102 research outputs found

    Quality of service assurance for the next generation Internet

    Get PDF
    The provisioning for multimedia applications has been of increasing interest among researchers and Internet Service Providers. Through the migration from resource-based to service-driven networks, it has become evident that the Internet model should be enhanced to provide support for a variety of differentiated services that match applications and customer requirements, and not stay limited under the flat best-effort service that is currently provided. In this paper, we describe and critically appraise the major achievements of the efforts to introduce Quality of Service (QoS) assurance and provisioning within the Internet model. We then propose a research path for the creation of a network services management architecture, through which we can move towards a QoS-enabled network environment, offering support for a variety of different services, based on traffic characteristics and user expectations

    Performance enhancement of large scale networks with heterogeneous traffic.

    Get PDF
    Finally, these findings are applied towards improving the performance of the Differentiated Services architecture by developing a new Refined Assured Forwarding framework where heterogeneous traffic flows share the same aggregate class. The new framework requires minimal modification to the existing Diffserv routers. The efficiency of the new architecture in enhancing the performance of Diffserv is demonstrated by simulation results under different traffic scenarios.This dissertation builds on the notion that segregating traffic with disparate characteristics into separate channels generally results in a better performance. Through a quantitative analysis, it precisely defines the number of classes and the allocation of traffic into these classes that will lead to optimal performance from a latency standpoint. Additionally, it weakens the most generally used assumption of exponential or geometric distribution of traffic service time in the integration versus segregation studies to date by including self-similarity in network traffic.The dissertation also develops a pricing model based on resource usage in a system with segregated channels. Based on analytical results, this dissertation proposes a scheme whereby a service provider can develop compensatory and fair prices for customers with varying QoS requirements under a wide variety of ambient traffic scenarios.This dissertation provides novel techniques for improving the Quality of Service by enhancing the performance of queue management in large scale packet switched networks with a high volume of traffic. Networks combine traffic from multiple sources which have disparate characteristics. Multiplexing such heterogeneous traffic usually results in adverse effects on the overall performance of the network

    Implementation of a Simple Bandwidth Broker for DiffServ Networks

    Get PDF
    Abstract To date, QoS solutions that have been developed are confined to enterprise networks due to the scalability problems in inter-domain QoS provisioning. Therefore implementing a service that guarantees end-to-end QoS across the Internet has yet to be fully realised. It is believed that such a service will need to evolve regionally, then nationally and, finally, on a global scale in the same way that the Internet became a global network. By developing such a system, regional and national Network Service Providers (NSP) can be influenced more easily to provide guaranteed QoS for its users, by enabling them to generate revenue from service differentiations in IP networks. Implementation of a QoS management framework is required in order to create end-to-end services across multiple administrative domains. Such a framework also offers easier integration of accounting, billing and security. A Differentiated Services (DiffServ) network alone is not sufficient to address the end-to-end guarantees in network layer service provision but, significantly, it does show great potential for scalability. In order to address the aforementioned problems, a centralised, QoS, management architecture has been proposed -called a Bandwidth Broker (BB). The implementation of a fully automated BB in a single administrative domain is outlined in this paper. The importance of implementing such a BB is ease of extendibility to any other QoS mechanisms such as IntServ and MPLS as well as concepts of Inter-domain QoS, Traffic Engineering, Policy QoS and Mobility Management with QoS. This paper does not intend to investigate those particular extended concepts and restricts implementation of the BB to a single DiffServ domain

    Quality Of Service Enhancement In Ip Based Networks Using Diffserv

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2003Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2003Bu çalışmada, Diffserv mimarisi ile internet üzerinde servis kalitesi sağlama tartışılmıştır. Son on yılda IP tabanlı internette servis kalitesi sağlanamıyordu. İnternette bugün sağlanabilen tek servis ‘Best Effort (BE)’ adı verilen servistir. Yani, ağ, herhangi bir paketi hedefine ulaştırırken mümkün olan en verimli yolu kullanır ancak herhangi bir garanti ya da kaynak ayırımı yapmaz. Başka bir deyişle, trafik mümkün olduğu kadar hızlı ve herhangi bir zaman sınırı ya da miktar açısından garanti verilmeden işlenir. İnternetin ticari bir yapıya bürünmesiyle ‘Servis Kalitesi’ sağlanma ihtiyacı daha da artmıştır. Bu ihtiyaç farklı mimarilerin doğmasına yol açmıştır: IntServ ve DiffServ olmak üzere.Tez çalışmasında DiffServ mimarisi problem ve avantajlarıyla ele alınmıştır. Son bölümde ise NS2 ağ simulasyon yazılımı kullanılarak DiffServ implementasyonları yapılmış sonuçları karşılaştırmalı olarak verilmiştir.In this study improving Quality of Service (QoS) on the Internet with DiffServ architecture is discussed. Within the past decade, it is certainly not support for Quality of Service (QoS) over the IP-based ubiquitous Internet. The Internet as it stands today only support one service class called -Best-Effort (BE) Service. The network would make an earnest attempt to deliver packets to their destinations but with no guarantees and/or special resources allocated for any of the packets. With another words, traffic is processed as quickly as possible but there is no guarantee as to timeliness or actual delivery or even how much can be delivered (i.e. throughput). With the rapid transformation of the Internet into a commercial infrastructure, demands for Quality of Service (QoS) have rapidly developed. This need was resulted to different architectures: IntServ and DiffServ. In the study some DiffServ implementations are discussed with their problems and gains. At the last section with using NS2 simulation programming language some DiffServ implementations are given with the compared results.Yüksek LisansM.Sc

    Distributed admission control for QoS and SLS management

    Get PDF
    This article proposes a distributed admission control (AC) model based on on-line monitoring to manage the quality of Internet services and Service Level Specifications (SLSs) in class-based networks. The AC strategy covers intra- and interdomain operation, without adding significant complexity to the network control plane and involving only edge nodes. While ingress nodes perform implicit or explicit AC resorting to service-oriented rules for SLS and QoS parameters control, egress nodes collect service metrics providing them as inputs for AC. The end-to-end operation is viewed as a cumulative and repetitive process of AC and available service computation.We discuss crucial key points of the model implementation and evaluate its two main components: themonitoring process and the AC criteria. The results show that, using proper AC rules and safety margins, service commitments can be efficiently satisfied, and the simplicity and flexibility of the model can be explored to manage successfully QoS requirements of multiple Internet services.(undefined

    Enterprise network convergence: path to cost optimization

    Get PDF
    During the past two decades, telecommunications has evolved a great deal. In the eighties, people were using television, radio and telephone as their communication systems. Eventually, the introduction of the Internet and the WWW immensely transformed the telecommunications industry. This internet revolution brought about a huge change in the way businesses communicated and operated. Enterprise networks now had an increasing demand for more bandwidth as they started to embrace newer technologies. The requirements of the enterprise networks grew as the applications and services that were used in the network expanded. This stipulation for fast and high performance communication systems has now led to the emergence of converged network solutions. Enterprises across the globe are investigating new ways to implement voice, video, and data over a single network for various reasons – to optimize network costs, to restructure their communication system, to extend next generation networking abilities, or to bridge the gap between their corporate network and the existing technological progress. To date, organizations had multiple network services to support a range of communication needs. Investing in this type of multiple communication infrastructures limits the networks ability to provide resourceful bandwidth optimization services throughout the system. Thus, as the requirements for the corporate networks to handle dynamic traffic grow day by day, the need for a more effective and efficient network arises. A converged network is the solution for enterprises aspiring to employ advanced applications and innovative services. This thesis will emphasize the importance of converging network infrastructure and prove that it leads to cost savings. It discusses the characteristics, architecture, and relevant protocols of the voice, data and video traffic over both traditional infrastructure and converged architecture. While IP-based networks present excellent quality for non real-time data networking, the network by itself is not capable of providing reliable, quality and secure services for real-time traffic. In order for IP networks to perform reliable and timely transmission of real-time data, additional mechanisms to reduce delay, jitter and packet loss are required. Therefore, this thesis will also discuss the important mechanisms for running real-time traffic like voice and video over an IP network. Lastly, it will also provide an example of an enterprise network specifications (voice, video and data), and present an in depth cost analysis of a typical network vs. a converged network to prove that converged infrastructures provide significant savings

    Distributed control architecture for multiservice networks

    Get PDF
    The research focuses in devising decentralised and distributed control system architecture for the management of internetworking systems to provide improved service delivery and network control. The theoretical basis, results of simulation and implementation in a real-network are presented. It is demonstrated that better performance, utilisation and fairness can be achieved for network customers as well as network/service operators with a value based control system. A decentralised control system framework for analysing networked and shared resources is developed and demonstrated. This fits in with the fundamental principles of the Internet. It is demonstrated that distributed, multiple control loops can be run on shared resources and achieve proportional fairness in their allocation, without a central control. Some of the specific characteristic behaviours of the service and network layers are identified. The network and service layers are isolated such that each layer can evolve independently to fulfil their functions better. A common architecture pattern is devised to serve the different layers independently. The decision processes require no co-ordination between peers and hence improves scalability of the solution. The proposed architecture can readily fit into a clearinghouse mechanism for integration with business logic. This architecture can provide improved QoS and better revenue from both reservation-less and reservation-based networks. The limits on resource usage for different types of flows are analysed. A method that can sense and modify user utilities and support dynamic price offers is devised. An optimal control system (within the given conditions), automated provisioning, a packet scheduler to enforce the control and a measurement system etc are developed. The model can be extended to enhance the autonomicity of the computer communication networks in both client-server and P2P networks and can be introduced on the Internet in an incremental fashion. The ideas presented in the model built with the model-view-controller and electronic enterprise architecture frameworks are now independently developed elsewhere into common service delivery platforms for converged networks. Four US/EU patents were granted based on the work carried out for this thesis, for the cross-layer architecture, multi-layer scheme, measurement system and scheduler. Four conference papers were published and presented

    A pricing proposal for a QoS enabled UMTS network

    Get PDF
    ArticleThird generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored.Third generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco
    corecore