy. Astronom. Soc., 480 (2018), pp. 4154--4169,
https://doi.org/10.1093/mnras/sty2004.

[17] E. J. Cand\`es and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math.,
9 (2009), pp. 717--772.

[18] E. J. Cand\`es, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489--509.

[19] A. Chambolle and T. Pock, An introduction to continuous optimization for imaging, Acta Numer., 25
(2016), pp. 161--319.

[20] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving
regularization in computed imaging, IEEE Trans. Image Process., 6 (1997), pp. 298--311.

[21] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185--212.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley, New York, 2006.
[23] M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss, MAP estimators and their consistency in

Bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), 095017, https://doi.org/10.
1088/0266-5611/29/9/095017.

[24] A. P. Dawid, The geometry of proper scoring rules, Ann. Inst. Stat. Math., 59 (2007), pp. 77--93.
[25] A. Durmus, \'E. Moulines, and M. Pereyra, Efficient Bayesian computation by proximal Markov

chain Monte Carlo: When Langevin meets Moreau, SIAM J. Imaging Sci., 11 (2018), pp. 473--506,
https://doi.org/10.1137/16M1108340.

[26] M. A. T. Figueiredo and J. M. Bioucas-Dias, Restoration of Poissonian images using alternating
direction optimization, IEEE Trans. Image Process., 19 (2010), pp. 3133--3145.

[27] P. J. Green, K. \Latuszy\'nski, M. Pereyra, and C. P. Robert, Bayesian computation: A summary
of the current state, and samples backwards and forwards, Stat. Comput., 25 (2015), pp. 835--862.

[28] R. Gribonval, Should penalized least squares regression be interpreted as maximum a posteriori estima-
tion?, IEEE Trans. Signal Process., 59 (2011), pp. 2405--2410.

[29] R. Gribonval, V. Cevher, and M. E. Davies, Compressible distributions for high-dimensional statis-
tics, IEEE Trans. Inform. Theory, 58 (2012), pp. 5016--5034.

[30] K. H\"am\"al\"ainen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinim\"aki, and S. Siltanen, Sparse
tomography, SIAM J. Sci. Comput, 35 (2013), pp. B644--B665, https://doi.org/10.1137/120876277.

[31] T. Helin and M. Burger, Maximum a posteriori probability estimates in infinite-dimensional Bayesian
inverse problems, Inverse Problems, 31 (2015), 085009.

[32] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, New York,
2005.

[33] H. C. Lie and T. J. Sullivan, Equivalence of weak and strong modes of measures on topological vector
spaces, Inverse Problems, 34 (2018), 115013.

[34] C. Niculescu and L. E. Persson, Convex Functions and Their Applications, Springer, New York, 2018.
[35] F. Nielsen and G. Hadjeres, Monte Carlo Information Geometry: The Dually Flat Case, preprint,

https://arxiv.org/abs/1803.07225, 2018.
[36] F. Ong, P. Milanfar, and P. Getreuer, Local Kernels that Approximate Bayesian Regularization and

Proximal Operators, preprint, https://arxiv.org/abs/1803.03711, 2018.
[37] M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and

S. Mclaughlin, A survey of stochastic simulation and optimization methods in signal processing,
IEEE. J. Selected Topics Signal Process., 10 (2016), pp. 224--241.

[38] C. P. Robert, The Bayesian Choice, 2nd ed., Springer-Verlag, New York, 2001.
[39] Y. Romano, M. Elad, and P. Milanfar, The little engine that could: Regularization by denoising

(RED), SIAM J. Imaging Sci., 10 (2017), pp. 1804--1844, https://doi.org/10.1137/16M1102884.
[40] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, L. F. Drummy, J. P. Simmons, and C.

A. Bouman, Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation,
preprint, https://arxiv.org/abs/1512.07331, 2015.

[41] S. Theodoridis, Machine Learning, a Bayesian and Optimization Perspective, Academic Press, Cam-
bridge, UK, 2015.

D
ow

nl
oa

de
d 

04
/2

3/
19

 to
 1

37
.1

95
.8

.6
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1093/mnras/sty2004
https://doi.org/10.1088/0266-5611/29/9/095017
https://doi.org/10.1088/0266-5611/29/9/095017
https://doi.org/10.1137/16M1108340
https://doi.org/10.1137/120876277
https://arxiv.org/abs/1803.07225
https://arxiv.org/abs/1803.03711
https://doi.org/10.1137/16M1102884
https://arxiv.org/abs/1512.07331

	Introduction
	Riemannian geometry and the canonical divergence function
	A differential-geometric derivation of MAP and MMSE estimation
	Canonical Bayesian estimation: From differential geometry to decision theory
	Error bounds for MAP and MMSE estimation
	Connections to other works

	Illustrative examples
	Wavelet image denoising model
	Regularization-by-denoising (RED) Bayesian models

	Relaxation of regularity conditions
	Nonsmooth models
	Strictly log-concave models
	Models involving constraints
	Models with heavy-tails

	Conclusion
	Appendix A. Proofs of Theorem 4 and Proposition 5

