878 research outputs found

    Enabling Technology and Proof-of-Concept Evaluation for RAN Architectural Migration toward 5G and Beyond Mobile Systems

    Get PDF
    In this paper, we address two major issues regarding architectural migration of radio access network (RAN). Firstly, an overview and explicit interpretation of how different enabling technologies over generations are brought up and coordinated for migration from a distributed, to a centralized, and then to a virtualized RAN for 5G and beyond cellular; and secondly, the proof-of-concept (PoC) evaluation to understand the feasibility of these enabling technologies, are addressed. In doing so, we first give an overview of major enabling technologies and discuss their impact on RAN migration. We then evaluate the PoC of major enabling technologies proposed mainly for 5G CRAN, namely functional split options, TDM-PON systems, and virtualization techniques using a mobile CORD based prototype in LTE systems with ideal fronthauls. PoC experimental results with split options 2 and 5 are presented and compared using TCP and UDP traffic. Experimentally, it is shown that the throughput improvement is significant for TCP as compared to UDP with virtualized BBUs, which are about 30%-40% and 40%-45% higher in mean throughputs respectively in downlink and uplink with split 5 than that with split 2. Finally, we point out the major experimental limitations of PoC and future research directions

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    5G Network Slicing using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges

    Get PDF
    In this paper, we provide a comprehensive review and updated solutions related to 5G network slicing using SDN and NFV. Firstly, we present 5G service quality and business requirements followed by a description of 5G network softwarization and slicing paradigms including essential concepts, history and different use cases. Secondly, we provide a tutorial of 5G network slicing technology enablers including SDN, NFV, MEC, cloud/Fog computing, network hypervisors, virtual machines & containers. Thidly, we comprehensively survey different industrial initiatives and projects that are pushing forward the adoption of SDN and NFV in accelerating 5G network slicing. A comparison of various 5G architectural approaches in terms of practical implementations, technology adoptions and deployment strategies is presented. Moreover, we provide a discussion on various open source orchestrators and proof of concepts representing industrial contribution. The work also investigates the standardization efforts in 5G networks regarding network slicing and softwarization. Additionally, the article presents the management and orchestration of network slices in a single domain followed by a comprehensive survey of management and orchestration approaches in 5G network slicing across multiple domains while supporting multiple tenants. Furthermore, we highlight the future challenges and research directions regarding network softwarization and slicing using SDN and NFV in 5G networks.Comment: 40 Pages, 22 figures, published in computer networks (Open Access

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    Optimizing total cost of ownership (TCO) for 5G multi-tenant mobile backhaul (MBH) optical transport networks

    Get PDF
    Legacy network elements are reaching end-of-life and packet-based transport networks are not efficiently optimized. In particular, high density cell architecture in future 5G networks will face big technical and financial challenges due to avalanche of traffic volume and massive growth in connected devices. Raising density and ever-increasing traffic demand within future 5G Heterogeneous Networks (HetNets) will result in huge deployment, expansion and operating costs for upcoming Mobile BackHaul (MBH) networks with flat revenue generation. Thus, the goal of this dissertation is to provide an efficient physical network planning mechanism and an optimized resource engineering tool in order to reduce the Total Cost of Ownership (TCO) and increase the generated revenues. This will help Service Providers (SPs) and Mobile Network Operators (MNOs) to improve their network scalability and maintain positive Project Profit Margins (PPM). In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to design and migrate to a scalable and reliable MBH network in an optimal cost?, ii) how to control the deployment and activation of the network resources in such MBH based on required traffic demand in an efficient and cost-effective way?, and iii) how to enhance the resource sharing in such network and maximize the profit margins in an efficient way? As part of our contributions to address the first issue highlighted above and to plan the MBH with reduced network TCO and improved scalability, we propose a comprehensive migration plan towards an End-to-End Integrated-Optical-Packet-Network (E2-IOPN) for SP optical transport networks. We review various empirical challenges faced by a real SP during the transformation process towards E2-IOPN as well as the implementation of an as-built plan and a high-level design (HLD) for migrating towards lower cost-per-bit GPON, MPLS-TP, OTN and next-generation DWDM technologies. Then, we propose a longer-term strategy based on SDN and NFV approach that will offer rapid end-to-end service provisioning with costefficient centralized network control. We define CapEx and OpEx cost models and drive a cost comparative study that shows the benefit and financial impact of introducing new low-cost packet-based technologies to carry traffic from legacy and new services. To address the second issue, we first introduce an algorithm based on a stochastic geometry model (Voronoi Tessellation) to more precisely define MBH zones within a geographical area and more accurately calculate required traffic demands and related MBH infrastructure. In order to optimize the deployment and activation of the network resources in the MBH in an efficient and cost-effective way, we propose a novel method called BackHauling-as-a-Service (BHaaS) for network planning and Total Cost of Ownership (TCO) analysis based on required traffic demand and a "You-pay-only-for-what-you-use" approach. Furthermore, we enhance BHaaS performance by introducing a more service-aware method called Traffic-Profile-asa- Service (TPaaS) to further drive down the costs based on yearly activated traffic profiles. Results show that BHaaS and TPaaS may enhance by 22% the project benefit compared to traditional TCO model. Finally, we introduce a new cost (CapEx and OpEx) models for 5G multi-tenant Virtualized MBH (V-MBH) as part of our contribution to address the third issue. In fact, in order to enhance the resource sharing and maximize the network profits, we drive a novel pay-as-yougrow and optimization model for the V-MBH called Virtual-Backhaul-as-a-Service (VBaaS). VBaaS can serve as a planning tool to optimize the Project Profit Margin (PPM) while considering the TCO and the yearly generated Return-on-Investment (ROI). We formulate an MNO Pricing Game (MPG) for TCO optimization to calculate the optimal Pareto-Equilibrium pricing strategy for offered Tenant Service Instances (TSI). Then, we compare CapEx, OpEx, TCO, ROI and PPM for a specific use-case known in the industry as CORD project using Traditional MBH (T-MBH) versus Virtualized MBH (V-MBH) as well as using randomized versus Pareto-Equilibrium pricing strategies. The results of our framework offer SPs and MNOs a more precise estimation of traffic demand, an optimized infrastructure planning and yearly resource deployment as well as an optimized TCO analysis (CapEx and OpEx) with enhanced pricing strategy and generated ROI. Numerical results show more than three times increase in network profitability using our proposed solutions compared with Traditional MBH (T-MBH) methods

    Multi-access edge computing: A survey

    Get PDF
    Multi-access Edge Computing (MEC) is a key solution that enables operators to open their networks to new services and IT ecosystems to leverage edge-cloud benefits in their networks and systems. Located in close proximity from the end users and connected devices, MEC provides extremely low latency and high bandwidth while always enabling applications to leverage cloud capabilities as necessary. In this article, we illustrate the integration of MEC into a current mobile networks' architecture as well as the transition mechanisms to migrate into a standard 5G network architecture.We also discuss SDN, NFV, SFC and network slicing as MEC enablers. Then, we provide a state-of-the-art study on the different approaches that optimize the MEC resources and its QoS parameters. In this regard, we classify these approaches based on the optimized resources and QoS parameters (i.e., processing, storage, memory, bandwidth, energy and latency). Finally, we propose an architectural framework for a MEC-NFV environment based on the standard SDN architecture

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA
    corecore