8,255 research outputs found

    Scenarios for the development of smart grids in the UK: synthesis report

    Get PDF
    ‘Smart grid’ is a catch-all term for the smart options that could transform the ways society produces, delivers and consumes energy, and potentially the way we conceive of these services. Delivering energy more intelligently will be fundamental to decarbonising the UK electricity system at least possible cost, while maintaining security and reliability of supply. Smarter energy delivery is expected to allow the integration of more low carbon technologies and to be much more cost effective than traditional methods, as well as contributing to economic growth by opening up new business and innovation opportunities. Innovating new options for energy system management could lead to cost savings of up to £10bn, even if low carbon technologies do not emerge. This saving will be much higher if UK renewable energy targets are achieved. Building on extensive expert feedback and input, this report describes four smart grid scenarios which consider how the UK’s electricity system might develop to 2050. The scenarios outline how political decisions, as well as those made in regulation, finance, technology, consumer and social behaviour, market design or response, might affect the decisions of other actors and limit or allow the availability of future options. The project aims to explore the degree of uncertainty around the current direction of the electricity system and the complex interactions of a whole host of factors that may lead to any one of a wide range of outcomes. Our addition to this discussion will help decision makers to understand the implications of possible actions and better plan for the future, whilst recognising that it may take any one of a number of forms

    Modeling Storage and Demand Management in Electricity Distribution Grids

    Get PDF
    Storage devices and demand control may constitute beneficial tools to optimize electricity generation with a large share of intermittent resources through inter-temporal substitution of load. We quantify the related cost reductions in a simulation model of a simplified stylized medium-voltage grid (10kV) under uncertain demand and wind output. Benders Decomposition Method is applied to create a two-stage stochastic program. The model informs an optimal investment sizing decision as regards specific 'smart grid' applications such as storage facilities and meters enabling load control. Model results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Grid extensions are not appropriate in any of our scenarios. A sensitivity analysis is applied with respect to the market penetration of uncoordinated Plug-In Electric Vehicles which are found to strongly encourage investment into load control equipment for `smart` charging and slightly improve the case for central storage devices.Storage, demand management, stochastic optimization, Benders Decomposition

    Реалізація концепції Smart Grid за рахунок використання програм з керування попиту і сучасних систем силової електроніки

    Get PDF
    Сучасні тенденції в мережах електропостачання спрямовані на інтелектуалізацію існуючих мереж енергопостачання та створення систем Smart Grid для забезпечення високого рівня надійності та якості електроенергії. В рамках програм з керування попитом, концепція Smart Grid відіграє важливу роль в рішенні технічних і технологічних проблем в процесі реалізації даної концепції. Мережа електропостачання повинна реалізувати низку програм керування попитом шляхом надання різних послуг в залежності від ситуації, вимог контрактів, прогнозування споживання / попиту і наявної інформації про рівень економії енергії. Це вимагає детального аналізу існуючих і розробки нових програм. Згідно концепції Smart Grid все більшого використання в розподільних мережах отримують сучасні устаткування силової електроніки. Дослідження існуючих моделей і конструкцій забезпечують базу для удосконалення існуючих конфігурацій та розуміння сучасних тенденції в галузі.Modern trends in electricity supply grids aimed on intellectualization of existing grids, energy supply and creating Smart Grid systems to ensure a high level of reliability and power quality. As part of the Smart Grid concept demand side management programs play an important role in solving technical and technological problems in concept implementation process. The grid must implement a catena of demand side management programs by providing various services according to the situation, requirement contracts, forecasting of consumption/demand and collect information about energy savings. This requires the study of existing and development of new programs. According to traditional grid in Smart Grid transformation appears the widespread use of modern power-electronic installations in electrical power grids. Research of existing models and structures provide base for installations improvements and trends understanding. Proposed practical solutions for power electronics arrangements, either dedicated or capable of adaptation to the distribution systems

    Enabling technologies for sector coupling: A review on the role of heat pumps and thermal energy storage

    Get PDF
    In order to reduce greenhouse gas emissions, current and future energy systems need to be made more efficient and sustainable. This change can be accomplished by increasing the penetration of renewable energy sources and using efficient technologies in energy generation systems. One way to improve the operation of the whole energy system is through the generation and end-use sector coupling. Power-to-heat energy conversion and storage technologies, in this view, are enabling technologies that can help in balancing and improving the efficiency of both thermal and electric grids. In the present paper, a comprehensive analysis of the role of heat pumps and thermal energy storage for sector coupling is presented. The main features of the analyzed technologies are presented in the context of smart electric grid, district heating and cooling and multi-carrier energy systems, and recent findings and developments are highlighted. Finally, the technical, social, and economic challenges in the adoption of investigated technologies are discussed.This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31—MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at the University of Lleida would like to thank the Catalan Government for the quality accreditation given to her research group GREiA (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia program

    Smart multi-terminal DC μ-grids for autonomous zero-net energy buildings: implicit concepts

    Get PDF
    A decarbonized society involves people living and working in low-energy and low-emission buildings. An a smart multi-Terminal DC μ-grids interconnecting several autonomous zero-net energy buildings allow the transition to a decarbonized economy, however, involves several challenges. This paper describes the interactions between the intrinsic concepts related to development of a smart multi-terminal DC μ-grids for autonomous zero-net energy buildings. Each individual concept provides several advantages but also create several colliding restrictions with other, this paper connects all concepts together considering interactions in other to maximize the total benefit. Also, discussions about the feasibility and impact of the individual concepts on the whole interaction are included
    corecore