93 research outputs found

    Some problems in the computation of sociolinguistic data

    Get PDF
    PhD ThesisThe research described in this thesis is concerned with some of the problems encountered in the processing of sociolinguistic data. Different methodologies are seen as different sets of strategies for coping with the problems which arise from investigations of sociolinguistic variability within any speech community. One early approach to the analysis of sociolinguistic variation (that of Labov: 1963, 1966) is discussed, and some of the difficulties raised by this approach are indicated. One investigation of sociolinguistic variability in a British urban setting (Trudgill: 1974) is also described (Trudgill' s study is based on Labov's (J 966) general methodology). FN The Tyneside Linguistic Survey (T.L.S.) is offered as an alternative approach, which overcomes some of the problems inherent in Labov's methodsThe Department of Education and Science, Newcastle University

    Formalising Human Mental Workload as a Defeasible Computational Concept

    Get PDF
    Human mental workload has gained importance, in the last few decades, as a fundamental design concept in human-computer interaction. It can be intuitively defined as the amount of mental work necessary for a person to complete a task over a given period of time. For people interacting with interfaces, computers and technological devices in general, the construct plays an important role. At a low level, while processing information, often people feel annoyed and frustrated; at higher level, mental workload is critical and dangerous as it leads to confusion, it decreases the performance of information processing and it increases the chances of errors and mistakes. It is extensively documented that either mental overload or underload negatively affect performance. Hence, designers and practitioners who are ultimately interested in system or human performance need answers about operator workload at all stages of system design and operation. At an early system design phase, designers require some explicit model to predict the mental workload imposed by their technologies on end-users so that alternative system designs can be evaluated. However, human mental workload is a multifaceted and complex construct mainly applied in cognitive sciences. A plethora of ad-hoc definitions can be found in the literature. Generally, it is not an elementary property, rather it emerges from the interaction between the requirements of a task, the circumstances under which it is performed and the skills, behaviours and perceptions of the operator. Although measuring mental workload has advantages in interaction and interface design, its formalisation as an operational and computational construct has not sufficiently been addressed. Many researchers agree that too many ad-hoc models are present in the literature and that they are applied subjectively by mental workload designers thereby limiting their application in different contexts and making comparison across different models difficult. This thesis introduces a novel computational framework for representing and assessing human mental workload based on defeasible reasoning. The starting point is the investigation of the nature of human mental workload that appears to be a defeasible phenomenon. A defeasible concept is a concept built upon a set of arguments that can be defeated by adding additional arguments. The word ‘defeasible’ is inherited from defeasible reasoning, a form of reasoning built upon reasons that can be defeated. It is also known as non-monotonic reasoning because of the technical property (non-monotonicity) of the logical formalisms that are aimed at modelling defeasible reasoning activity. Here, a conclusion or claim, derived from the application of previous knowledge, can be retracted in the light of new evidence. Formally, state-of-the-art defeasible reasoning models are implemented employing argumentation theory, a multi-disciplinary paradigm that incorporates elements of philosophy, psychology and sociology. It systematically studies how arguments can be built, sustained or discarded in a reasoning process, and it investigates the validity of their conclusions. Since mental workload can be seen as a defeasible phenomenon, formal defeasible argumentation theory may have a positive impact in its representation and assessment. Mental workload can be captured, analysed, and measured in ways that increase its understanding allowing its use for practical activities. The research question investigated here is whether defeasible argumentation theory can enhance the representation of the construct of mental workload and improve the quality of its assessment in the field of human-computer interaction. In order to answer this question, recurrent knowledge and evidence employed in state-of-the-art mental workload measurement techniques have been reviewed in the first place as well as their defeasible and non-monotonic properties. Secondly, an investigation of the state-of-the-art computational techniques for implementing defeasible reasoning has been carried out. This allowed the design of a modular framework for mental workload representation and assessment. The proposed solution has been evaluated by comparing the properties of sensitivity, diagnosticity and validity of the assessments produced by two instances of the framework against the ones produced by two well known subjective mental workload assessments techniques (the Nasa Task Load Index and the Workload Profile) in the context of human-web interaction. In detail, through an empirical user study, it has been firstly demonstrated how these two state-of-the-art techniques can be translated into two particular instances of the framework while still maintaining the same validity. In other words, the indexes of mental workload inferred by the two original instruments, and the ones generated by their corresponding translations (instances of the framework) showed a positive and nearly perfect statistical correlation. Additionally, a new defeasible instance built with the framework showed a better sensitivity and a higher diagnosticity capacity than the two selected state-of-the art techniques. The former showed a higher convergent validity with the latter techniques, but a better concurrent validity with performance measures. The new defeasible instance generated indexes of mental workload that better correlated with the objective time for task completion compared to the two selected instruments. These findings support the research question thereby demonstrating how defeasible argumentation theory can be successfully adopted to support the representation of mental workload and to enhance the quality of its assessments. The main contribution of this thesis is the presentation of a methodology, developed as a formal modular framework, to represent mental workload as a defeasible computational concept and to assess it as a numerical usable index. This research contributes to the body of knowledge by providing a modular framework built upon defeasible reasoning and formalised through argumentation theory in which workload can be optimally measured, analysed, explained and applied in different contexts

    The Big Data Processing Algorithm for Water Environment Monitoring of the Three Gorges Reservoir Area

    Get PDF
    Owing to the increase and the complexity of data caused by the uncertain environment, the water environment monitoring system in Three Gorges Reservoir Area faces much pressure in data handling. In order to identify the water quality quickly and effectively, this paper presents a new big data processing algorithm for water quality analysis. The algorithm has adopted a fast fuzzy C-means clustering algorithm to analyze water environment monitoring data. The fast clustering algorithm is based on fuzzy C-means clustering algorithm and hard C-means clustering algorithm. And the result of hard clustering is utilized to guide the initial value of fuzzy clustering. The new clustering algorithm can speed up the rate of convergence. With the analysis of fast clustering, we can identify the quality of water samples. Both the theoretical and simulated results show that the algorithm can quickly and efficiently analyze the water quality in the Three Gorges Reservoir Area, which significantly improves the efficiency of big data processing. What is more, our proposed processing algorithm provides a reliable scientific basis for water pollution control in the Three Gorges Reservoir Area

    Exploring the Biocybernetic loop: Classifying Psychophysiological Responses to Cultural Artefacts using Physiological Computing

    Get PDF
    The aim of this research project was to provide a bio-sensing component for a real-time adaptive technology in the context of cultural heritage. The proposed system was designed to infer the interest or intention of the user and to augment elements of the cultural heritage experience interactively through implicit interaction. Implicit interaction in this context is the process whereby the system observes the user while they interact with artefacts; recording psychophysiological responses to cultural heritage artefacts or materials and acting upon these responses to drive adaptations in content in real-time.Real-time biocybernetic control is the central component of physiological computing wherein physiological data are converted into a control input for a technological system. At its core the bio-sensing component is a biocybernetic control loop that utilises an inference of user interest as its primary driver. A biocybernetic loop is composed of four main stages: inference, classification, adaptation and interaction. The programme of research described in this thesis is concerned primarily with exploration of the inference and classification elements of the biocybernetic loop but also encompasses an element of adaptation and interaction. These elements are explored first through literature review and discussion (presented in chapters 1-5) and then through experimental studies (presented in chapters 7-11)

    Investigating Semantic Effects in Adjective-Noun Conceptual Combination

    Get PDF
    Conceptual combination is an active meaning construction process involved in the production and comprehension of complex concepts (e.g., SLEEP TREE, STONY FACE). Distributional and schema-based theories of conceptual combination have proposed various cognitive mechanisms with a primary focus on the processing of noun-noun complex concepts (e.g., SLEEP TREE). The manipulation of variables related to the constituent (e.g., relational frequency) and phrase (e.g., typicality) composition has provided insightful advances into the conceptual representation and processing of complex concepts. Within this context, semantic variables related to semantic richness and concreteness of complex concepts have not been examined in the conceptual combination literature despite having been thoroughly investigated with respect to the processing of simple concepts. The primary objective of the current study is to investigate the processing of adjective-noun combinations (e.g., STONY FACE) by manipulating semantic variables related to the constituent (i.e., semantic neighbourhood density or SND) and phrase (e.g., concreteness) structure. The adjective-noun stimulus set was constructed with participant ratings using a novel quantitative measure to capture a varying degree of novelty (Experiment 1a) and concreteness (Experiment 1b). In the remaining experiments, the processing of adjective-noun combinations was examined with methodology capturing online processing with tasks of differential semantic engagement (Experiments 2-4) as well as an offline interpretation task (Experiment 5). Collectively, the findings of the current study inform our understanding of the conceptual representation and comprehension of adjective-noun phrases. The results of the online processing experiments demonstrated orthographic and semantic effects, which were observed in a graded fashion based on the level of semantic processing the task required. In the shallowest double lexical decision task with non-pronounceable non-words (Experiment 2), only orthographic effects pertaining to the visual word form of adjective-noun phrases were found (i.e., combined letter length, mean orthographic frequency). In Experiment 3, where non-words were pronounceable and required a deeper level of semantic processing compared to Experiment 2, a partial meaningfulness effect was observed, as high meaningful adjective-noun pairs had faster response latencies compared to low meaningful adjective-noun pairs, though no differences were observed for the intermediate meaningful group. A concreteness effect, in which concrete word pairs are processed faster relative to abstract word pairs, was also observed in Experiment 3, particularly for low meaningful adjective-noun phrases. Complete main effects of meaningfulness and concreteness were observed in Experiment 4, the deepest semantic processing task that required participants to make judgments about whether adjective-noun pairs made sense as a pair, essentially recruiting conceptual combination under pressured time constraints. SND effects were also prominent in Experiment 4 and yielded asymmetrical modifier and noun effects based on the meaningfulness and concreteness of the phrase. In Experiment 5, participants were asked to provide an explicit interpretation of novel (low meaningful) adjective-noun phrases, and four themes of interpretation types were identified, including slot-filling, noun elaboration, abstraction, and adjective-reversal. The proportion of unique interpretations and interpretation types differed based on the semantic composition of the adjective-noun phrases. The results were taken as further support for language-based models of conceptual representations, based on the SND effects observed in Experiment 4 and 5, as SND is a quantitative variable derived from a language-based co-occurrence model (Durda & Buchanan, 2008). Kintsch’s (2000) computational model of constructing sentence meaning was applied as a mechanism of constructing meaning for adjective-noun phrases using Experiment 4 and 5 findings, based on previous results in adjective-noun metaphors (Al-Azary et al., 2021). This model can account for a variety of points made by other theorists of conceptual combination, including recruitment in both familiar and novel phrases, an important role of the modifier, an interaction between modifier and noun constituents, competition among different potential processing routes, and recruitment of prior background knowledge

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Human Mental Workload: A Survey and a Novel Inclusive Definition

    Get PDF
    Human mental workload is arguably the most invoked multidimensional construct in Human Factors and Ergonomics, getting momentum also in Neuroscience and Neuroergonomics. Uncertainties exist in its characterization, motivating the design and development of computational models, thus recently and actively receiving support from the discipline of Computer Science. However, its role in human performance prediction is assured. This work is aimed at providing a synthesis of the current state of the art in human mental workload assessment through considerations, definitions, measurement techniques as well as applications, Findings suggest that, despite an increasing number of associated research works, a single, reliable and generally applicable framework for mental workload research does not yet appear fully established. One reason for this gap is the existence of a wide swath of operational definitions, built upon different theoretical assumptions which are rarely examined collectively. A second reason is that the three main classes of measures, which are self-report, task performance, and physiological indices, have been used in isolation or in pairs, but more rarely in conjunction all together. Multiple definitions complement each another and we propose a novel inclusive definition of mental workload to support the next generation of empirical-based research. Similarly, by comprehensively employing physiological, task-performance, and self-report measures, more robust assessments of mental workload can be achieved

    A system for modeling social traits in realistic faces with artificial intelligence

    Full text link
    Los seres humanos han desarrollado especialmente su capacidad perceptiva para procesar caras y extraer información de las características faciales. Usando nuestra capacidad conductual para percibir rostros, hacemos atribuciones tales como personalidad, inteligencia o confiabilidad basadas en la apariencia facial que a menudo tienen un fuerte impacto en el comportamiento social en diferentes dominios. Por lo tanto, las caras desempeñan un papel fundamental en nuestras relaciones con otras personas y en nuestras decisiones cotidianas. Con la popularización de Internet, las personas participan en muchos tipos de interacciones virtuales, desde experiencias sociales, como juegos, citas o comunidades, hasta actividades profesionales, como e-commerce, e-learning, e-therapy o e-health. Estas interacciones virtuales manifiestan la necesidad de caras que representen a las personas reales que interactúan en el mundo digital: así surgió el concepto de avatar. Los avatares se utilizan para representar a los usuarios en diferentes escenarios y ámbitos, desde la vida personal hasta situaciones profesionales. En todos estos casos, la aparición del avatar puede tener un efecto no solo en la opinión y percepción de otra persona, sino en la autopercepción, que influye en la actitud y el comportamiento del sujeto. De hecho, los avatares a menudo se emplean para obtener impresiones o emociones a través de expresiones no verbales, y pueden mejorar las interacciones en línea o incluso son útiles para fines educativos o terapéuticos. Por lo tanto, la posibilidad de generar avatares de aspecto realista que provoquen un determinado conjunto de impresiones sociales supone una herramienta muy interesante y novedosa, útil en un amplio abanico de campos. Esta tesis propone un método novedoso para generar caras de aspecto realistas con un perfil social asociado que comprende 15 impresiones diferentes. Para este propósito, se completaron varios objetivos parciales. En primer lugar, las características faciales se extrajeron de una base de datos de caras reales y se agruparon por aspecto de una manera automática y objetiva empleando técnicas de reducción de dimensionalidad y agrupamiento. Esto produjo una taxonomía que permite codificar de manera sistemática y objetiva las caras de acuerdo con los grupos obtenidos previamente. Además, el uso del método propuesto no se limita a las características faciales, y se podría extender su uso para agrupar automáticamente cualquier otro tipo de imágenes por apariencia. En segundo lugar, se encontraron las relaciones existentes entre las diferentes características faciales y las impresiones sociales. Esto ayuda a saber en qué medida una determinada característica facial influye en la percepción de una determinada impresión social, lo que permite centrarse en la característica o características más importantes al diseñar rostros con una percepción social deseada. En tercer lugar, se implementó un método de edición de imágenes para generar una cara totalmente nueva y realista a partir de una definición de rostro utilizando la taxonomía de rasgos faciales antes mencionada. Finalmente, se desarrolló un sistema para generar caras realistas con un perfil de rasgo social asociado, lo cual cumple el objetivo principal de la presente tesis. La principal novedad de este trabajo reside en la capacidad de trabajar con varias dimensiones de rasgos a la vez en caras realistas. Por lo tanto, en contraste con los trabajos anteriores que usan imágenes con ruido, o caras de dibujos animados o sintéticas, el sistema desarrollado en esta tesis permite generar caras de aspecto realista eligiendo los niveles deseados de quince impresiones: Miedo, Enfado, Atractivo, Cara de niño, Disgustado, Dominante, Femenino, Feliz, Masculino, Prototípico, Triste, Sorprendido, Amenazante, Confiable e Inusual. Los prometedores resultados obtenidos permitirán investigar más a fondo cómo modelar lHumans have specially developed their perceptual capacity to process faces and to extract information from facial features. Using our behavioral capacity to perceive faces, we make attributions such as personality, intelligence or trustworthiness based on facial appearance that often have a strong impact on social behavior in different domains. Therefore, faces play a central role in our relationships with other people and in our everyday decisions. With the popularization of the Internet, people participate in many kinds of virtual interactions, from social experiences, such as games, dating or communities, to professional activities, such as e-commerce, e-learning, e-therapy or e-health. These virtual interactions manifest the need for faces that represent the actual people interacting in the digital world: thus the concept of avatar emerged. Avatars are used to represent users in different scenarios and scopes, from personal life to professional situations. In all these cases, the appearance of the avatar may have an effect not only on other person's opinion and perception but on self-perception, influencing the subject's own attitude and behavior. In fact, avatars are often employed to elicit impressions or emotions through non-verbal expressions, and are able to improve online interactions or even useful for education purposes or therapy. Then, being able to generate realistic looking avatars which elicit a certain set of desired social impressions poses a very interesting and novel tool, useful in a wide range of fields. This thesis proposes a novel method for generating realistic looking faces with an associated social profile comprising 15 different impressions. For this purpose, several partial objectives were accomplished. First, facial features were extracted from a database of real faces and grouped by appearance in an automatic and objective manner employing dimensionality reduction and clustering techniques. This yielded a taxonomy which allows to systematically and objectively codify faces according to the previously obtained clusters. Furthermore, the use of the proposed method is not restricted to facial features, and it should be possible to extend its use to automatically group any other kind of images by appearance. Second, the existing relationships among the different facial features and the social impressions were found. This helps to know how much a certain facial feature influences the perception of a given social impression, allowing to focus on the most important feature or features when designing faces with a sought social perception. Third, an image editing method was implemented to generate a completely new, realistic face from just a face definition using the aforementioned facial feature taxonomy. Finally, a system to generate realistic faces with an associated social trait profile was developed, which fulfills the main objective of the present thesis. The main novelty of this work resides in the ability to work with several trait dimensions at a time on realistic faces. Thus, in contrast with the previous works that use noisy images, or cartoon-like or synthetic faces, the system developed in this thesis allows to generate realistic looking faces choosing the desired levels of fifteen impressions, namely Afraid, Angry, Attractive, Babyface, Disgusted, Dominant, Feminine, Happy, Masculine, Prototypical, Sad, Surprised, Threatening, Trustworthy and Unusual. The promising results obtained in this thesis will allow to further investigate how to model social perception in faces using a completely new approach.Els sers humans han desenvolupat especialment la seua capacitat perceptiva per a processar cares i extraure informació de les característiques facials. Usant la nostra capacitat conductual per a percebre rostres, fem atribucions com ara personalitat, intel·ligència o confiabilitat basades en l'aparença facial que sovint tenen un fort impacte en el comportament social en diferents dominis. Per tant, les cares exercixen un paper fonamental en les nostres relacions amb altres persones i en les nostres decisions quotidianes. Amb la popularització d'Internet, les persones participen en molts tipus d'inter- accions virtuals, des d'experiències socials, com a jocs, cites o comunitats, fins a activitats professionals, com e-commerce, e-learning, e-therapy o e-health. Estes interaccions virtuals manifesten la necessitat de cares que representen a les persones reals que interactuen en el món digital: així va sorgir el concepte d'avatar. Els avatars s'utilitzen per a representar als usuaris en diferents escenaris i àmbits, des de la vida personal fins a situacions professionals. En tots estos casos, l'aparició de l'avatar pot tindre un efecte no sols en l'opinió i percepció d'una altra persona, sinó en l'autopercepció, que influïx en l'actitud i el comportament del subjecte. De fet, els avatars sovint s'empren per a obtindre impressions o emocions a través d'expressions no verbals, i poden millorar les interaccions en línia o inclús són útils per a fins educatius o terapèutics. Per tant, la possibilitat de generar avatars d'aspecte realista que provoquen un determinat conjunt d'impressions socials planteja una ferramenta molt interessant i nova, útil en un ampla varietat de camps. Esta tesi proposa un mètode nou per a generar cares d'aspecte realistes amb un perfil social associat que comprén 15 impressions diferents. Per a este propòsit, es van completar diversos objectius parcials. En primer lloc, les característiques facials es van extraure d'una base de dades de cares reals i es van agrupar per aspecte d'una manera automàtica i objectiva emprant tècniques de reducció de dimensionalidad i agrupament. Açò va produir una taxonomia que permet codificar de manera sistemàtica i objectiva les cares d'acord amb els grups obtinguts prèviament. A més, l'ús del mètode proposat no es limita a les característiques facials, i es podria estendre el seu ús per a agrupar automàticament qualsevol altre tipus d'imatges per aparença. En segon lloc, es van trobar les relacions existents entre les diferents característiques facials i les impressions socials. Açò ajuda a saber en quina mesura una determinada característica facial influïx en la percepció d'una determinada impressió social, la qual cosa permet centrar-se en la característica o característiques més importants al dissenyar rostres amb una percepció social desitjada. En tercer lloc, es va implementar un mètode d'edició d'imatges per a generar una cara totalment nova i realista a partir d'una definició de rostre utilitzant la taxonomia de trets facials abans mencionada. Finalment, es va desenrotllar un sistema per a generar cares realistes amb un perfil de tret social associat, la qual cosa complix l'objectiu principal de la present tesi. La principal novetat d'este treball residix en la capacitat de treballar amb diverses dimensions de trets al mateix temps en cares realistes. Per tant, en contrast amb els treballs anteriors que usen imatges amb soroll, o cares de dibuixos animats o sintètiques, el sistema desenrotllat en esta tesi permet generar cares d'aspecte realista triant els nivells desitjats de quinze impressions: Por, Enuig, Atractiu, Cara de xiquet, Disgustat, Dominant, Femení, Feliç, Masculí, Prototípic, Trist, Sorprés, Amenaçador, Confiable i Inusual. Els prometedors resultats obtinguts en esta tesi permetran investigar més a fons com modelar la percepció social en les cares utilitzant un enfocament completFuentes Hurtado, FJ. (2018). A system for modeling social traits in realistic faces with artificial intelligence [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/101943TESI

    Criteria and concepts: an anti-realist approach to word meaning

    Get PDF
    • …
    corecore