782,074 research outputs found

    Towards FAIRification of sensitive and fragmented rare disease patient data: challenges and solutions in European reference network registries

    Get PDF
    Introduction: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. Results: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. Conclusion: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries

    Towards FAIRification of sensitive and fragmented rare disease patient data:challenges and solutions in European reference network registries

    Get PDF
    INTRODUCTION: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. RESULTS: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. CONCLUSION: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13023-022-02558-5

    Accounting Changes in the Public Sector in Estonia

    Get PDF
    This paper reviews the implementation of the accrual accounting in the entities of the Estonian public sector. It gives a brief overview of the historical development of governmental accounting theories and examines the introduction of theory-based accounting policy. It explains main problems and risks to face in connection with the accounting system change process and offers solutions. This study attempts to answer the following research question: how to gain full benefit from accounting information in public sector entities. As to general scientific research methods, mainly comparative analysis and description were used. This study reveals as follows. Firstly, approach to accrual accounting leads to financial information that fulfils needs for true and fair accounting data for decision making purposes. Secondly, reform of public sector financial accounting can improve the quality and the quantity of services provided to the citizens. Thirdly, the Estonian accounting regulation has recently succeeded a remarkable evolution. Fourthly, considerable problems that need to be solved have arisen from the process of the transition to the accrual basis accounting. The given study does not touch upon the development of budgeting systems for public sector entities. Hopefully, this study will contribute to further optimization of accounting systems and management tools for public sector entities in Estonia. Therefore, it will contribute to economic growth and development of business environment. Studies carried out by independent researchers on the move to accrual based accounting in public sector entities are relatively scarce

    What is Fair Pay for Executives? An Information Theoretic Analysis of Wage Distributions

    Full text link
    The high pay packages of U.S. CEOs have raised serious concerns about what would constitute a fair pay.Comment: 16 page

    Covariance and PCA for Categorical Variables

    Full text link
    Covariances from categorical variables are defined using a regular simplex expression for categories. The method follows the variance definition by Gini, and it gives the covariance as a solution of simultaneous equations. The calculated results give reasonable values for test data. A method of principal component analysis (RS-PCA) is also proposed using regular simplex expressions, which allows easy interpretation of the principal components. The proposed methods apply to variable selection problem of categorical data USCensus1990 data. The proposed methods give appropriate criterion for the variable selection problem of categoricalComment: 12 pages, 5 figure

    Training on system effects modelling

    Get PDF

    Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

    Full text link
    As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.Comment: 7 pages, 2 figures, 2 tables.To appear in Proceedings of the International Conference on World Wide Web (WWW), 201
    • 

    corecore