
Performance Analysis of a Hardware Accelerator of
Dependence Management for Task-based Dataflow

Programming models

Xubin Tan∗, Jaume Bosch†, Daniel Jiménez-González‡, Carlos Álvarez-Martı́nez§, Eduard Ayguadé¶ and Mateo Valero‖
Barcelona Supercomputing Center, Universitat Politécnica de Catalunya, Barcelona, Spain

Email: {∗xubin.tan, †jbosch, ¶eduard, ‖mateo.valero}@bsc.es, {‡djimenez, §calvarez}@ac.upc.edu

Abstract—Along with the popularity of multicore and many-
core, task-based dataflow programming models obtain great
attention for being able to extract high parallelism from ap-
plications without exposing the complexity to programmers. One
of these pioneers is the OpenMP Superscalar (OmpSs). By imple-
menting dynamic task dependence analysis, dataflow scheduling
and out-of-order execution in runtime, OmpSs achieves high
performance using coarse and medium granularity tasks. In
theory, for the same application, the more parallel tasks can
be exposed, the higher possible speedup can be achieved. Yet
this factor is limited by task granularity, up to a point where the
runtime overhead outweighs the performance increase and slows
down the application.

To overcome this handicap, Picos was proposed to support
task-based dataflow programming models like OmpSs as a
fast hardware accelerator for fine-grained task and dependence
management, and a simulator was developed to perform design
space exploration. This paper presents the very first functional
hardware prototype inspired by Picos. An embedded system
based on a Zynq 7000 All-Programmable SoC is developed to
study its capabilities and possible bottlenecks. Initial scalability
and hardware consumption studies of different Picos designs are
performed to find the one with the highest performance and
lowest hardware cost. A further thorough performance study
is employed on both the prototype with the most balanced
configuration and the OmpSs software-only alternative. Results
show that our OmpSs runtime hardware support significantly
outperforms the software-only implementation currently avail-
able in the runtime system for fine-grained tasks.

I. INTRODUCTION

With increasing usage of chip multiprocessors (CMPs), we
face a variety of challenges leading to the path of parallel
computing. The basic premise is simple: the more parallel
computations/tasks we can expose in our application, the more
workers we can employ and finish faster. The reality though, is
much more complicated. Detecting parallel regions, distribut-
ing tasks evenly and synchronizing between different tasks
are costly both in software and in hardware, and burdensome
for the programmer. As the scale of CMPs keeps increasing,
the reality is likely to outweigh the performance benefit. One
direct way to tackle those challenges is using task-based
programming models. For example, Google’s MapReduce [1],
Intel’s TBB [2], OpenMP 4.0 [3], and StarSs [4], are program-
ming models that allow extracting parallelism from applica-
tions with small effort for programmers. In this paper, we use
the OmpSs programming model [5] which is developed based

on both OpenMP and StarSs. The OmpSs programming model
employs dataflow principles by abstracting the application as
a collection of tasks. In the source code you can specify a task
with its data dependences (input, output, inout) [6]. The run-
time automates the inter-task synchronization and parallelism
by dynamic task dependence analysis, dataflow scheduling
and out-of-order execution. OmpSs is able to expose high
parallelism from applications of varied domains using coarse
and medium granularity tasks, with both regular and irregular
task dependence patterns.

As the number of processors of multicore and manycore
continues to grow, an increasing amount of tasks are required
to make full usage of the available hardware resources. How-
ever, for fine-grained tasks, the overhead of a software-only
implementation including task creation, dependence manage-
ment, task scheduling, etc., is simply too high to allow it
to maintain a scalable performance [7]. Figure 1 shows the

Fig. 1. Speedup vs Task Granularity

speedup (y-axis) obtained for four OmpSs parallel applications
compared to a sequential execution by using 12 cores and an
OmpSs software-only implementation. For all the applications
- Gauss-Seidel Heat, Lu, SparseLu and Cholesky [8], their
problem sizes are constant and their blocksizes are decreasing.
The number of tasks (available parallelism) grows exponen-
tially as the task granularity (blocksize, x-axis) decreases. The
overall speedup first increases due to new potential parallelism
available, then decreases after certain point when the overhead
surpasses these gains.

To overcome this deficiency and improve the performance,
a straightforward and effective way is to reduce the software-
only runtime overhead. Note that while reducing the task

creation overhead is important, accelerating the task and
dependence management is far more crucial [9]. Task Su-
perscalar [10] was proposed to accelerate task and depen-
dence management using hardware. Its first VHDL proto-
type simulation analysis using ModelSim demonstrated high
potentials [11] by employing inter-task dependence analy-
sis, dependence renaming and out-of-order execution. How-
ever, its straightforward hardware implementation presented
unresolved deadlocks due to queue saturation and memory
capacity. A new design called Picos [7] was proposed and
simulated with a C simulator to improve Task Superscalar by
resolving these deadlocks and adding support for nested tasks.
In this paper, we present a hardware accelerator for task and
dependence management of fine-grained tasks for task-based
programming models. The study builds on the prior Picos
model, and deadlocks are corrected using a new operational
workflow and new DM designs (described in Section III). And
it is the first successfully prototype realized in hardware and
integrated within an embedded ARM processor in FPGA.

• Design Exploration of different configurations of Picos
with the objective of identifying the best design to
reduce the latency of task and dependence management,
meanwhile increasing the task execution throughput.

• Proof-of-concept of functional hardware implementations
for all Picos configurations analyzed. They are imple-
mented inside a Zynq 7000 All-Programmable SoC.

• Evaluation of all the hardware designs presented. This
evaluation includes scalability for synthetic and real ap-
plications, resource consumption, and comparison to the
current software runtime library of OmpSs.

The paper is organized as follows: Section II briefly in-
troduces the OmpSs programming model and reviews related
work. Section III presents the hardware architecture of Picos
and its operational flow in detail. Section IV describes the
experimental setup, embedded system and benchmarks in use.
In Section V, detailed hardware consumption and performance
of different Picos designs are analyzed, latency and throughput
of the prototype are studied, and scalability between the Picos
prototype and the OmpSs software-only implementation is
evaluated. Finally, Section VI and VII present the main lessons
and conclusions of this work.

II. BACKGROUND

A. OmpSs Programming Model

The OmpSs programming model [5], [6] provides a simple
and powerful way of annotating sequential programs with
simple directives to exploit heterogeneity and task parallelism.
For example, in C language: #pragma omp task [input
(...)] [output (...)] [inout (...)] is used
to specify a task with the direction of its dependences (scalars
or arrays). The Mercurium source-to-source compiler trans-
forms programs with those directives into a parallel appli-
cation; and the Nanos++ Runtime System (RTS) provides
services to manage task creation, dependence analysis and
task scheduling, etc. Implicit synchronization between tasks

is automatically managed through dependence analysis, and
explicit synchronization is managed by using #pragma omp
taskwait and #pragma omp taskwait on (...).
taskwait makes the thread wait until all its child tasks finish
before it can create new tasks; and taskwait on ensures
that the thread waits until the associated dependence is realised
before new tasks can be created.

Fig. 2. Cholesky Factorization

Figure 2 shows an example of OmpSs Cholesky Factoriza-
tion source code and a task dependence graph managed by
the Nanos++ RTS. When a function annotated with pragma
is called, a new Task Work Descriptor including task iden-
tification, the number, memory addresses and directions of
dependences is created; dependence analysis is then performed
on created tasks, once all the dependences of one task are
ready, it can be scheduled to an idle worker. Assuming all tasks
are the same size, one possible parallel execution is shown
for a 6 cores machine (tasks with the same color are run in
parallel).

B. Related Work

A large amount of research work has focused on hardware
support for task and dependence management.

Intel CARBON [12] introduces a hierarchy hardware queue
architecture and employs task stealing to speedup task dis-
patching and retrieving. It uses a centralized global task unit
(GTU) to enqueue and dequeue tasks per thread, and a smaller
local task unit (LTU) for buffering tasks per core. Asyn-
chronous Direct Messages (ADM) [13] presents a combined
SW/HW approach which expands on the CARBON archi-
tecture by introducing scheduling extensions in software to
cater different kinds of applications. Task Scheduling Unit [14]
is another hardware queue architecture that accelerates task
scheduling. These works focus more on task management
approaching task scheduling, other aspects as inter-task de-
pendences and synchronizations are performed by the pro-
grammer. In contrast, the Picos Hardware focuses on both
dynamically detecting inter-task dependences and scheduling
tasks automatically, transparently to the programmer.

A video-oriented task scheduler [15], is proposed as a
hardware support for fast task creation, synchronization and
scheduling. Similar mechanisms have also been applied by
the programmable Task Management Unit (TMU) [16]. These

works achieve high performance for specific inter-task de-
pendence patterns in video processing domains. Another in-
teresting design is the Multilevel Computing Architecture
(MLCA) [17], which introduces a novel architecture focus-
ing on multimedia multicore systems for coarse-grained task
parallelism. The MLCA augments a traditional muticore archi-
tecture (served as low level) with a CP (Control Processor, as
high level). The CP employs task queue, register renaming,
out-of-order execution to dynamically detect the inter-task
dependence and schedule tasks when they are ready. All these
research works focus on developing hardware for applications
in a specific domain, while the Picos Hardware aims at pro-
viding a general support for applications of different domains.

Nexus# [18] is proposed to accelerate task and dependence
management for the OmpSs programming model in hardware.
It employs similar mechanisms as Task Superscalar [11] while
using less hardware. Hardware cost for the Picos prototype
in this paper is around 38% of Nexus# 1TG and 18% of
Nexus# 2TGs. Application H264dec video decoder with four
decreasing task sizes (8x8, 4x4, 2x2, 1x1) is used for per-
formance comparison. The speedup of the Picos prototype in
Section V-D against Nexus# 1TG is 2.4x, 1.1x, 1x, 1.2x, and
against Nexus# 2TGs is 1.2x, 0.8x, 1x, 1.2x with 24 cores. To
summarize, Picos prototype yields competitive performance
with Nexus# with much lower hardware cost.

Swarm[19] is a novel architecture to exploit ordered irregu-
lar parallelism in task-based parallel applications. It addresses
Transactional Memory (TM) database applications based on
Thread-level Speculation (TLS), and gains high performance
by speculative execution supported by the co-design of the
execution model and microarchitecture. The execution model
uses timestamps specified on tasks by the programmer to
reduce false data dependences and the microarchitecture sup-
ports large speculation window, selective aborts and ordered
commits. Picos Hardware manages data dependences in a
dataflow manner, without the need for TM and speculation.

III. HARDWARE DESCRIPTION

Picos Hardware aims at accelerating task and dependence
management of fine-grained tasks for task-based data-flow
programming models. From the software aspect, it can be seen
as a co-processor that (1) receives task dependence information
(task id and its dependences) at task creation time, and (2)
sends ready-to-execute task information to the worker threads.
We describe the Picos Hardware in a top-bottom fashion way,
first present its organization, second describe its operational
flow, and finally focus on critical path designs in detail.

A. Hardware Organization

We present the organization of the Picos Hardware in
Figure 3a and the current implementation in Figure 3b. The
Picos Hardware is composed of one Gateway (GW), one
Task Scheduler (TS), one Arbiter (ARB), and N instances of
the Task Reservation Station (TRS) and of the Dependence
Chain Tracker (DCT). This architecture is scalable by simply
increasing the number of TRSs and DCTs. A design with

four instances is able to manage up to 256 cores, and a
baseline configuration with only one TRS and DCT is able
to manage up to 8 cores without significant performance loss
based on simulation results [7]. Functional descriptions of each
component are as follows:

GW: the first interface between Picos and the processing
cores. It fetches new tasks from memory and finished tasks
from workers, and dispatches them to TRSs and DCTs.

TRS: the major task management unit. It stores in-flight
tasks, tracks the readiness of new tasks and manages the
deletion of finished tasks. There is a Task Memory (TM) per
TRS to store task identification (Task.ID), the number of de-
pendences per task (#Num.Dep.), and consumer sections to
store inter-task dependences detected and notified by DCT. In
Figure 3b, TM0 is used to store the Task.ID, #Num.Dep.
and the number of ready dependences (#Ready Dep.), the
last two are used to count the number of ready notifications
from DCT for TRS to mark the task ready. TMXs are used to
store consumer sections information notified by DCT.

DCT: the major dependence management unit. It man-
ages task dependences through one Dependence Memory
and one Version Memory (DM and VM respectively) per
DCT. Each DM stores the memory address of one depen-
dence (In Figure 3b, Tag) and performs address matching
against the addresses of those arrived earlier, to track data
dependences. Since each dependence is saved only once in
DM, VM is used to save and control all its live versions
(Consumer, TRS_slot for Producer-Consumer depen-
dence, and Producer, TRS_Slot for Producer-Producer
dependence). DM and VM also stores pointers to each other
and counters for dependences that have the same address or
are consumers in addition respectively.

ARB: manages communications between TRSs and DCTs.
TS: the second interface between Picos and the processing

cores. It stores ready tasks and schedules them to idle workers.
In the current implementation, FIFO queue is the default task
scheduling method.

In Figure 3b, each component has its own control unit,
which only relies on the status (empty or full) and pack-
ets of those FIFOs to ensure asynchronous communications
with other modules. TM0 has 256 entries, each entry saves
information for one task, these enable it to manage up to 256
in-flight tasks. TMXs (X: 1-5) are used to save dependences
for the corresponding tasks in TM0, where each entry can
hold 3 dependences. These allow to hold 15 dependences for
each task (enough for real applications currently programmed
with OmpSs). TM has four actions: Memory Read/Write, New
Entry Request (accepts a new entry request and responds with
a free entry address) and Finished Entry Request (accepts a
finished entry request and recycles this entry from occupied
to free). VM has 512 entries and has the same access pattern
as TM. We describe DM in Section III-C.

B. Operational Flow

Picos Hardware consists of two major procedures: new and
finished task processing in Figure 3b.

(a) Future Architecture (b) Current Architecture

Fig. 3. Picos Hardware

When a new task arrives (N1-N6):
GW reads its meta-data and dependences (N1). Then it

checks for a free TRS slot (TRS number, TM entry). If there
is no free slot, GW does not process the new task; otherwise,
it obtains one free TRS slot (N2) and dispatches the new task
to TRS (N3). After that, if the new task has dependences, GW
forwards each of them to DCT (N4).

TRS receives this new task from GW and saves it inside
the assigned TM0 slot. If it has no dependences (#Num.Dep.
= #Ready Dep.), TRS marks it ready and sends it to TS
for execution (N6); otherwise, TRS waits for notifications
(ready or dependent, N5) for each dependence. For each ready
notification, TRS increases the corresponding #Ready Dep.
by 1 in TM0; and for each dependent packet, TRS saves it in
the correct TMX entry. TRS only marks the new task ready
after all the dependences are ready.

DCT receives the dependences. For each dependence, DCT
checks whether it is dependent on those dependences arrived
earlier (N5), and saves it in both DM and VM. If not, DCT
sends a ready packet (the corresponding TRS slot and VM
address) to TRS; otherwise DCT sends a dependent packet
(TRS slot, VM address, dependent TRS slot) to TRS.

When a finished task arrives (F1-F4):
GW reads the finished task (F1), and then distributes it to

TRS (F2).
TRS receives the finished task, first checks TM0 for

#Num.Dep., checks these #Num.Dep. of dependences in
TMX. Secondly it sends finished packets (VM address) for
each dependence to DCT (F3). Thirdly it deletes the task inside
the assigned TM slot (the TM slot now can be recycled as free
slot).

DCT receives finish packets of dependences. For each
dependence, DCT checks the corresponding VM entry (Con-
sumer, Producer, Count) to see if there are other ones that
depend on it. If there exists no such dependences, DCT
deletes it from the DM and VM directly; otherwise DCT

keeps tracking its consumers/producers, and sends a dependent
packet (current TRS slot, VM address) to TRS to wake up the
first waiting dependent task (F4). Once all of such dependences
that depend on it are resolved and finished, the dependence is
deleted inside the VM and DM eventually. Traffic concerning
N5/F4 is explained in detail in Section III-D.

C. DM Designs

For each new dependence entering DCT, DM performs
address matching against those arrived earlier, to establish
data dependences. Later, for each dependence’s finish packet
from TRS, DM read/write are performed on DM for releasing
data dependences. Both processes, finding a slot to save the
dependence and address matching, are critical for the prototype
performance. On the one hand, each task can have multiple
dependences that stresses DCT more than TRS; on the other
hand, the whole system may stall if new dependences cannot
be stored in DM which can be due to DM conflicts (more than
8 dependences try to use the same DM entry in the case of 8-
way) or memory capacity. To overcome possible conflict stalls,
three different designs of DM are proposed and evaluated:

• DM 8way, a 64-entry, 8-way associative cache-like mem-
ory with direct hash.

• DM 16way, a 64-entry, 16-way associative cache-like
memory with direct hash.

• DM P+8way, a 64-entry, 8-way associative cache-like
memory with Pearson hashing [20].

Each way in Figure 4 comprises valid (V), input (I), tag, data
(VM address, count). Valid indicates if the way is occupied
or free; input indicates if all the dependences arrived earlier
in this way are input (dependences with the same memory
address are saved in the same DM way), thus are independent.

All the three DM designs support three main operations:
DM read, write and compare. DM read/write are general
memory read/write operations. DM compare operations are

Fig. 4. DM P+8way access diagram

similiar to cache access, and for DM 8/16way versions, the
LSB 6 bits of each dependence address are used as index.

For DM P+8way, Figure 4 shows the compare operation.
The Pearson hashing function is first applied to each 8 bits
of the LSB 32 bits to randomize the value of the dependence
address; and then the LSB 6 bits after the xor of these hashing
values are used as index to access the 64 entries of memory;
one cycle later, the whole 64 bits dependence address is used
to compare with the tags of all 8 ways in the entry. Actions
following the comparison results are shown in the pseudo code
in Figure 4. Note that the New DM address is obtained by
checking both Hit and Valid values from all 8 ways. Inside
each entry, way 0 has the highest priority, and way 7 has the
lowest priority.

Memory addresses of dependences always tend to group in
clusters for certain applications, and the addressing of DM
8/16way configurations leads to large amount of conflicts
that stall the design. By applying Pearson hashing, the Picos
prototype should be able to reduce memory conflicts and thus
greatly speed up dependence management.

D. Dependence Chains

It is challenging and crucial to establish dependences and
wake up tasks rapidly and economically. Tasks are woken
up following different processes depending on the types of
their dependences. Figure 5 shows an example of six tasks,
where each task has only one dependence (A) with different
directions. This example assumes that all the new tasks arrive
to Picos before the first one finishes its execution. The six tasks
form a mixed Producer-Consumer chain (Task1, 2, 3 and 4)
and Producer-Producer chain (Task1, 5, 6) established inside
TRS and DCT. The solid line shows how the dependence
chain is established according to the sequence of new tasks.
The dashed line shows the order in which they are woken up
after Task1 finishes. Note that the Producer-Consumer chain
is woken up from the last consumer, the Producer-Producer
chain is woken up in sequence.

Fig. 5. An example of dependence chain

When Task1 arrives, its dependence is forwarded to DCT.
For the first task, its dependence is independent, a new DM
and VM entries are assigned to it. The DM entry stores the
memory address of the dependence as Tag, and the VM entry
stores consumer/producer related information. They also store
pointers that point to each other and counters that count the
times of appearance of the same dependence that in this case
are initialized with 1. For this dependence, as it is independent,
DCT sends a ready message to TRS. TRS then saves the
VM address of this dependence inside the assigned TMX slot,
marks this task ready and sends it to TS for execution.

When Task2 arrives, its dependence is forwarded to DCT.
Once DCT receives the dependence, it first does a DM com-
pare and realizes that it is the first consumer of the previous
task. In this case, it is saved in the same DM and VM entry
(increase the counter of this dependence to 2, and update the
consumer TRS slot of Task1 with Task2 in VM).

When Task3 arrives, DCT detects that its dependence is the
second consumer. The dependence is then saved in the same
DM and VM entry (increase the count of this dependence to 3,
and update the Consumer TRS slot of Task2 with Task3 inside
VM). At the same time DCT notifies TRS that Task2 will be
waken up after Task3. The same happens for Task4 (increase
the count of this dependence to 4, and update the Consumer
TRS slot section in VM). In this way the last consumer is
stored in DCT while the formers are kept chained in TMX
slot of the previous task inside the TM. Until now one DM
and one VM entry have been assigned.

When Task5 arrives, DCT detects that it is the fifth time
when the A dependence appears and it is a producer. A new
VM entry is assigned to store this latest version of producer,
and the last VM entry is updated to point to this new VM entry.
The same happens for Task6 to keep the Producer-Producer
chain in DCT. Up to this point, one DM entry and three VM
entries have been assigned.

When Task1 finishes, TRS notifies DCT of first A de-
pendence’s finish. DCT checks the corresponding VM entry
and sends a ready message to TRS for Task4 (link 1 in
Figure 5). Once TRS receives this message, it wakes Task4
and sends another ready message (managed by the Arbiter
module) to wake Task3 (link 2), and then Task2 (link 3). Now
Task2, Task3 and Task4 are marked ready after TRS receives
three these ready messages and are sent to execute in idle
workers. Whenever a task finishes, TRS notifies DCT. Once
DCT receives three finish messages, it wakes up Task5 (link

4) and deletes the first VM entry of the dependence. When
Task5 finishes, the process is repeated and the second VM
entry is deleted. Finally after Task6 finishes TRS notifies DCT
to delete the DM and the third VM entry.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

A. Experimental Setup

We use XILINX ISE Design Suite 14.4, Vivado 14.4, SDK
and a Zynq 7000 All-Programmable SoC Platform (Zedboard)
to develop the Picos prototype and its embedded system. Zed-
board includes one FPGA Chip XC7Z020-CLG484 [21] which
comprises a Processing System (PS) (Dual ARM Cortex-A9
MPCore) and a Programmable Logic (PL) part.

The OmpSs programming model in use in this paper for
benchmarks is supported by the Mercurium compiler 1.99 and
the associated Nanos++ RTS.

Sequential and parallel execution time of OmpSs applica-
tions from the software-only implementation are obtained from
a shared memory machine which has 12 cores (Zedboard was
not used for obtaining workloads because it has only two
cores). The shared memory machine has 2 NUMA nodes
with 1 socket each, each node has 64GB main memory.
Each socket is a Xeon E5-2630L with 6 cores with dynamic
frequency control up to 2.0GHz. Each core has 2 threads
sharing resources. In total, we can use 12 cores and up to
24 threads with hyper-threading.

Sequential and parallel execution time of the same applica-
tions from the Picos prototype are obtained in Zedboard by
using traces. Traces includes task creation latency in cycles,
task identification, dependence address and direction, and task
execution time in cycles obtained through instrumenting the
sequential execution in the shared machine. Traces are also
used to feed a Perfect Simulator which measures critical-path
task execution to show the roofline speedup of each OmpSs
application. Speedup shown in this paper is computed against
the sequential execution time.

B. Hardware-In-the-Loop Simulation Platform

The embedded system also named Hardware-In-the-Loop
(HIL) simulation platform is a modern way to validate the
functionality and examine the performance of IP-cores. Fig-
ure 6 shows the organization of the HIL platform developed
for the Picos prototype (simplified for explanation). The PL
part uses a 80MHZ global clock, and a 64bits AXI Timer
synchronized with the same clock as the global timer. In this
subsection, we present two major operational modes of the
platform:

HW-only (Solid labeled line): employs a naive process as
all the tasks are sent to Picos (1, 2) once, and all the finished
tasks are retrieved all at once (5, 6). Workers are implemented
inside the PL part so that ready tasks can start executing
shortly after there are idle workers (3) and finished tasks are
used to notify the Picos for dependence analysis (4).

Full-system (Dashed labeled line): employs a close-loop
process. Each task is created and sent to Picos for dependence
analysis (1, 2). Each ready task is retrieved from Picos to the

Fig. 6. Hardware-In-the-Loop Platform

(a) C4 (b) C5 (c) C6 (d) C7

Fig. 7. Dependence graphs of synthetic benchmarks

ARM core for execution in the workers (3, 4). Finally each
finished task is sent back to notify Picos (5) to carry on the
process until the last task. Three queues are employed inside
the Picos prototype for new, ready and finished tasks; and SR0-
2 are the corresponding status registers. The communication
latency for sending or retrieving each task via AXI Stream
interface takes around 200 to 300 cycles for each message.

C. Benchmarks

Both synthetic and real applications are chosen to evaluate
the Picos prototype.

Seven synthetic benchmarks are composed of three testcases
with independent tasks (Case1-3) and four testcases with
dependent tasks (Case4-7). Each testcase has a sequence
of 100 tasks, issued every cycle and of length 1 cycle so
the processing capacity of the prototype can be measured.
Each task in Case1, Case2 and Case3 has 0, 1 and 15
dependences. Figure 7 shows the dependence patterns of the
testcases with dependent tasks. Case4 is a single chain of
100 inout dependences; Case5 is 10 sets of 10 consumers
for the same producer; Case6 is 10 sets of 10 producers
for the same consumer; and Case7 is 10 sets of 10 mixed
producers/consumers.

Five real applications Gauss-Seidel Heat, Lu, Sparse Lu,
Cholesky [8] and H264dec [22] are selected to study the ca-
pability and detect possible bottlenecks in the Picos prototype.
Basic functions of these applications are:

• Gauss-Seidel Heat is an iterative Gauss-Seidel solver for
heat distribution.

• Lu factorization decomposes an (m× n) matrix (m>=n)
A=LU, with L unit lower triangular (m×n) and U upper
triangular (n× n).

• Sparse Lu performs a LU decomposition over a square
sparse matrix.

TABLE I
REAL BENCHMARKS

Name P/BlockSize #Tasks #Dep AveTSize SeqExec

Heat

2048/256 64

5

3.51e+06 2.25e+08
2048/128 256 8.20e+05 2.07e+08
2048/64 1024 2.17e+05 2.11e+08
2048/32 4096 7.19e+04 2.41e+08

Lu

2048/256 36

2

5.67e+07 2.04e+09
2048/128 136 1.49e+07 2.04e+09
2048/64 528 4.13e+06 2.17e+09
2048/32 2080 1.53e+06 3.18e+09

SparseLu

2048/256 34

1-3

2.74e+07 9.30e+08
2048/128 212 4.36e+06 9.24e+08
2048/64 1512 6.47e+05 9.78e+08
2048/32 11472 8.28e+04 9.50e+08

Cholesky

2048/256 120

1-3

6.63e+06 7.61e+08
2048/128 816 9.71e+05 7.89e+08
2048/64 5984 1.47e+05 8.77e+08
2048/32 45760 2.94e+04 1.34e+09

H264dec

10f/8 2659

2-6

2.06e+06 5.48e+09
10f/4 9306 5.91e+05 5.50e+09
10f/2 35894 1.53e+05 5.48e+09
10f/1 139934 3.94e+04 5.51e+09

• Cholesky factorization computes A = LL’, with A an n×n
SPD matrix and L lower-triangular.

• H264dec is a high performance H.264 video decoder, a
video pedestrian area.h264 is selected as input.

Table I shows basic information about these real benchmarks
obtained on a shared memory machine. For each benchmark,
the table shows, from left to right, its problem size (P) and
block size (for H264dec, 10f stands for 10 HD frames),
number of tasks, possible number of dependences per task,
average task size and the sequential execution time in cycles
respectively.

V. RESULT EVALUATION

A. Difference between Picos configurations
To decide the best implementation, we first evaluate the

difference of performance with three DM designs. Figure 8
presents their speedup (bar, y-axis), four real benchmarks with
a pair of block sizes each are used for testing under HIL HW-
only mode.

Fig. 8. Speedup: Different Picos configurations

The first row shows the performance of Heat and Cholesky
respectively. For both cases, Picos 8way and 16way yield

TABLE II
#DM CONFLICTS IN THREE PICOS DESIGNS

Name BlockSize #DM Conflicts
DM 8way DM 16way DM P+8way

Heat 128 254 252 65
64 1022 1020 757

SparseLu 128 189 166 0
64 239 0 0

Lu 64 491 392 0
32 2039 1937 0

Cholesky 256 108 79 0
128 807 792 0

similar results, and the lowest speedups, and both designs do
not scale well from 2 to 12 workers, while Picos P+8way
achieves the highest speedup and scales relatively well as
from 2x to 5.9x with Heat (64x64) and from 2x to 11.5x with
Cholesky (128x128).

The second row shows the performance of Lu and SparseLu.
For these two cases, all the three Picos designs benefit from
the decreasing block sizes and scales from 2 to 12 workers;
in addition, as the number of workers increases, Picos 16way
and P+8way yield close to the highest speedup.

To summarize, Picos with DM P+8way yields much better
results than the other two designs in most cases. An exception
is Lu where Picos with DM 16way achieves better results, we
explain this corner case later.

Those performance results greatly depend on the number
of DM conflicts. Table II shows the number of DM conflicts
detected for benchmarks inside the three Picos designs with 12
workers. Regarding the DM conflicts impact, we can observe
that the Picos P+8way is without doubt the best solution with
less DM conflicts.

The interesting Lu case is a corner case which is caused
due to the way that Picos prototype is designed to awake the
Producer-Consumer chain from the last consumer, shown in
the operation flow example (Figure 5). With DM P+8way,
there are no DM conflicts, so the task dependence graph is
created much faster. When the producer task finishes, the

Fig. 9. Performance of Modified Lu

consumer tasks are woken up starting from the last one,
causing the schedule of some tasks in the critical path to
be postponed and thus resulting in lower speedup. As for
DM 16way, the task dependence graph is created much more
slowly due to the delays caused by DM conflicts. These tasks
in the critical path are therefore scheduled earlier and result
in higher speedup. We modified the task creation order of Lu
(MLu in Figure 9) to avoid this corner behavior. Results of
MLu are shown on the left, from block size 64 to 32, the

Picos with DM P+8way now yields much better results than
the others. Note that, different scheduling policies of ready
tasks can be used to change this corner case behavior. The
results of using a LIFO instead of a FIFO as the TS unit for
the original Lu application are shown in Figure 9 right, both
figures share the same x-axis.

B. Resource Consumption

Table III shows the resource consumption of both memory
and the Picos prototype. The size from DM 8way to 16way is

TABLE III
HARDWARE RESOURCE CONSUMPTION

Design LUTs FFs BRAM(36Kb)
XC7Z020 53,200 106,400 140

Mem

TM 0.4% 0.01% 6%
VM for 8way/P+8way 0.4% 0.01% 1%
VM for 16way 0.4% 0.01% 2%
DM 8way 1.1% 0.1% 9%
DM 16way 3.1% 0.1% 17%
DM P+8way 1.7% 0.1% 10%

Module
TRS 1.6% 0.6% 6%
DCT (DM P+8way) 2.9% 0.3% 11%
GW+ARB+TS 1.3% 0.4% -

Full Picos (DM P+8way) 5.8% 1.2% 17%

doubled with the objective to speedup this component by using
higher associativity to reduce DM conflicts. This significant
increase can be observed from the BRAM usage of DM 8way
and 16way, 9% to 17% respectively. The corresponding VM
is also doubled from 512 to 1024 entries to keep it coherent
with the DM size [7].

Resource consumption of DM 8way and P+8way are very
close (BRAM usage are 9% and 10%), both are much lower
than DM 16way. Although the resource consumption of DM
16way is not very demanding, its number of DM conflicts is
much higher than of the DM P+8way in Table II. We could
have decided to increase the 16way into a 32way doubling
the size in order to reduce the DM conflicts, but this would
lead to a double increase of the resource usage. Regarding the
performance difference in Section V-A and hardware cost, we
can conclude that Picos with DM P+8way is the most balanced
design among all three. Therefore, in the following section, we
will focus on this configuration.

Hardware costs for TRS and DCT are also shown in the
table, the other modules GW, TS and ARB are designed simply
and their costs are trivial.

C. Latency and Throughput

In this section, the processing capacity (latency and through-
put) of the hardware design is evaluated by using the syn-
thetic benchmarks with HIL HW-only mode. After that the
influence of integrating the full system (ARM processing,
communication and Picos) is analyzed. The cost of integrating
hardware and software is mainly composed of two parts: the
communication latencies, and the task creation and submission
cost of Nanos++ RTS.

In Figure 10, we shows the task creation and submission
overhead measured in cycles (y-axis) of Nanos++ RTS with

Fig. 10. Nanos++ RTS overhead for single task

TABLE IV
RESULTS OF THE SYNTHETIC BENCHMARKS

Testcase Independent Dependent
Case1 Case2 Case3 Case4 Case5 Case6 Case7

#d1st/avg#d 0/0 1/1 15/15 1/1 2/2 11/2 11/11

HW-only
L1st 45 73 312 72 96 287 233
thrTask 15 24 243 24 35 38 178
thrDep - 24 16 24 18 19 16

HW+comm.
L1st 1172 1174 1293 1151 1158 1274 1279
thrTask 740 740 734 743 743 743 743
thrDep - 740 49 743 371 372 68

Full-system
L1st 3879 4240 4710 4246 4217 4531 4549
thrTask 2729 3125 3413 3124 3168 3165 3379
thrDep - 3125 228 3124 1584 1583 307

different number of threads (x-axis). Creation shows the
task creation overhead per task (same for varied number of
dependences); x DEPs shows task submission overhead for
single task with x dependences. For the Nth task, its required
overhead is acculmulated based on the N-1 previous tasks.

Table IV shows the processing capacity of Picos P+8way
with HIL HW-only, HW+communication and Full-system
modes, 12 workers are used. HIL HW+communication adds
communication latencies based on the HW-only, and no
task creation and submission cost are considered. Row
(#d1st/avg#d) indicates the number of dependences for the first
task and the average number of them for all tasks. For each
testing mode, three other aspects are evaluated in cycles.

First, in HIL HW-only mode, the latency of the 1st task
(L1st) is proportional to the number of dependences of the
lst task (#d1st), while the increasing degree slows down as
the average number of dependences in the testcase (avg#d)
increases. From Case1/4 to Case3/7, L1st increases from
45/72 to 312/233 cycles. From Case1 to Case2, it increases
24 cycles while from Case2 to Case3 it only increases 16
cycles for each dependence. This can be seen as the latency
and repetition rate of the first and following independent
instructions flow into a pipelined funtional unit.

Second, throughput for additional tasks (thrTask) mainly
depends on average number of dependences (avg#d) and the
type of the dependences. For tasks with the same average
number of dependences as Case2 and Case4, the thrTask are
similar. While for Case6 to Case7 with 2 and 11 dependences
respectively, it increases from around 38 to 178 cycles. And
from Case5 to Case6, there is a minor increase due to
dependence difference. However, this effect in the HW-only
mode is nearly hidden when the communication and Nanos

overheads are introduced, showing that the hardware part is
fast enough with the current integration.

Third, throughput for additional dependences (thrDep)
remains stable in all the testcases and decreases when the
average number of dependences (avg#d) increases. For cases
with more than one dependence, the throughput per depen-
dence is 16 to 19 cycles. For Case2 and Case4 which have
one dependence, it is 24 cycles. Same pipelined influence can
be explained for this as for thrTask. This effect in the HW-
only is greatly enhanced in the Full-system mode where the
communication and Nanos overheads become the main perfor-
mance factor. As can be seen, from HIL HW+communication
to Full-system, the thrDep from Case2 to Case3 drops from
740 to 49 cycles and from 3125 to 228 cycles.

Regarding the Full-system mode, as the number of depen-
dences increases, the time required to process a task thrTask
remains stable while the thrDep decreases proportionally.
This is a key factor contributing to the performance of the
Picos HIL Full-system presented which makes the Picos
alternative not only more powerful but also steadier, as this
effect doesn’t appear in the software-only implementation.

D. Scalability

Finally, to show the real potential of the Picos prototype, in
this section, five real benchmarks with varied block sizes are
used to study their scalability under HIL Full-system mode
with up to 24 workers. Figure 11a to 11e show the speedup
(y-axis) of Heat, SparseLu, Lu, Cholesky and H264dec with
four block sizes obtained by Picos under HIL Full-system,
Perfect Simulator and Nanos++ RTS.

Results of Perfect Simulator shows the available parallelism
peak for these applications. For Heat in Figure 11a, SparseLu
in Figure 11d, Lu in Figure 11c and Cholesky in Figure 11b,
the Picos prototype achieves nearly roofline speedup with
block sizes from 256 to 64 and with the number of workers
from 2 to 24. For H264dec in Figure 11e, the Picos prototype
scales well with block size (8, 4, 2, 1) and up to 12 cores,
then remains stable.

For Heat in Figure 11a, Cholesky in Figure 11b with block
size 32 and H264dec in Figure 11e, there are emerging gaps
between the results obtained by the Picos prototype and Perfect
Simulator. The reason is that Picos in use is the simplest
configuration which is unable to unfold such a high parallelism
from applications here, also due to the lack of hardware
resources to manage so many processors. The Picos prototype
with more module instances should be able to obtain higher
speedup and fill this gap [7].

For all the five real benchmarks, there are two main ob-
servations. First, for each benchmark with a fixed block size,
Nanos++ RTS scales up to 8 workers maximum while the
Picos prototype continues to scale to 24 workers in some cases.
For example, for SparseLu in Figure 11d with block size 32
and Cholesky in Figure 11b with block size 64, the Picos
prototype achieves 16x to 24x and 15x to 21x with 16 to 24
workers, respectively.

(a)

(b)

(c)

(d)

(e)

Fig. 11. Scalability study of real benchmarks

Secondly, for each benchmark, as its block size decreases,
Nanos++ RTS starts to degrade rapidly after some point while
the Picos prototype keeps on advancing or at least remains
stable. For example, in Figure 11a, the speedup achieved by
Nanos++ RTS for Heat (64 to 32) drops from 4.5x to 1.6x
with 8 workers while the speedup of the Picos prototype
remains stable as 6.3x; and for SparseLu in Figure 11d
and Lu in Figure 11c with block size 64 to 32, when the
speedup achieved by Nanos++ RTS starts to degrade, the
Picos prototype continues to advance from 3.3x to 8x with

16 workers. In Figure 11e, for H264dec, as the block size
and the performance of Nanos++ RTS decreases, the Picos
prototype’s performance remains stable. All of the above prove
that even the simplest configuration of Picos Hardware fulfills
our expectation, while larger configurations are expected to be
able to cope with future manycores.

VI. MAIN LESSONS

We learnt important lessons by building the Picos prototype.
First, using limited hardware resources should be carefully
compensated to overcome potential deadlocks. We decouple
the task and dependence management to enable a balance
between hardware cost and the complexity. We also design
three different DMs to reduce DM conflicts and avoid memory
capacity stalls. These are key to design a high performance
accelerator with low cost. Secondly, the way that data is ex-
changed between the processors and the hardware accelerator
is very important, as the transfer overhead might overcome the
dependence management time. Finally, there are gaps between
the C-simulation model and final hardware. To maintain the
performance, it is crucial to adapt your design methodology
from SW-friendly to HW-friendly.

VII. CONCLUSION

In this paper we present the very first hardware prototype
of Picos, as a RTS hardware support to speedup the task
and dependence management for task-based dataflow program-
ming models like OpenMP 4.0 and OmpSs. The presented
implementation has been fully analyzed and tested on a real
embedded system on a Zynq 7000 All-programmable SoC
Platform.

The prototype is able to manage up to 256 in-flight tasks
with up to 15 dependences each. Design exploration of dif-
ferent designs focused on the trade-offs between task and
dependence management are implemented and evaluated. One
of the designs - an 8 way associative cache-like structure with
Pearson Hashing - achieves better performance over the others
while keeping the hardware consumption at bay. Scalability
studies are performed on the prototype with the optimum con-
figuration using a set of real benchmarks - Gauss-Seidel Heat,
Lu, SparseLu, Cholesky and H264dec. Results show that the
prototype greatly outperforms the existing OmpSs software-
only implementation (Nanos++) and as the task granularity
decreases, the prototype continues to scale after Nanos++ RTS
starts to degrade. More importantly, with a larger design with
multiple task and dependence management units upcoming,
Picos Hardware could be able to exploit a larger magnitude of
parallelism in the applications with very fine granularity, that
software alternatives cannot achieve.

ACKNOWLEDGMENT

This work is supported by the Spanish Government through
Programa Severo Ochoa (SEV-2011-0067), by the Spanish
Ministry of Science and Technology through TIN2012-34557
project, by the Generalitat de Catalunya (contract 2009-SGR-
980) and by the European Research Council under the Euro-
pean Unions 7th FP, ERC Grant Agreement number 321253.

We also thank the Xilinx University Program for its hardware
and software donations.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in 6th Symposium on Operating Systems Design &
Implementation, 2004.

[2] J. Reinders, Intel Threading Building Blocks: outfitting C++ for multi-
core processor parallelism. OReilly Associates, 2007.

[3] O. ARB, “Openmp application program interface, v4.0.” [online], 2013.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[4] J. M. Perez, R. M. Badia, and J. Labarta, “A dependency-aware
task-based programming environment for multi-core architecture,” in
International Conference on Cluster Computing(CC), 2008.

[5] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: A proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, 2011.

[6] B. S. Center, “Ompss user guide.” [online], 2015. http://pm.bsc.es/
ompss-docs/user-guide/OmpSsUserGuide.pdf.

[7] F. Yazdanpanah, C. Alvarez, D. Jimenez-Gonzalez, R. M. Badia, and
M. Valero, “Picos: A hardware runtime architecture support for ompss,”
Future Generation Computer Systems(FGCS), 2015.

[8] B. S. Center, “Bsc application repository(bar).” [online], 2014. https:
//pm.bsc.es/projects/bar/wiki/Applications.

[9] N. Engelhardt, T. Dallou, A. Elhossini, and B. Juurlink, “An in-
tegrated hardware-software approach to task graph management,” in
In 16th IEEE International Conference on High Performance and
Communications(HPCC-2014), 2014.

[10] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, “Task superscalar: An out-of-order task
pipeline,” in IEEE / ACM International Symposium on Microarchitecture
(MICRO-43), 2010.

[11] F. Yazdanpanaha, D. Jimenez-Gonzalez, C. Alvarez-Martinez, Y. Etsion,
and R. M. Badia, “Analysis of the task superscalar architecture hardware
design,” in International Conference on Computational Science (ICCS),
2013.

[12] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in International
Symposium on Computer Architecture, 2007.

[13] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible architectural support
for fine-grain scheduling,” in International Conference on Architectural
Support for Programming Languages and Operating Systems(ASPLOS),
2010.

[14] J. Hoogerbrugge and A. Terechko, “A multithreaded multicore system
for embeded media processing,” in Transactions on High-performance
Embeded Architectures and Compilers(THEA), 2011.

[15] G. Al-Kadi and A. S. Terechko, “A hardware task scheduler for embeded
video processing,” in International Conference on High Performance
and Embeded Architectures and Compilers(HiPEASC), 2009.

[16] M. Sjalander, A. Terechko, and M. Duranton, “A look-ahead task
management unit for embeded multi-core architectures,” in Conference
on Digital System Design(DSD), 2008.

[17] D. Capalija and T. S. Abdelrahman, “Microarchitecture of a coarse-
grain out-of-order superscalar processor,” in International Transaction
on Parallel and Distributed Systems, 2013.

[18] T. Dallou, A. Elhossini, B. Juurlink, and N. Engelhardt, “Nexus#: A
distributed hardware task manager for task-based programming models,”
in 2015 IEEE 29th International Parallel and Distributed Processing
Symp(IPDPS), 2015.

[19] M. C. Jefferey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in Proceedings of the 48th
International Symposium on Microarchitecture(ACM), 2015.

[20] P. K. Pearson, “Fast hashing of variable-length text strings,” in Commu-
nication of the ACM, 1990.

[21] XILINX, “Zynq-7000, etc..” [online], 2015. http://www.xilinx.com/
support/documentation/user guides/ug585-Zynq-7000-TRM.pdf.

[22] TU-Berlin, “Starbench benchmark suite.” [online], 2015.
http://www.aes.tu-berlin.de/menue/forschung/projekte/abgeschlossene
projekte/starbench parallel benchmark suite/.

