35,884 research outputs found

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication

    Safety-related challenges and opportunities for GPUs in the automotive domain

    Get PDF
    GPUs have been shown to cover the computing performance needs of autonomous driving (AD) systems. However, since the GPUs used for AD build on designs for the mainstream market, they may lack fundamental properties for correct operation under automotive's safety regulations. In this paper, we analyze some of the main challenges in hardware and software design to embrace GPUs as the reference computing solution for AD, with the emphasis in ISO 26262 functional safety requirements.Authors would like to thank Guillem Bernat from Rapita Systems for his technical feedback on this work. The research leading to this work has received funding from the European Re-search Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Performance analysis of a hardware accelerator of dependence management for taskbased dataflow programming models

    Get PDF
    Along with the popularity of multicore and manycore, task-based dataflow programming models obtain great attention for being able to extract high parallelism from applications without exposing the complexity to programmers. One of these pioneers is the OpenMP Superscalar (OmpSs). By implementing dynamic task dependence analysis, dataflow scheduling and out-of-order execution in runtime, OmpSs achieves high performance using coarse and medium granularity tasks. In theory, for the same application, the more parallel tasks can be exposed, the higher possible speedup can be achieved. Yet this factor is limited by task granularity, up to a point where the runtime overhead outweighs the performance increase and slows down the application. To overcome this handicap, Picos was proposed to support task-based dataflow programming models like OmpSs as a fast hardware accelerator for fine-grained task and dependence management, and a simulator was developed to perform design space exploration. This paper presents the very first functional hardware prototype inspired by Picos. An embedded system based on a Zynq 7000 All-Programmable SoC is developed to study its capabilities and possible bottlenecks. Initial scalability and hardware consumption studies of different Picos designs are performed to find the one with the highest performance and lowest hardware cost. A further thorough performance study is employed on both the prototype with the most balanced configuration and the OmpSs software-only alternative. Results show that our OmpSs runtime hardware support significantly outperforms the software-only implementation currently available in the runtime system for finegrained tasks.This work is supported by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and by the European Research Council RoMoL Grant Agreement number 321253. We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (published version
    corecore