3 research outputs found

    Rigorous development process of a safety-critical system: from ASM models to Java code

    Get PDF
    The paper presents an approach for rigorous development of safety-critical systems based on the Abstract State Machine formal method. The development process starts from a high level formal view of the system and, through refinement, derives more detailed models till the desired level of specification. Along the process, different validation and verification activities are available, as simulation, model review, and model checking. Moreover, each refinement step can be proved correct using an SMT-based approach. As last step of the refinement process, a Java implementation can be developed and linked to the formal specification. The correctness of the implementation w.r.t. its formal specification can be proved by means of model-based testing and runtime verification. The process is exemplified by using a Landing Gear System as case study

    On the Extensibility of Formal Methods Tools

    Get PDF
    Modern software systems often have long lifespans over which they must continually evolve to meet new, and sometimes unforeseen, requirements. One way to effectively deal with this is by developing the system as a series of extensions. As requirements change, the system evolves through the addition of new extensions and, potentially, the removal of existing extensions. In order for this kind of development process to thrive, it is necessary that the system have a high level of extensibility. Extensibility is the capability of a system to support the gradual addition of new, unplanned functionalities. This dissertation investigates extensibility of software systems and focuses on a particular class of software: formal methods tools. The approach is broad in scope. Extensibility of systems is addressed in terms of design, analysis and improvement, which are carried out in terms of source code and software architecture. For additional perspective, extensibility is also considered in the context of formal modelling. The work carried out in this dissertation led to the development of various extensions to the Overture tool supporting the Vienna Development Method, including a new proof obligation generator and integration with theorem provers. Additionally, the extensibility of Overture itself was also improved and it now better supports the development and integration of various kinds of extensions. Finally, extensibility techniques have been applied to formal modelling, leading to an extensible architectural style for formal models

    Introducing Aspect–Oriented Specification for Abstract State Machines

    No full text
    corecore