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DIFFSERV MİMARİSİ İLE IP TABANLI AĞLARDA SERVİS KALİTESİ 

GELİŞTİRME 

ÖZET 

Bu çalıĢmada Ayrım Gözeten Servis (DiffServ) mimarisi ile IP tabanlı ağlarda servis kalitesi 

geliĢtirme tartıĢılmıĢtır. Son on-on beĢ yılda IP tabanlı ağlarda bir servis kalitesinden bahsetmek 

mümkün değildi. Ġnternet‟te bugün de desteklenen tek servis türü Elden Gelenin En Ġyisi (Best Effort) 

adı verilen servis türüdür. Bu serviste, ağ, paketleri hedeflerine herhangi bir garanti ya da özel kaynak 

ayrımı yapmaksızın ulaĢtırır. BaĢka bir deyiĢle, paketler herhangi bir zaman ya da paket kaybı 

açısından garanti verilmeksizin, mümkün olan en hızlı ve en verimli Ģekilde yönlendirilirler. Best-

Effort servisinde uç düğümler tıkanıklık ve hata denetimi bakımından daha karmaĢık bir yapıdadır, 

böylece ağ düğümleri nispeten daha basit bir yapıdadırlar. Bu durum, Ġnternet‟in büyümesine 

ölçeklenebilirlik bakımından bir fayda sağlamıĢtır. Fakat servis isteyen kullanıcı sayısı ağ 

kapasitesinin üstüne çıktıkça, yeni istekler reddedilmez bunun yerine servis alan mevcut kullanıcıların 

aldıkları servis kalitesi düĢürülür. 

Ġnternetin daha ticari bir boyuta ulaĢması ve geliĢen multimedya gibi uygulamaların ihtiyaç duydukları 

servis kalitesinin artmasıyla (Ġnternet telefon ve video uygulamaları gibi) Ġnternet‟te bir servis kalitesi 

sağlanma ihtiyacı zorunlu bir konuma gelmiĢtir. Bu zorunluluk, farklı mimarilerin doğmasına yol 

açmıĢtır: BütünleĢik Servis (IntServ) ve Ayrım Gözeten Servis (DiffServ) olmak üzere. 

Integrated Servis (IntServ) IETF tarafından servis kalitesi sağlamak üzere önerilmiĢ bir mimaridir. 

Kaynak ayrımı ile karakterize edilir. Uygulamaların ihtiyaç duydukları servis kalitesinin sağlanması 

için kaynakların önceden atanması varsayımına dayanır. IntServ mimarisi kendi içinde iki alt sınfa 

ayrılır: Garantili Servis (Guaranteed Service) ve Kontrollü-Yük Servisi (Controlled-Load Service). 

Integrated Servis ve RSVP (Resource Reservation Protocol) kaynak ayrımı protokolünün 

uygulamadaki zorlukları ve ölçeklenebilirlik problemi nedeniyle DiffServ adı verilen yeni bir servis 

kalitesi sağlayan mimari doğmuĢtur. DiffServ‟ün amacı; her bir akıĢa garanti vermek yerine 

ölçeklenebilir farklı servis sınıfları yaratarak bir servis kalitesi sunmaktır. Ölçeklenebilirliğini ise Per-

Hop Behaviours (PHB) adı verilen her bir servis sınıfına uygulanacak davranıĢları belirleyerek sağlar. 

DiffServ mimarisi IntServ mimarisi gibi iki alt sınıf tanımlar: Garantili Servis (Guaranteed Service) 

ve İkincil Servis (Expedited Service). 

Bu tez çalıĢmasında bazı DiffServ uygulamaları artı ve eksileriyle ele alınmıĢtır. 

Yaptığımız ana çalıĢma ise Band GeniĢliği Yöneticili bir DiffServ gerçeklemesidir. 

Bu çalıĢmada, üç servis sınıfı kuyruklarda RED algoritması parametreleriyle kontrol 

edilmektedir. Ağın bandgeniĢliğini yöneten bir yönetici vardır ve bu yönetici 

kuyruklardan belli periyodlarla aldığı iletim bilgileriyle ağın durumu hakkında bilgi 

alır. Böylece yeni istekleri kabul eder ya da red cevabı verir. Bu gerçeklemeler NS2 

benzetim ortamında ve C++ programlama dili kullanılarak yapılmıĢtır. Sonuçlar ve 

tartıĢmalar verilmiĢtir. 
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QUALITY OF SERVICE ENHANCEMENT IN IP BASED NETWORKS 

USING DIFFSERV 

SUMMARY 

In this study, improving Quality of Service (QoS) on the Internet with DiffServ architecture is 

discussed. Within the past decade, it is certainly not supported for Quality of Service (QoS) over the 

IP-based Internet. The Internet as it stands today only support one service class called Best-Effort (BE) 

Service. In this service class the network would make an earnest attempt to deliver packets to their 

destinations but with no guarantees or special resources allocated for any of the packets. With another 

words, traffic is processed as quickly as possible but there is no guarantee as to timeliness (i.e., jitter) 

or actual delivery or even how much can be delivered (i.e., throughput). Best-Effort IP allows the 

complexity to stay in the end-hosts so the network can remain relatively simple. This scales well as 

evidenced by the Internet to support its phenomenal growth. As more hosts are connected, network 

service demands eventually exceeds its capacity, but service is not denied, instead it degrades 

gracefully. With the rapid transformation of the Internet into a commercial infrastructure, and the 

increasing needs of applications such as multimedia, IP telephony (two-way applications), demands 

for Quality of Service (QoS) have rapidly developed. This need was resulted to different architectures: 

IntServ and DiffServ. 

Integrated Services (IntServ) is a QoS mechanism proposed by the IETF and is characterised by 

resource reservation. The assumption is that resources must be explicitly managed in order to meet 

application requirements. The IntServ architecture proposes two more classes of service: Guaranteed 

Service and Controlled-Load Service. 

Due to the difficulties encountered in implementing and deploying the IntServ/RSVP architecture, 

another QoS mechanism known as Differentiated Services (DiffServ) was proposed. The goal of 

DiffServ is to give a scalable service discrimination without the need of per-flow state and signaling at 

every hop or router as in IntServ. The DiffServ architecture achieves its scaling properties by defining 

a small number of different packet forwarding treatments known as Per-Hop Behaviours (PHB). The 

DiffServ architecture also proposes two more classes of service like IntServ: Assured Service and 

Expedited Service. 

In the study some DiffServ implementations are discussed with their problems and 

gains. Our main implementation is on a Bandwidth Broker based DiffServ 

implementation. In this study, BB plays as bandwidth manager role in the topology. 

In the topology, there are three service classes and all queues send their link state 

informations (how many packets of each class is sent or dropped) to the BB. And BB 

manages the QoS resources according to the needs of the sources. This 

implementation is made on NS2 simulation platform with C++ code. The results 

obtained and discussions are also given in the thesis. 
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1. INTRODUCTION 

The Internet as it stands today only supports one service class called -Best-Effort 

(BE) Service. The  network would make an earnest attempt to deliver packets to their 

destinations but with no guarantees and/or special resources allocated for any of the 

packets. In other words, traffic is processed as quickly as possible but there is no 

guarantee for timeliness or actual delivery or even how much can be delivered (i.e. 

throughput). With the rapid transformation of the Internet into a commercial 

infrastructure, demands for Quality of Service (QoS) have also developed [44]. 

By  default, Internet Protocol (IP)-based networks provide Best-Effort data delivery. 

Best-Effort IP allows the complexity to stay in the end-hosts so the network can 

remain relatively simple [21]. As more hosts are connected, network service 

demands eventually exceeds its capacity, and service quality degrades gracefully. 

The service quality degradation results variability in delivery delays (i.e., jitter) and 

packet losses but these do not adversely affect typical Internet applications such as 

email, file transfer and web applications. 

However, this is a problem particularly for applications with real-time requirements 

such as those that deliver multimedia, the most demanding of which are two-way 

applications like telephony and video conferencing [43]. Therefore to provide 

possibility for transporting these types of applications through the Internet, methods 

to reserve resources for their packets or to differentiate their packets (from BE 

traffic)-like giving privileges to those packets- are needed. The QoS need was 

resulted in different architectures: IntServ (Integrated Service) and DiffServ 

(Differentiated Service). 

IntServ is a QoS mechanism proposed by the IETF and is characterised by resource 

reservation. The assumption is that resources must be explicitly managed in order to 

meet application requirements. The IntServ architecture proposes two more classes 

of service: Guaranteed Service and Controlled-Load Service. 

Due to the problems encountered in implementing and deploying the IntServ/RSVP 

(Resource Reservation Protocol) architecture, another QoS mechanism known as 

DiffServ was proposed. The goal of DiffServ is to give a scalable service 

discrimination without the need of per-flow state and signaling at every hop or router 

as in IntServ. The DiffServ architecture achieves its scaling properties by defining a 

small number of different packet forwarding treatments known as Per-Hop 
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Behaviours (PHB). The DiffServ architecture also proposes two more classes of 

service like IntServ: Assured Service and Expedited Service. 

Although, there is more than one way to characterise Quality of Service, in general, 

QoS is the ability of a network element (e.g., an application, a host, a router)  to 

provide some level of assurance for consistent network data delivery services. This 

thesis deals with improving Quality of Service (QoS) on the Internet. 

In this study, some DiffServ implementations are discussed with their problems and 

gains. Our main implementation is a Bandwidth Broker (BB) based DiffServ 

implementation. In this study, BB plays a bandwidth manager role in the topology. In 

the topology, there are three service classes and all queues send their link state 

information (how many packets of each class is sent or dropped) to the BB. The BB 

manages system resources according to the needs of the sources. The BB 

implementation is added to NS2 simulation platform using C++ modules. The results 

obtained and discussions are also presented in the thesis. 

The thesis is organized as follows: in Chapter 2.1, IntServ architecure is detailed with 

RSVP and with its subservice classes. In Chapter 2.2, the DiffServ architecture is 

described much more detailed than IntServ. In Chapter 3 the admission control 

mechanisms in DiffServ architecture are given. The literature survey is given in the 

Chapter 4. The problems of real time applications in the Internet and some solutions 

described in the literature are given in Chapter 5. In Chapter 6 the detailed 

implementation with NS2 and simulation results are given. And the Section 7 

concludes and gives reference to the future work. 
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2. QUALITY OF SERVICE ENHANCEMENT IN IP BASED NETWORKS 

IntServ      DiffServ 

 

 

 

 

 

Guaranteed Service Controlled-load Service Assured Forwarding Expedited Forwarding 

 

2.1 Integrated Services And RSVP 

Integrated Services (IntServ) is a QoS mechanism proposed by the IETF [31] and is 

characterised by resource reservation [44]. The assumption is that resources (e.g., 

bandwidth) must be explicitly managed in order to meet application requirements. 

Resource Reservation, Admission Control (AC)[27], Packet Scheduling and Buffer 

Management [86] are the key building blocks of the service [27]. In addition to the 

traditional Best-Effort service, the IntServ architecture proposes two more classes of 

service; Guaranteed Service and Controlled-Load Service. All three classes (also BE 

Service) are briefly discussed below. 

2.1.1 Guaranteed Service 

This service is intended for delay-sensitive applications (such as multimedia 

applications). As the name suggests, service is guaranteed because there is an assured 

amount of bandwidth (and other resources) that has been reserved. It also assures 

firm end-to-end delay bounds with no packet loss when conforming to the 

parameters negotiated at the connection setup period [30]. The GS is characterized by 

peak rate, token bucket parameters and maximum packet size. Network utilization in 

GS is usually acceptable when flows are smooth. When flows are bursty, GS results 

in low utilization due to its worst-case service commitments [86]. 

2.1.2 Controlled-Load Service 

This service is somehow between Best-Effort and Guaranteed services. It gives 

better quality than Best-Effort but cannot provide strictly bounded service the 

Guaranteed service promises. It is usually for applications requiring probabilistic 

delay bounds. Under lightly loaded network conditions, this service closely 

approximates to the Best-Effort service [43]. It uses loose admission control and 
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simple queue mechanisms, and is essentially for adaptive real-time communications. 

Thus, it does not provide a worst-case delay bound like the GS. CLS traffic is also 

characterized by peak rate, token bucket parameters, and maximum packet size. 

Some capacity (admission) control is needed to ensure that this service is received 

even when the node is overloaded [86]. 

One possible implemetation of CLS is to provide a queueing mechanism with two 

priority levels: a high priority for controlled-load and a lower priority for best-effort 

service. An admission control algorithm is used to limit the amount of traffic placed 

in the high-priority queue. 

 

Figure 2.1.2 An IntServ implementation framework [86] 

2.1.3 Best-Effort Service 

In this service type, the network makes its best attempt to deliver the packets to their 

destinations but with no guarantees and no special resources allocated for any of the 

packets. The forwarding of packets is completely egalitarian; all packets receive the 

same quality of service, and packets are typically forwarded using a strict FIFO 

queuing discipline [43][8]. 
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2.1.4 CAC in IntServ 

2.1.4.1 RSVP 

In order for the applications to communicate their QoS requirements to nodes along 

the transit path, a signaling mechanism is required. The IETF IntServ Working Group 

(WG) recommends RSVP (whose specification is given  in [28]) as the signaling 

protocol to reserve resources. The main function of RSVP is to provide QoS request 

(on behalf of the application traffic) to all routers along the transit path and to 

maintain the state information in the routers for each data flow [29]. 

 

 

 

 

 

Figure 2.1.4.1 General concept of CAC and RSVP [45]. 

Figure 2.1.4.2 shows the signaling process used by RSVP to request for network 

resources. 

Figure 2.1.4.2 RSVP, PATH and RESV messages used to establish a resource 

reservation between a sender and a receiver [43]. 
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Structure of the PATH message 

Before data packets are sent over the link, a PATH message is send to the receiver. 

This particular message will specify a description of the traffic, which includes the 

identity of the sender, its application, traffic profile (bandwidth and the burst 

characteristics) and the classification criteria, which the traffic can be recognized. 

These classification criteria are the source and destination addresses, source and 

destination IP ports that will uniquely identify packets belonging to a particular flow 

[28]. 

Figure 2.1.4.3 RSVP Mechanism [28]. 

RSVP Signaling 

The signaling process works as follows: The sender sends a PATH message to the 

receiver specifying the characteristics of the traffic. Each intermediate RSVP-

enabled router along the  PATH (i.e., downstream route) establishes a PATH-state 

that includes the previous source address of the PATH message and then  forwards 

the  message to  the  next hop (determined by the routing protocol). 

When the receiver gets a PATH message, it responds with a RESV (reservation 

request) message to request resources for the flow. The RESV message  includes the 

QoS level required. When an RSVP router receives a RESV message, it uses 

admission control procedures to authenticate the request and allocates the necessary 

resources. If the request cannot be satisfied due to lack of resources, the router 

returns an error back to the receiver and the signaling process will terminate. If the 

request is accepted, link bandwidth and buffer space are allocated and the related 

flow state information will be installed in the router. The router then sends RSVP 

message to the next router upstream (i.e., towards sender). When the last router  

receives the RESV message and accepts the request, it sends a confirmation message 

to the receiver. The flow is then established. As stated in [43] in this respect, IntServ 

model provides  the closest thing to circuit emulation in IP networks. 

Advantage of RSVP 

This signaling protocol is very strong in providing QoS support. 
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Disadvantages of RSVP 

1. It is not scalable, since it is necessary to maintain a flow state in each router 

along the flow‟s path, and all routers participate in the signaling protocol. 

2. The number of RSVP messages processed is proportional to the number of flows 

in the network and bandwidth must be reserved in each router on a per-flow 

basis. 

3. Both of these disadvantages can lead to poor router performance [22][44]. 

2.1.4.2 Aggregation in IntServ 

Aggregation [61] is a mechanism used to reduce the number of signaling messages in 

an IntServ architecture. In this technique the admission control is only performed on 

an aggregated set of flows and therefore core routers need only to maintain the 

reservation state of each aggregate not of the flows. The RSVP protocol is used but 

only for the aggregate. Thus, core routers do not store the reservation state of 

individual flows. More specifically, when a flow asks for admission, the ingress 

router performs the admission control decision based solely on its knowledge of the 

bandwidth occupancy of the aggregate. To allow for load fluctuations, the ingress 

router can adjust reservations in the core at slow time scales when compared to the 

IntServ reservation time scale. Thus, the signaling and the amount of stored state 

information in the core routers can be highly reduced. 

Advantage and Disadvantages of Aggregation in IntServ 

The aggregation implies a tradeoff: with more aggregation, more flows are not 

admitted and the utilization decreases; with small aggregation the decrease in 

utilization is neglected but the number of signaling messages remains high. If loads 

are relatively constant, the nodes rarely need to be signalled. Otherwise the signaling 

will be near to IntServ‟s one. 

2.2 Differentiated Service 

Due to the difficulties encountered in implementing and deploying the IntServ/RSVP 

architecture, another QoS mechanism known as Differentiated Services (DiffServ) 

was proposed in [33]. The goal of DiffServ is to give a scalable service 

discrimination without the need of per-flow state and signaling at every hop or router 

as in IntServ. The DiffServ architecture achieves its scaling properties by defining a 

small number of different packet forwarding treatments known as Per-Hop 

Behaviours (PHB) [40]. 
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Figure 2.2.1 TOS byte in the IPv4 header [9] 

DiffServ makes use of the Type of Service (TOS) byte (termed as DS field)  in the 

IPv4 header (Figure 2.2.1) (which corresponds to the Traffic Class, TC, octet in the 

IPv6 header (Figure 2.2.2 and Figure 2.2.3)). Each packet receives a particular 

forwarding treatment based on the marking in its IP TOS octet (now called DS Code 

Point). Packets marked same are treated the same way. There is no per-flow state 

required inside the network; core devices know only markings and not flows. Per-

flow state is kept at the network edge and flows are aggregated based on desired 

behaviour. Figure 7 shows the components that work together to form a DiffServ 

domain. The Bandwidth Broker implements dynamic allocation of resources and is 

also responsible for making sure that network resources, both within the DiffServ 

domain and on links connecting adjacent domains, are properly provisioned. 

 

 Figure 2.2.2 TC byte in the IPv6 header [85]. 

 

Figure 2.2.3 Ipv6 Fixed Header 
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By marking the DS fields of packets differently and handling packets based on their 

DS fields, several differentiated service classes can be created. The IETF DiffServ 

group has defined two classes of supporting applications the Premium Service & the 

Assured Service models. 

Figure 2.2.4 DiffServ Domain 

 

 

Figure 2.2.5. Different user types and access points to the DiffServ domain [85] 

2.2.1 Service Classes of DiffServ 

2.2.1.1 Assured Forwarding (AF) 

The AF PHB group provides delivery of IP packets in four independently forwarded 

AF classes. Within each AF class, an IP packet can be assigned one of three different 
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levels of drop precedence. A DS node does not reorder IP packets of the same 

microflow if they belong to the same AF class. 

There is a demand to provide assured forwarding of IP packets over the Internet. In a 

typical application, a company uses the Internet to interconnect its geographically 

distributed sites and wants an assurance that IP packets within this intranet are 

forwarded with high probability as long as the aggregate traffic from each site does 

not exceed the subscribed information rate ( or profile). It is desirable that a site may 

exceed the subscribed profile with the understanding that the excess traffic is not 

delivered with as high probability as the traffic that is within the profile.  

Assured Forwarding PHB group is a means for a provider DS domain to offer 

different levels of forwarding assurances for IP packets received from a customer DS 

domain. Four AF classes are defined, where each AF class in each DS node is 

allocated a certain amount of forwarding resources (buffer space and bandwidth 

e.g.). IP packets that wish to use the services provided by the AF PHB group are 

assigned by the customer or the provider DS domain into one or more of these AF 

classes according to the services that the customer has subscribed to. 

Within each AF class IP packets are marked (again by the customer or the provider 

DS domain) with one of three possible drop precedence values. In case of 

congestion, the drop precedence of a packet determines the relative importance of the 

packet within the AF class. A congested DS node tries to protect packets with a 

lower drop precedence value from being lost by preferably discarding packets with a 

higher drop precedence value. 

In a DS node, the level of forwarding assurance of an IP packet depends on; 

(1) how much forwarding resources has been allocated to the AF class that the 

packet belongs to,  

(2) what is the current load of the AF class, and, in case of congestion within the 

class,  

(3) what is the drop precedence of the packet. 

For example, if traffic conditioning actions at the ingress of the provider DS domain 

make sure that an AF class in the DS nodes is only moderately loaded by packets 

with the lowest drop precedence value and is not overloaded by packets with the two 

lowest drop precedence values, then the AF class can offer a high level of forwarding 

assurance for packets that are within the subscribed profile (i.e., marked with the 
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lowest drop precedence value) and offer up to two lower levels of forwarding 

assurance for the excess traffic. 

2.2.1.2 The AF PHB Group 

Assured Forwarding (AF) PHB group provides forwarding of IP packets in N 

independent AF classes. Within each AF class, an IP packet is assigned one of M 

different levels of drop precedence. An IP packet that belongs to an AF class i and 

has drop precedence j is marked with the AF codepoint AFij, where 1 <= i<= N and 1 

<= j <= M. Currently, four classes (N=4) with three levels of drop precedence in 

each class (M=3) are defined for general use. More AF classes or levels of drop 

precedence may be defined for local use. A DS node should implement all four 

general use AF classes. Packets in one AF class must be forwarded independently 

from packets in another AF class, i.e., a DS node must not aggregate two or more AF 

classes together. 

A DS node must allocate a configurable, minimum amount of forwarding resources 

to each implemented AF class. Each class should be serviced in a manner to achieve 

the configured service rate (bandwidth) over both small and large time scales.[72] 

2.2.1.3 Queueing and discard behavior 

An AF implementation must attempt to minimize long-term congestion within each 

class, while allowing short-term congestion resulting from bursts. This requires an 

active queue management algorithm.  An example of such an algorithm is Random 

Early Drop (RED) [73]. 

2.2.1.4 Recommended codepoints for AF 

Recommended codepoints for the four general use AF classes are given in the Table 

2.2.1.4. 

Table 2.2.1.4. Recommended AF codepoint values. 

 Class 1 Class 2 Class 3 Class 4 
Low Drop Prec. 001010 010010 011010 100010 
Medium Drop Prec. 001100 010100 011100 100100 
High Drop Prec. 001110 010110 011110 100110 
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2.2.1.5 Example Services 

The AF PHB group could be used to implement, for example, the so-called Olympic 

service, which consists of three service classes: bronze, silver, and gold.  Packets are 

assigned to these three classes so that packets in the gold class experience lighter 

load (and thus have greater probability for timely forwarding) than packets assigned 

to the silver class. Same kind of relationship exists between the silver class and the 

bronze class. If desired, packets within each class may be further separated by giving 

them either low, medium, or high drop precedence. 

The bronze, silver, and gold service classes could in the network be mapped to the 

AF classes 1, 2, and 3. Similarly, low, medium, and high drop precedence may be 

mapped to AF drop precedence levels 1, 2, or 3. 

The drop precedence level of a packet could be assigned, for example, by using a 

leaky bucket traffic policer, which has as its parameters a rate and a size, which is the 

sum of two burst values: a committed burst size and an excess burst size. A packet is 

assigned low drop precedence if the number of tokens in the bucket is greater than 

the excess burst size, medium drop precedence if the number of tokens in the bucket 

is greater than zero, but at most the excess burst size, and high drop precedence if the 

bucket is empty. It may also be necessary to set an upper limit to the amount of high 

drop precedence traffic from a customer DS domain in order to avoid the situation 

where a big amount of undeliverable high drop precedence packets from one 

customer DS domain can deny service to possibly deliverable high drop precedence 

packets from other domains. 

Another way to assign the drop precedence level of a packet could be to limit the 

user traffic of an Olympic service class to a given peak rate and distribute it evenly 

across each level of drop precedence. This would yield a proportional bandwidth 

service, which equally apportions available capacity during times of congestion 

under the assumption that customers with high bandwidth microflows have 

subscribed to higher peak rates than customers with low bandwidth microflows. 

The AF PHB group could also be used to implement a loss and low latency service 

using an over provisioned AF class, if the maximum arrival rate to that class is 

known a priori in each DS node. If low loss is not an objective, a low latency service 

could be implemented without over provisioning by setting a low maximum limit to 

the buffer space available for an AF class [72]. 
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2.2.2 An expedited forwarding (EF) PHB  

Network nodes that implement the differentiated services enhancements to IP use a 

codepoint in the IP header to select a per-hop behavior (PHB) as the specific 

forwarding treatment for that packet [47, 33]. The EF PHB can be used to build a 

low loss, low latency, low jitter, assured bandwidth, end-to-end service through DS 

domains. Such a service appears to the endpoints like a point-to-point connection or 

a virtual leased line. This service has also been described as Premium service. 

Loss, latency and jitter are all due to the queues traffic experiences while transiting 

the network. Therefore providing low loss, latency and jitter for some traffic 

aggregate means ensuring that the aggregate sees no (or very small) queues. Queues 

arise when (short-term) traffic arrival rate exceeds departure rate at some node. Thus 

a service that ensures no queues for some aggregate is equivalent to bounding rates 

such that, at every transit node, the aggregate's maximum arrival rate is less than that 

aggregate's  minimum departure rate. 

Creating such a service has two parts: 

1) Configuring nodes so that the aggregate has a well-defined minimum departure 

rate. ("Well-defined" means independent of the dynamic state of the node. In 

particular, independent of the intensity of other traffic at the node.) 

2) Conditioning the aggregate (via policing and shaping) so that its arrival rate at 

any node is always less than that node's configured minimum departure rate. 

The EF PHB provides the first part of the service. The network boundary traffic 

conditioners described in [33] provide the second part. 

The EF PHB is not a mandatory part of the Differentiated Services architecture, i.e., 

a node is not required to implement the EF PHB in order to be considered DS-

compliant. However, when a DS-compliant node claims to implement the EF PHB, 

the implementation must conform to the specification given in this document. 

2.2.2.1 Description of EF per-hop behavior 

The EF PHB is defined as a forwarding treatment for a particular diffserv aggregate 

where the departure rate of the aggregate's packets from any diffserv node must equal 

or exceed a configurable rate. The EF traffic should receive this rate independent of 

the intensity of any other traffic attempting to transit the node. It should average at 

least the configured rate when measured over any time interval equal to or longer 
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than the time it takes to send an output link MTU sized packet at the configured rate. 

(Behavior at time scales shorter than a packet time at the configured rate is 

deliberately not specified.) The configured minimum rate must be settable by a 

network administrator (using whatever mechanism the node supports for non-volatile 

configuration). 

If the EF PHB is implemented by a mechanism that allows unlimited preemption of 

other traffic (e.g., a priority queue), the implementation must include some means to 

limit the damage EF traffic could inflict on other traffic (e.g., a token bucket rate 

limiter). 

Traffic that exceeds this limit must be discarded. This maximum EF rate, and burst 

size if appropriate (must be settable by a network administrator). The minimum and 

maximum rates may be the same and configured by a single parameter. 

2.2.2.3 Example mechanisms to implement the EF PHB 

Several types of queue scheduling mechanisms may be employed to deliver the 

forwarding behavior described and thus implement the EF PHB. A simple priority 

queue will give the appropriate behavior as long as there is no higher priority queue 

that could preempt the EF for more than a packet time at the configured rate. (This 

could be accomplished by having a rate policer such as a token bucket associated 

with each priority queue to bound how much the queue can starve other traffic.) [48]. 

It is also possible to use a single queue in a group of queues serviced by a weighted 

round robin scheduler where the share of the output bandwidth assigned to the EF 

queue is equal to the configured rate. This could be implemented, for example, using 

one PHB of a Class Selector Compliant set of PHBs [47]. 

Another possible implementation is a CBQ scheduler that gives the EF queue priority 

up to the configured rate. All of these mechanisms have the basic properties required 

for the EF PHB though different choices result in different ancillary behavior such as 

jitter seen by individual microflows. 

2.2.2.4 Recommended codepoint for this PHB and mutability 

Codepoint „101110‟ is recommended for the EF PHB. Packets marked for EF PHB 

may be remarked at a DS domain boundary only to other codepoints that satisfy the 

EF PHB. Packets marked for EF PHBs should not be demoted or promoted to 

another PHB by a DS domain. 
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2.2.3 Differentiated services field 

Differentiated services are intended to provide a framework to enable deployment of 

scalable service discrimination in the Internet. The differentiated services approach 

aims to speed deployment by separating the architecture into two  major components; 

1. Packet forwarding is the relatively simple task that needs to be performed on a 

per-packet basis as quickly as possible. Forwarding uses the packet header to find 

an entry in a routing table that determines the  packet's output interface. 

2. Routing sets the entries in the routing table and may need to reflect a range of 

transit and other policies as well as to keep track of route failures. Routing tables 

are maintained as a background process to the forwarding task Further, routing is 

the more complex task and it has continued to evolve over the past years. 

2.2.3.1 Packet forwarding 

The forwarding path behaviors include the differential treatment an individual packet 

receives, as implemented by queue service disciplines and/or queue management 

disciplines. These per-hop behaviors are required in network nodes to deliver 

differentiated treatment of packets no matter how end-to-end or intra-domain 

services are constructed. Main focus is on the general semantics of the behaviors 

rather than the specific mechanisms used to implement them since these behaviors 

will evolve less rapidly than the mechanisms. 

Per-hop behaviors and mechanisms to select them on a per-packet basis can be 

deployed in network nodes today and it is the aspect of the differentiated services 

architecture that is being addressed first. In addition, the forwarding path may require 

that some monitoring, policing, and shaping be done on the network traffic 

designated for special treatment in order to enforce requirements associated with  the 

delivery of the special treatment. The wide deployment of such traffic conditioners is 

also important to enable the construction of services, though their actual use in 

constructing services may evolve over time. 

In the packet forwarding path, differentiated services are realized by mapping the 

codepoint contained in a field in the IP packet header to a particular forwarding 

treatment, at each network node along its path. The codepoints may be chosen from a 

set of mandatory values or may have purely local meaning. PHBs are expected to be 

implemented by employing a range of queue service and/or queue management 

disciplines on a network node's output interface queue: for example weighted round-

robin (WRR) queue servicing or drop-preference queue management (DPQM). 
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Marking is performed by traffic conditioners which are located at network 

boundaries, including the edges of the network (first-hop router or source host) and 

also by the administrative boundaries. Traffic conditioners may include the 

primitives of marking, metering, policing and shaping. Services are realized by the 

use of particular packet classification and traffic conditioning mechanisms at 

boundaries coupled with the concatenation of per-hop behaviors along the transit 

path of the traffic. As stated in [46] “A goal of the differentiated services architecture 

is to specify these building blocks for future extensibility, both of the number and 

type of the building blocks and of the services built from them.” 

2.2.4 Differentiated services field definition 

A replacement header field, called the DS field, is defined. This is intended to replace 

the existing definitions of the IPv4 TOS octet and the IPv6 Traffic Class octet. 

Six bits of the DS field are used as a codepoint (DSCP) to select the PHB a packet 

experiences at each node. A two-bit currently unused (CU) field is reserved. The 

value of the CU bits are ignored by differentiated services-compliant nodes when 

determining the per-hop behavior to apply to a received packet. 

The DS field structure is presented below: 

         0    1    2    3   4    5       6     7 

DSCP CU 

DS-compliant nodes must select PHBs by matching against the entire 6-bit DSCP 

field, e.g., by treating the value of the field as a table index which is used to select a 

particular packet handling mechanism which has been implemented in that device. 

The value of the CU field must be ignored by PHB selection. The DSCP field is 

defined as an unstructured field to facilitate the definition of future per-hop 

behaviors. 

Operators may choose to use different codepoints for a PHB, either in addition to or 

in place of the recommended default. Note that if operators do so choose, re-marking 

of DS fields may be necessary at administrative boundaries even if the same PHBs 

are implemented on both sides of the boundary. 

2.2.5 IP Precedence history and evolution in brief 

The IP Precedence field is something of a forerunner of the DS field. IP Precedence, 

and the IP Precedence Field, were first defined in [46]. The values that the three-bit 
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IP Precedence Field might take were assigned to various uses, including network 

control traffic, routing traffic, and various levels of privilege. The least level of 

privilege was deemed "routine traffic". In [46], the notion of Precedence was defined 

broadly as "An independent measure of the importance of this datagram." Not all 

values of the IP Precedence field were assumed to have meaning across boundaries, 

for instance "The Network Control precedence designation is intended to be used 

within a network only. The actual use and control of that designation is up to each 

network." 

2.2.6 Example mechanisms for implementing class selector compliant 

PHB Groups Class Selector Compliant PHBs can be realized by a variety of 

mechanisms, including strict priority queueing (SPQ), weighted fair queueing 

(WFQ), WRR, or variants (RPS, HPFQA, DRR), or Class-Based Queuing (CBQ). 

It is important to note that these mechanisms might be available through other PHBs 

(standardized or not) that are available in a particular vendor's equipment. A network 

administrator might configure those routers to select the Strict Priority Queueing 

PHBs with codepoints 'xxx000'. 

As another example given in [47], another vendor might employ a CBQ mechanism 

in its routers. The CBQ mechanism could be used to implement the Strict Priority 

Queueing PHBs as well as a set of Class Selector Compliant PHBs with a wider 

range of features than would be available in a set of PHBs that did no more than meet 

the minimum Class Selector PHB requirements. 

2.2.7 Terminologies about DiffServ 

Here are some terminologies about Diffserv that are given in the most Diffserv 

related RFCs: 

 Behavior Aggregate: a collection of packets with the same codepoint crossing a 

link in a particular direction. The terms "aggregate" and "behavior aggregate" 

are used interchangeably in the RFCs. 

 Classifier: an entity which selects packets based on the content of packet headers 

according to the predefined rules. 

 Class Selector Codepoint: any of the eight codepoints in the range 'xxx000' 

(where 'x' may equal '0' or '1'). 
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 Class Selector Compliant PHB: a per-hop behavior satisfying the Class 

Selector PHB. 

 Codepoint: a specific value of the DSCP portion of the DS field. Recommended 

codepoints should map to specific, standardized PHBs. Multiple codepoints may 

map to the same PHB. 

 Differentiated Services Boundary: the edge of a DS domain, where classifiers 

and traffic conditioners are likely to be deployed. A differentiated services 

boundary can be further sub-divided into ingress and egress nodes, where the 

ingress/egress nodes are the downstream/upstream nodes of a boundary link in a 

given traffic direction. A differentiated services boundary typically is found at 

the ingress to the first-hop differentiated services-compliant router (or network 

node) that a host's packets traverse, or at the egress of the last-hop differentiated 

services-compliant router or network node that packets traverse before arriving at 

a host. This is sometimes referred to as the boundary at a leaf router. A 

differentiated services boundary may be co-located with a host, subject to local 

policy. 

 Differentiated Services Domain: a contiguous portion of the Internet over 

which a consistent set of differentiated services policies are administered in a 

coordinated fashion. A differentiated services domain can represent different 

administrative domains or autonomous systems, different trust regions, different 

network technologies (e.g., cell/frame), hosts and routers, etc. 

 Differentiated Services Field: the IPv4 header TOS octet or the IPv6 Traffic 

Class octet when interpreted in conformance with the definitions given above. 

 Mechanism: The implementation of one or more per-hop behaviors according to 

a particular algorithm. 

 Microflow: a single instance of an application-to-application flow of packets 

which is identified by source address, destination address, protocol id, and source 

port, destination port (where applicable (e.g. in IntServ)). 

 Per-hop Behavior (PHB): a description of the externally observable forwarding 

treatment applied at a differentiated services-compliant node to a behavior 

aggregate. 

 Per-hop Behavior Group: a set of one or more PHBs that can only be 

meaningfully specified and implemented simultaneously, due to a common 
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constraint applying to all PHBs in the set such as a queue servicing or queue 

management policy. 

 Traffic Conditioning: control functions that can be applied to a behavior 

aggregate, application flow, or other operationally useful subset of traffic, e.g., 

routing updates. These may include metering, policing, shaping, and packet 

marking. Traffic  conditioning is used to enforce agreements between domains 

and to condition traffic to receive a differentiated service within a domain by 

marking packets with the appropriate codepoint in the DS field and by 

monitoring and altering the temporal characteristics of the aggregate where 

necessary. 

 Traffic Conditioner: an entity that performs traffic conditioning functions and 

which may contain meters, policers, shapers, and markers. Traffic conditioners 

are typically deployed in DS boundary nodes (i.e., not in interior nodes of a DS 

domain). 

 Service: a description of the overall treatment of (a subset of) a customer's traffic 

across a particular domain, across a set of interconnected DS domains, or end-to-

end. Service descriptions are covered by administrative policy and services are 

constructed by applying traffic conditioning to create behavior aggregates which 

experience a known PHB at each node within the DS domain. Multiple services 

can be supported by a single per-hop behavior used in concert with a range of 

traffic conditioners. 

To summarize, classifiers and traffic conditioners are used to select which packets 

are to be added to behavior aggregates. Aggregates receive differentiated treatment 

in a DS domain and traffic conditioners may alter the temporal characteristics of the 

aggregate to conform to some requirements. A packet's DS field is used to designate 

the packet's behavior aggregate and is subsequently used to determine which 

forwarding treatment the packet receives. A behavior aggregate classifier which can 

select a PHB, for example a differential output queue servicing discipline, based on 

the codepoint in the DS field should be included in all network nodes in a DS 

domain. The classifiers and traffic conditioners at DS boundaries are configured in 

accordance with some service specifications. 

2.2.8 New terminologies and clarifications for Diffserv 

As the Diffserv work has evolved, there have been several cases where terminology 

has needed to be created or the definitions in Diffserv standards track RFCs have 
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needed to be refined. Some minor technical clarifications were also found to be 

needed. 

2.2.9 Terminology related to Service Level Agreements (SLAs) 

The Diffserv Architecture [33] uses the term Service Level Agreement (SLA) to 

describe the "service contract... that specifies the forwarding service a customer 

should receive". The SLA may include traffic conditioning rules which (at least in 

part) constitute a Traffic Conditioning Agreement (TCA). A TCA is "an agreement 

specifying classifier rules and any corresponding traffic profiles and metering, 

marking, discarding and/or shaping rules which are to apply...." 

As work progressed in Diffserv (as well as in the Policy WG [48]), it came to be 

believed that the notion of an "agreement" implied considerations that were of a 

pricing, contractual or other business nature, as well as those that were strictly 

technical. There also could be other technical considerations in such an agreement 

(e.g., service availability) which are not addressed by Diffserv. It was therefore 

agreed that the notions of SLAs and TCAs would be taken to represent the broader 

context, and that new terminology would be used to describe those elements of 

service and traffic conditioning that are addressed by Diffserv. 

 A Service Level Specification (SLS) is a set of parameters and their values 

which together define the service offered to a traffic stream by a DS domain. 

 A Traffic Conditioning Specification (TCS) is a set of parameters and their 

values which together specify a set of classifier rules and a traffic profile. A TCS 

is an integral element of an SLS. 

   Note that the definition of Traffic stream is unchanged from [47]. A traffic 

stream can be an individual microflow or a group of microflows (i.e., in a source 

or destination DS domain) or it can be a BA. Thus, an SLS may apply in the 

source or destination DS domain to a single microflow or group of microflows, 

as well as to a BA in any DS domain. 

  Also note that the definition of a Service Provisioning Policy is unchanged from 

[33] which defines it as "a policy which defines how traffic conditioners are 

configured on DS boundary nodes and how traffic streams are mapped to DS 

behavior aggregates to achieve a range of services." According to one definition 

given in [77], [48], a policy is "...a set of rules to administer, manage, and control 

access to network resources". Therefore, the relationship between an SLS and a 
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service provisioning policy is that the latter is, in part, the set of rules that express 

the parameters and range of values that may be in the former. Further note that 

this definition is more restrictive than that in [77]. 

2.2.10 Differentiated services architectural model 

The differentiated services architecture is based on a simple model where traffic 

entering a network is classified and possibly conditioned at the boundaries of the 

network, and assigned to different behavior aggregates. Each behavior aggregate is 

identified by a single DS codepoint. Within the core of the network, packets are 

forwarded according to the per-hop behavior associated with the DS codepoint. 

2.2.10.1 Differentiated Services domain 

A DS domain is a contiguous set of DS nodes which operate with a common service 

provisioning policy and set of PHB groups implemented on each node. A DS domain 

has a well-defined boundary consisting of DS boundary nodes which classify and 

possibly condition ingress traffic to ensure that packets which transit the domain are 

appropriately marked to select a PHB from one of the PHB groups supported within 

the domain. Nodes within the DS domain select the forwarding behavior for packets 

based on their DS codepoint, mapping that value to one of the supported PHBs using 

either the recommended codepoint->PHB mapping or a locally customized mapping. 

Inclusion of non-DS-compliant nodes within a DS domain may result in 

unpredictable performance and may impede the ability to satisfy service level 

agreements (SLAs). 

A DS domain normally consists of one or more networks under the same 

administration; for example, an organization's intranet or an ISP. The administration 

of the domain is responsible for ensuring that adequate resources are provisioned 

and/or reserved to support the SLAs offered by the domain. 

2.2.10.2 DS boundary nodes and interior nodes 

A DS domain consists of DS boundary nodes and DS interior nodes. DS boundary 

nodes interconnect the DS domain to other DS or non-DS-capable domains, whilst 

DS interior nodes only connect to other DS interior or boundary nodes within the 

same DS domain. 

Both DS boundary nodes and interior nodes must be able to apply the appropriate 

PHB to packets based on the DS codepoint; otherwise unpredictable behavior may 

result. In addition, DS boundary nodes may be required to perform traffic 
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conditioning functions as defined by a traffic conditioning agreement (TCA) between 

their DS domain and the peering domain which they connect to. 

Interior nodes may be able to perform limited traffic conditioning functions such as 

DS codepoint re-marking. Interior nodes which implement more complex 

classification and traffic conditioning functions are analogous to DS boundary nodes. 

A host in a network containing a DS domain may act as a DS boundary node for 

traffic from applications running on that host. If a host does not act as a boundary 

node, then the DS node topologically closest to that host acts as the DS boundary 

node for that host's traffic. 

Figure 2.2.10.2.1 Differentiated Services: basic concept 

2.2.10.3 DS ingress node and egress node 

DS boundary nodes act both as a DS ingress node and as a DS egress node for 

different directions of traffic. Traffic enters a DS domain at a DS ingress node and 

leaves a DS domain at a DS egress node. A DS ingress node is responsible for 

ensuring that the traffic entering the DS domain conforms to any TCA between it and 

the other domain to which the ingress node is connected. 

A DS egress node may perform traffic conditioning functions on traffic forwarded to 

a directly connected peering domain, depending on the details of the TCA between 

the two domains. Note that a DS boundary node may act as a DS interior node for 

some set of interfaces. 

2.2.10.4 Differentiated Services region 

A differentiated services region (DS Region) is a set of one or more contiguous DS 

domains. DS regions are capable of supporting differentiated services along paths 

which span the domains within the region. 
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The DS domains in a DS region may support different PHB groups internally and 

different codepoint->PHB mappings. However, to permit services which span across 

the domains, the peering DS domains must each establish a peering SLA which 

defines (either explicitly or implicitly) a TCA which specifies how transit traffic 

from one DS domain to another is conditioned at the boundary between the two DS 

domains. 

It is possible that several DS domains within a DS region may adopt a common 

service provisioning policy and may support a common set of PHB groups and 

codepoint mappings, thus eliminating the need for traffic conditioning between those 

DS domains. 

2.2.11 Traffic classification and conditioning 

Differentiated services are extended across a DS domain boundary by establishing a 

SLA between an upstream network and a downstream DS domain. The SLA may 

specify packet classification and re-marking rules and may also specify traffic 

profiles and actions to traffic streams which are in- or out-of-profile. The TCA 

between the domains is derived (explicitly or implicitly) from this SLA. 

The packet classification policy identifies the subset of traffic which may receive a 

differentiated service by being conditioned and/ or mapped to one or more behavior 

aggregates (by DS codepoint re-marking) within the DS domain. 

Traffic conditioning performs metering, shaping, policing and/or re- marking to 

ensure that the traffic entering the DS domain conforms to the rules specified in the 

TCA, in accordance with the domain's service provisioning policy. The extent of 

traffic conditioning required is dependent on the specifics of the service offering, and 

may range from simple codepoint re-marking to complex policing and shaping 

operations. 

2.2.11.1 Classifiers 

Packet classifiers select packets in a traffic stream based on the content of some 

portion of the packet header. Two types of classifiers are: 

1. The BA (Behavior Aggregate) Classifier classifies packets based on the DS 

codepoint only. 

2. The MF (Multi-Field) Classifier selects packets based on the value of a 

combination of one or more header fields, such as source address, destination 
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address, DS field, protocol ID, source port and destination port numbers, and 

other information such as incoming interface. 

Classifiers are used to "steer" packets matching some specified rule to an element of 

a traffic conditioner for further processing. Classifiers must be configured by some 

management procedure in accordance with the appropriate TCA. The classifier 

should authenticate the information which it uses to classify the packet. 

2.2.11.2 Traffic profiles 

A traffic profile specifies the temporal properties of a traffic stream selected by a 

classifier. It provides rules for determining whether a particular packet is in-profile or 

out-of-profile. For example, a profile based on a token bucket may look like: 

  codepoint = X, use token-bucket r, b 

The above profile indicates that all packets marked with DS codepoint X should be 

measured against a token bucket meter with rate r and burst size b. In this example 

out-of-profile packets are those packets in the traffic stream which arrive when 

insufficient tokens are available in the bucket. The concept of in- and out-of-profile 

can be extended to more than two levels, e.g., multiple levels of conformance with a 

profile may be defined and enforced. 

Different conditioning actions may be applied to the in-profile packets and out-of-

profile packets, or different accounting actions may be triggered. In-profile packets 

may be allowed to enter the DS domain without further conditioning; or, 

alternatively, their DS codepoint may be changed. The latter happens when the DS 

codepoint is set to a non-Default value for the first time, or when the packets enter a 

DS domain that uses a different PHB group or codepoint->PHB mapping policy for 

this traffic stream. Out-of- profile packets may be queued until they are in-profile 

(shaped), discarded (policed), marked with a new codepoint (re-marked), or 

forwarded unchanged while triggering some accounting procedure. Out-of-profile 

packets may be mapped to one or more behavior aggregates that are "inferior" in 

some dimension of forwarding performance to the BA into which in-profile packets 

are mapped. 

Note that a traffic profile is an optional component of a TCA and its use is dependent 

on the specifics of the service offering and the domain's service provisioning policy. 
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2.2.11.3 Traffic conditioners 

A traffic conditioner may contain the following elements: meter, marker, shaper, and 

dropper. A traffic stream is selected by a classifier, which steers the packets to a 

logical instance of a traffic conditioner. A meter is used (where appropriate) to 

measure the traffic stream against a traffic profile. The state of the meter with respect 

to a particular packet (e.g., whether it is in- or out-of-profile) may be used to affect a 

marking, dropping, or shaping action. 

When packets exit the traffic conditioner of a DS boundary node the DS codepoint of 

each packet must be set to an appropriate value. 

Fig. 2.2.11.3.1 shows the block diagram of a classifier and traffic conditioner. Note 

that a traffic conditioner may not necessarily contain all four elements. For example, 

in the case where no traffic profile is in effect, packets may only pass through a 

classifier and a marker.    

Fig 2.2.11.3.1 Logical View of a Packet Classifier and Traffic Conditioner 

Meters 

Traffic meters measure the temporal properties of the stream of packets selected by a 

classifier against a traffic profile specified in a TCA. A meter passes state 

information to other conditioning functions to trigger a particular action for each 

packet which is either in- or out-of-profile (to some extent). 
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Markers 

Packet markers set the DS field of a packet to a particular codepoint, adding the 

marked packet to a particular DS behavior aggregate. The marker may be configured 

to mark all packets which are steered to it to a single codepoint, or may be 

configured to mark a packet to one of a set of codepoints used to select a PHB in a 

PHB group, according to the state of a meter. When the marker changes the 

codepoint in a packet it is said to have "re-marked" the packet. 

Shapers 

Shapers delay some or all of the packets in a traffic stream in order to bring the 

stream into compliance with a traffic profile. A shaper usually has a finite-size 

buffer, and packets may be discarded if there is not sufficient buffer space to hold the 

delayed packets. 

Droppers 

Droppers discard some or all of the packets in a traffic stream in order to bring the 

stream into compliance with a traffic profile. This process is know as "policing" the 

stream. Note that a dropper can be implemented as a special case of a shaper by 

setting the shaper buffer size to zero (or a few) packets. 

2.2.11.4 Location of traffic conditioners and MF classifiers 

Traffic conditioners are usually located within DS ingress and egress boundary 

nodes, but may also be located in nodes within the interior of a DS domain, or within 

a non-DS-capable domain. 

2.2.12 Per-Hop Behaviors 

A per-hop behavior (PHB) is a description of the externally observable forwarding 

behavior of a DS node applied to a particular DS behavior aggregate. Forwarding 

behavior is a general concept in this context. For example, in the event that only one 

behavior aggregate occupies a link, the observable forwarding behavior (i.e., loss, 

delay, jitter) will often depend only on the relative loading of the link (i.e., in the 

event that the behavior assumes a work-conserving scheduling discipline). Useful 

behavioral distinctions are mainly observed when multiple behavior aggregates 

compete for buffer and bandwidth resources on a node. The PHB is the means by 

which a node allocates resources to behavior aggregates, and it is on top of this basic 

hop-by-hop resource allocation mechanism that useful differentiated services may be 

constructed. 



 

 38 

The most simple example of a PHB is one which guarantees a minimal  bandwidth 

allocation of X% of a link (over some reasonable time interval) to a behavior 

aggregate. This PHB can be fairly easily measured under a variety of competing 

traffic conditions. A slightly more complex PHB would guarantee a minimal 

bandwidth allocation of X% of a link, with proportional fair sharing of any excess 

link capacity. In general, the observable behavior of a PHB may depend on certain 

constraints on the traffic characteristics of the associated behavior aggregate, or the 

characteristics of other behavior aggregates. 

PHBs may be specified in terms of their resource (e.g., buffer, bandwidth) priority 

relative to other PHBs, or in terms of their relative observable traffic characteristics 

(e.g., delay, loss). These PHBs may be used as building blocks to allocate resources 

and should be specified as a group (PHB group) for consistency. PHB groups will 

usually share a common constraint applying to each PHB within the group, such as a 

packet scheduling or buffer management policy. The relationship between PHBs in a 

group may be in terms of absolute or relative priority (e.g., discard priority by means 

of deterministic or stochastic thresholds), but this is not required (e.g., N equal link 

shares). A single PHB defined in isolation is a special case of a PHB group. 

2.2.12.1 Implementation of PHBs on nodes 

PHBs are implemented in nodes by means of some buffer management and packet 

scheduling mechanisms. PHBs are defined in terms of behavior characteristics 

relevant to service provisioning policies, and not in terms of particular 

implementation mechanisms. In general, a variety of implementation mechanisms 

may be suitable for implementing a particular PHB group. Furthermore, it is likely 

that more than one PHB group may be implemented on a node and utilized within a 

domain. PHB groups should be defined such that the proper resource allocation 

between groups can be inferred, and integrated mechanisms can be implemented 

which can simultaneously support two or more groups. A PHB group definition 

should indicate possible conflicts with previously documented PHB groups which 

might prevent simultaneous operation. 

2.2.12.2 Definition of Differentiated Services Per Domain Behaviors and rules for 

their specification 

Differentiated Services allows an approach to IP Quality of Service that is modular, 

incrementally deployable, and scalable while introducing minimal per-node 

complexity [33]. From the end user's point of view, QoS should be supported end-to-

end between any pair of hosts. However, this goal is not immediately attainable. It 
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will require interdomain QoS support, and many untaken steps remain on the road to 

achieving this. One essential step, the evolution of the business models for 

interdomain QoS, will necessarily develop outside of the IETF. A goal of the diffserv 

WG (Work Group) is to provide the firm technical foundation that allows these 

business models to develop. 

The first major step will be to support edge-to-edge or intradomain QoS between the 

ingress and egress of a single network, i.e., a DS Domain in the terminology of [47]. 

The intention is that this edge-to-edge QoS should be composable, in a purely 

technical sense, to a quantifiable QoS across a DS Region composed of multiple DS 

domains. 

The Diffserv WG has finished the first phase of standardizing the behaviors required 

in the forwarding path of all network nodes, the per-hop forwarding behaviors or 

PHBs. The PHBs defined in [47] [72] and [48] give a rich toolbox for differential 

packet handling by individual boxes. The general architectural model for diffserv has 

been documented in [33]. An informal router model describes a model of traffic 

conditioning and other forwarding behaviors. However, technical issues remain in 

moving "beyond the box" to intradomain QoS models. 

The ultimate goal of creating scalable end-to-end QoS in the Internet requires that we 

can identify and quantify behavior for a group of packets that is preserved when they 

are aggregated with other packets as they traverse the Internet. The step of specifying 

forwarding path attributes on a per-domain basis for a set of packets distinguished 

only by the mark in the DS field of individual packets is critical in the evolution of 

Diffserv QoS and should provide the technical input that will aid in the construction 

of business models. 

Diffserv classification and traffic conditioning are applied to packets arriving at the 

boundary of a DS domain to impose restrictions on the composition of the resultant 

traffic aggregates, as distinguished by the DSCP marking, inside the domain. The 

classifiers and traffic conditioners are set to reflect the policy and traffic goals for 

that domain and may be specified in a TCA (Traffic Conditioning Agreement). Once 

packets have crossed the DS boundary, adherence to diffserv principles makes it 

possible to group packets solely according to the behavior they receive at each hop 

(as selected by the DSCP). 

This approach has well-known scaling advantages, both in the forwarding path and in 

the control plane. Less well recognized is that these scaling properties only result if 

the per-hop behavior definition gives rise to a particular type of invariance under 
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aggregation. Since the per-hop behavior must be equivalent for every node in the 

domain, while the set of packets marked for that PHB may be different at every node, 

PHBs should be defined such that their characteristics do not depend on the traffic 

volume of the associated BA on a router's ingress link nor on a particular path 

through the DS domain taken by the packets.  

Specifically, different streams of traffic that belong to the same traffic aggregate 

merge and split as they traverse the network. If the properties of a PDB using a 

particular PHB hold regardless of how the temporal characteristics of the marked 

traffic aggregate change as it traverses the domain, then that PDB scales. (Clearly 

this assumes that numerical parameters such as bandwidth allocated to the particular 

PDB may be different at different points in the network, and may be adjusted 

dynamically as traffic volume varies.) If there are limits to where the properties hold, 

that translates to a limit on the size or topology of a DS domain that can use that 

PDB. Although useful single-link DS domains might exist, PDBs that are invariant 

with network size or that have simple relationships with network size and whose 

properties can be recovered by reapplying rules (that is, forming another diffserv 

boundary or edge to re-enforce the rules for the traffic aggregate) are needed for 

building scalable end-to-end quality of service. 

There is a clear distinction between the definition of a Per-Domain Behavior in a DS 

domain and a service that might be specified in a Service Level Agreement. The 

PDB definition is a technical building block that permits the coupling of classifiers, 

traffic conditioners, specific PHBs, and particular configurations with a resulting set 

of specific observable attributes which may be characterized in a variety of ways. 

These definitions are intended to be useful tools in configuring DS domains, but the 

PDB (or PDBs) used by a provider is not expected to be visible to customers any 

more than the specific PHBs employed in the provider's network would be. Network 

providers are expected to select their own measures to make customer-visible in 

contracts and these may be stated quite differently from the technical attributes 

specified in a PDB definition, though the configuration of a PDB might be taken 

from a Service Level Specification (SLS). Similarly, specific PDBs are intended as 

tools for ISPs to construct differentiated services offerings; each may choose 

different sets of tools, or even develop their own, in order to achieve particular 

externally observable metrics. Nevertheless, the measurable parameters of a PDB are 

expected to be among the parameters cited directly or indirectly in the Service Level 

Specification component of a corresponding SLA. [75] 
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Figure 2.2.12.2.1 Inter-domain Ds 

2.2.12.3 The value of defining edge-to-edge behavior 

As defined before PDB describes the edge-to-edge behavior across a DS domain's 

"cloud". Specification of the transit expectations of packets matching a target for a 

particular diffserv behavior across a DS domain will both assist in the deployment of 

single-domain QoS and will help enable the composition of end-to-end, cross-

domain services. Networks of DS domains can be connected to create end-to-end 

services by building on the PDB characteristics without regard to the particular PHBs 

used. This level of abstraction makes it easier to compose cross-domain services as 

well as making it possible to hide details of a network's internals while exposing 

information sufficient to enable QoS. Today's Internet is composed of multiple 

independently administered domains or Autonomous Systems (ASs), represented by 

the "clouds". To deploy ubiquitous end-to-end quality of service in the Internet, 

business models must evolve that include issues of charging and reporting that are 

not in scope for the IETF. In the meantime, there are many possible uses of quality of 

service within an AS and the IETF can address the technical issues in creating an 

intradomain QoS within a Differentiated Services framework. In fact, this approach 

is quite amenable to incremental deployment strategies. 

Where DS domains are independently administered, the evolution of the necessary 

business agreements and future signaling arrangements will take some time, thus, 

early deployments will be within a single administrative domain.  Putting aside the 

business issues, the same technical issues that arise in interconnecting DS domains 

with homogeneous administration will arise in interconnecting the autonomous 

systems (ASs) of the Internet.[75] 
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2.2.12.4 Per Hop Behavior identification codes 

Differentiated Services [47, 33] introduces the notion of Per Hop Behaviors (PHBs) 

that define how traffic belonging to a particular behavior aggregate is treated at an 

individual network node. In IP packet headers, PHBs are not indicated as such; 

instead Differentiated Services Codepoint (DSCP) values are used. There are only 64 

possible DSCP values, but there is no such limit on the number of PHBs. In a given 

network domain, there is a locally defined mapping between DSCP values and 

PHBs. Standardized PHBs recommend a DSCP mapping, but network operators may 

choose alternative mappings. 

In some cases it is necessary or desirable to identify a particular PHB in a protocol 

message, such as a message negotiating bandwidth management or path selection, 

especially when such messages pass between management domains. Examples where 

work is in progress include communication between bandwidth brokers, and MPLS 

support of diffserv. 

In certain cases, what needs to be identified is not an individual PHB, but a set of 

PHBs. One example is a set of PHBs that must follow the same physical path to 

prevent re-ordering. An instance of this is the set of three PHBs belonging to a single 

Assured Forwarding class, such as the PHBs AF11, AF12 and AF13 [72]. 

2.2.12.5 Usage Scenarios 

Diffserv services are expected to be supported over various underlying technologies 

which we broadly refer to as "link layers" for the purpose of this discussion. For the 

transport of IP packets, some of these link layers make use of connections or logical 

connections where the forwarding behavior supported by each link layer device is a 

property of the connection. In particular, within the link layer domain, each link layer 

node will schedule traffic depending on which connection the traffic is transported 

in. 

Examples of such "link layers" include ATM and MPLS. For efficient support of 

diffserv over these link layers, one model is for different Behavior Aggregates (BAs) 

(or sets of Behavior Aggregates) to be transported over different connections so that 

they are granted different (and appropriate) forwarding behaviors inside the link 

layer cloud. When those connections are dynamically established for the transport of 

diffserv traffic, it is very useful to communicate at connection establishment time 

what forwarding behavior(s) is (are) to be granted to each connection by the link 

layer device so that the BAs transported experience consistent forwarding behavior 

inside the link layer cloud. This can be achieved by including in the connection 
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establishment signaling messages the encoding of the corresponding PHB, or set of 

PHBs, as defined in this document. 

In another approach, the ATM Forum has a requirement to indicate desired IP QOS 

treatments in ATM signaling, so that ATM switches can be just as supportive of the 

desired service as are IP forwarders. To do so, the Forum is defining a new VC call 

setup information element which will carry PHB identification codes (although will 

be generalized to do more if needed). 

2.2.12.6 Encoding 

PHBs and sets of PHBs are encoded in an unsigned 16 bit binary field. 

The 16 bit field is arranged as follows: 

 Case 1 : PHBs defined by standards action, as per [47]. 

The encoding for a single PHB is the recommended DSCP value for that PHB, left-

justified in the 16 bit field, with bits 6 through 15 set to zero. Note that the 

recommended DSCP value must be used, even if the network in question has chosen 

a different mapping. 

The encoding for a set of PHBs is the numerically smallest of the set of encodings 

for the various PHBs in the set, with bit 14 set to 1. (Thus for the AF1x PHBs, the 

encoding is that of the AF11 PHB, with bit 14 set to 1.) 

      0    1    2    3    4   5          6           7       8         9      10    11    12       13    14     15 

DSCP 0 0 0 0 0 0 0 0 X 0 

 Case 2 : PHBs not defined by standards action, i.e., experimental or local use 

PHBs as allowed by [47]. In this case an arbitrary 12 bit PHB identification code, 

assigned by the IANA, is placed left-justified in the 16 bit field. Bit 15 is set to 1, 

and bit 14 is zero for a single PHB or 1 for a set of PHBs. Bits 12 and 13 are 

zero. 

         0   1   2   3   4   5   6   7   8   9  10  11          12      13      14      15 

PHB id code 0 0 X 1 

Bits 12 and 13 are reserved either for expansion of the PHB identification code, or 

for other use, at some point in the future. In both cases, when a single PHBID is used 

to identify a set of PHBs (i.e., bit 14 is set to 1), that set of PHBs must constitute a 

PHB Scheduling Class (i.e., use of PHBs from the set must not cause intra-microflow 

traffic reordering when different PHBs from the set are applied to traffic in the same 

microflow). The set of AF1x PHBs [33] is an example of a PHB Scheduling Class. 
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Sets of PHBs that do not constitute a PHB Scheduling Class can be identified by 

using more than one PHBID. 

2.2.12.7 Signaling the class selector codepoints 

[47] defines the eight DS codepoint values of the form 'xxx000' (where x may be '0' 

or '1') as the Class Selector Codepoints. Codepoint „000000‟ is the recommended 

DSCP value for the Default PHB, and hence the Case 1 PHBID constructed from that 

codepoint is used to signal the Default PHB. 

For convenience and consistent operation with networks that employ IP Precedence, 

the Case 1 format PHBIDs constructed from the other seven Class Selector 

Codepoints may also be used to signal PHBs. In each case, the PHB signaled by such 

a PHBID is the PHB to which the embedded class selector codepoint (or IP 

Precedence value that corresponds to it in non-diffserv domains) is mapped in the 

recipient's network. 

Any specified use of PHBIDs should allow the use of the eight Case 1 PHBIDs 

constructed from the Class Selector Codepoints.[74] 

2.2.12.8 Usage of PHB group 

[33] defines a Per-hop behavior (PHB) group to be: "a set of one or more PHBs that 

can only be meaningfully specified and implemented simultaneously, due to a 

common constraint  applying to all PHBs in the set such as a queue servicing or 

queue management policy. A PHB group provides a service building block that 

allows a set of related forwarding behaviors to be specified together (e.g., four 

dropping priorities). A single PHB is a special case of a PHB group." 

One standards track PHB Group is defined in [72], Assured Forwarding PHB Group. 

Assured Forwarding (AF) is a type of forwarding behavior with some assigned level 

of queuing resources and three drop precedences. An AF PHB Group consists of 

three PHBs, and uses three Diffserv Codepoints (DSCPs). 

[33] defines twelve DSCPs, corresponding to four independent AF classes. The AF 

classes are referred to as AF1x, AF2x, AF3x, and AF4x (where 'x' is 1, 2, or 3 to 

represent drop precedence). Each AF class is one instance of an AF PHB Group. 

There has been confusion expressed that [33] refers to all four AF classes with their 

three drop precedences as being part of a single PHB Group. However, since each 

AF class operates entirely independently of the others, (and thus there is no common 
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constraint among AF classes as there is among drop precedences within an AF class) 

this usage is inconsistent with [33]. The inconsistency exists for historical reasons 

and will be removed in future revisions of the AF specification. It should now be 

understood that AF is a _type_ of PHB group, and each AF class is an _instance_ of 

the AF type. 

Authors of new PHB specifications should be careful to adhere to the [33] definition 

of PHB Group. [33] does not prohibit new PHB specifications from assigning 

enough DSCPs to represent multiple independent instances of their PHB Group. 

However, such a set of DSCPs must not be referred to as a single PHB Group. [76] 

2.2.13 Network resource allocation 

The implementation, configuration, operation and administration of the supported 

PHB groups in the nodes of a DS Domain should effectively partition the resources 

of those nodes and the inter-node links between behavior aggregates, in accordance 

with the domain's service provisioning policy. Traffic conditioners can further 

control the usage of these resources through enforcement of TCAs and possibly 

through operational feedback from the nodes and traffic conditioners in the domain. 

Although a range of services can be deployed in the absence of complex traffic 

conditioning functions (e.g., using only static marking policies), functions such as 

policing, shaping, and dynamic re-marking enable the deployment of services 

providing quantitative performance metrics. 

The configuration of and interaction between traffic conditioners and interior nodes 

should be managed by the administrative control of the domain and may require 

operational control through protocols and a control entity. There is a wide range of 

possible control models. 

Scalability requires that the control of the domain does not require micro-

management of the network resources. The most scalable control model would 

operate nodes in open-loop in the operational timeframe, and would only require 

administrative-timescale management as SLAs are varied. This simple model may be 

unsuitable in some circumstances, and some automated but slowly varying 

operational control (minutes rather than seconds) may be desirable to balance the 

utilization of the network against the recent load profile [33]. 
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2.2.11.1 Premium Service 

This service is not meant to replace the best effort but primarily to meet an emerging 

demand for a commercial service that can share the network with best effort traffic. It 

is also called Expedited Forwarding (EF) PHB [48]. In contrast with BE traffic 

which is bursty and requires queue management to deal fairly with congestive 

episodes, the Premium service, by design, creates very regular patterns and small or 

nonexistent queues. It emulates traditional leased line service that promises to deliver 

traffic with a low loss probability at a given peak rate. It is best suited for 

applications requiring low delay and low jitter [16]. 

2.2.13.2 Assured Service 

This model emulates a lightly loaded network even in the presence of congestion. It 

tries to offer a service that cannot guarantee bandwidth but provides a high 

probability that high priority tagged packets will be transferred reliably. It 

corresponds to the Controlled-Load Service (of IntServ) and is best suited for 

applications requiring better reliability than Best-Effort service. Table 2.2.13.1 shows 

a comparison of the two services [7]. 

2.2.13.3 Premium and assured services combined  

The above services arose from the IETF Munich 1997 meeting in which Dave Clark 

& Van Jacobson [7][16] each presented work on Diffserv, and each explained how to 

use one bit of the IP header to deliver a new kind of service to packets in the Internet. 

Nichols et al [25] exploited the merits that both service can offer and came up with a 

proposal for a service that permits the use of both these service types a two-bit 

differentiated services architecture.  

Nichols et al. proposed designating two bit patterns from the IP header precedence 

field. One will be called the Premium or P-bit and the other, the Assured or A-bit. 

The precedence field is the first three bits of the ToS byte. For this architecture, the 

border routers perform functions such as marking and classification  (in addition to 

forwarding) on arriving packets whereas intermediate routers need only to implement 

forwarding functions based on simple priority queuing. The leaf routers are  first 

configured with a traffic profile for a particular flow based on the contents of its 

header. At the leaf router, all arriving packets have their A and P bits cleared (i.e. 

reset). The packets are then classified based on the contents of their headers.  

If a packet header does not match any configured value, the packet is  immediately 

forwarded. The packets that find a match pass through individual markers that have 
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been configured from the usage profile for that flow. For an Assured flow, the 

marker sets the A-bit when the flow is in conformance to its profile, otherwise the 

flow is unchanged. For a Premium flow, the marker may hold the packets when 

necessary to enforce their configured rate. Hence premium flow packets emerge from 

the marker in a shaped flow with their P-bits set.   

From the markers, the packets are then passed to the forwarding engines. Packets 

with their P-bits set enter into a higher priority whereas those that have A-bits set on 

their headers enter into a lower priority queue with the rest of the ordinary BE traffic. 

For the border routers, the markers that can be used to implement the two different 

services can be described by the use of token buckets. For all the routers (both border 

& intermediate) their output interfaces have two queues and they must  implement a 

test on the P-bit to select a packets output queue. The two queues are serviced by 

simple priority the premium packets first, whereas the lower priority queue is 

serviced by the use of RIO mechanism as described in [7]. 

Table 2.2.13.1. Comparison between Premium Service & Assured Service Models of 

the DiffServ Architecture 

Premium Service Assured Service 

Guaranteed peak bandwidth Depends on how well links are provisioned for 

bursts. 

Placed in high priority queues. Placed in lower priority queues. 

Negligible queueing delay. Delay characteristics similar to undropped BE 

traffic. 

No buffers needed. Needs buffer/queue management policies such as 

RED. 

Emulates traditional leased line service. Emulates a lightly loaded network, even in times 

of congestion. 

Similar to Guaranteed Service of IntServ. Similar to Controlled-Load Service of  IntServ. 

Strong appeal for services such as video 

broadcasts, VoIP, VPN. 

Suitable for services that an ISP can provide for 

individuals (to pay more) for internet services that 

seem unaffected by congestion periods. 
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Table 2.2.13.2. Comparison between IntServ & DiffServ Architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integrated Service Differentiated Service 

Per-flow guarantees.  Maps multiple flows into guarantees. 

Uses an end-to-end signaling mechanism. Uses prioritisation based on different classes. 

Less scalable because state information increase 

with number of flows. 

More scalable number of flows proportional to 

number of classes. 

Defines two more classes in addition to Best 

Effort – these are Controlled-Load & Guaranteed 

Services. 

Similar to IntServ in this respect. Additional 

classes are: Assured Forwarding & Expedited 

Forwarding (i.e. Premium Service) 

In the Internet Network Model, it appears in the 

Transport Layer . 

Appears in the same position in the Internet 

Network Model as IntServ. 
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3 ADMISSION CONTROL (AC) IN DIFFSERV  

Admission Control will be a key player in the realisation of end-to-end QoS. The 

QoS mechanisms discussed so far will require that some of the network resources 

will have to make this decision at some point in time in the network. Admission 

control implements the decision algorithm that a router or a host uses to determine 

whether a new flow can be granted the requested QoS without impacting earlier 

guarantees [27]. The main considerations behind the decision are current traffic load, 

current QoS, requested traffic profile, requested QoS, pricing, and other policy 

considerations. For QoS enabled IP networks, Admission Control could be 

performed in the setting up of RSVP flows or MPLS paths.  

 Traditional approaches to solve Admission Control problems focused on the 

requirement of an a priori traffic specification in terms of the parameters (such as 

peak rate, delay) of a deterministic or stochastic model [23]. The admission decision  

is  then  based on the specification of the existing flows and the new flow.  

This approach, known as parameter-based, suffers from several drawbacks, the main 

one being the inability of the user or application to come up with tight traffic 

descriptors before establishing the flow [41]. As a result, traffic specification can be 

expected to be quite loose. 

Traditional IP networks only support best-effort services, that is, different services 

with different QoS requirements are treated equally by the network, and it is not 

possible to differentiate among them nor to assure specific QoS targets for a given 

service. 

One of the main elements required in the network to provide QoS is the Call 

Admission Control (CAC) mechanism. If the network has no control on the number 

of flows that are active at the same time, then the overall traffic demand may be 

higher than the one supported by the network, and the flows may be degraded (e.g. 

the transmission delay and the percentage of lost packets may be higher than 

required). With CAC support, once a new flow requests permission to use the 

network, the admission control algorithm calculates the available bandwidth in each 

link and decides if there are sufficient resources to admit the new traffic flow while 

providing the requested QoS. 
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3.1 Measurement-based admission control (MBAC)  

A different approach, in which admission control decisions are made based on 

network measurements alone, has been the focus of research over the past years. This 

new approach is called Measurement-Based Admission Control (MBAC) and among 

other things, it alleviates the burden on the users to provide accurate traffic models 

by shifting the task of traffic specification from the application to the network. The 

end result is that admission decisions are based on traffic  measurements instead of 

an explicit traffic specification, (i.e. instead of assuming a statistical or worst case 

model for the traffic).   

Tse et al. [41], [23] designed an MBAC scheme in which the basic model used was 

to consider a bufferless single link with capacity C, and that flows arrive over time 

requesting service. Once admitted, the bandwidth requirement of a flow fluctuates 

over time while in the system. The assumptions made in this design are that the flow 

holding time in the system is exponentially distributed with a certain mean, and that 

departures of the flows are independent of the bandwidth processes.  

The MBAC scheme makes decisions of whether to accept or reject a new  flow 

requesting service based on observation of the past traffic flow. Resource  overload 

occurs when the instantaneous aggregate bandwidth demand tS exceeds the  link 

capacity, C; and the QoS was measured by the steady-state overflow probability fp. 

The goal of the admission control scheme is to meet a desired QoS objective while 

maintaining a high average utilisation of the link.   

Many different researchers working on this subject area have proposed and worked 

on a variety of different Admission Control algorithms. Each of these algorithms has 

two processes [6]: a measurement process that produces an estimate of network load; 

and a decision algorithm that uses this load estimate to make admission control 

decisions. Two of such algorithms are briefly described below; each with the two 

processes mentioned above.  

 The Measured Sum (MS) algorithm [38] admits a new flow if the sum of the token 

rate of the new flow and the estimated rate of the existing flows is less than a 

utilisation target times the link bandwidth. In this algorithm, the estimated rate of 

existing flows was derived using a time window estimator.  

The Hoeffding Bounds (HB) [13] admits a new flow if the sum of the peak rate of the 

new flow and the measured equivalent bandwidth is less than the link utilisation. An 

exponential averaging measurement mechanism is used to produce the load estimate.  
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The brief descriptions presented above ignore the mathematical and statistical details 

of the individual algorithms. However, the key point to note is that they differ both in 

their underlying theory and in the specific measurement and admission  control 

equations they use. 

3.2 End-to-End measurement-based admission control (EMBAC) 

It has recently been established by Breslau, Jamin and Shenker that many of the 

hitherto proposed measurement-based admission controls perform equally well 

irrespective of the complexity of the predictions they use [6]; and none of them is 

capable of accurately meeting its loss targets [6]. This lends support to researchers 

for the simple approach based on measurements between sender and receiver. This 

new approach to finding solutions to admission control problems is called End-to-

End Measurement-Based Admission Control (EMBAC) and its basic characterising 

feature is to rely on end-to-end measures to determine whether there are enough 

resources to accept a new connection. 

3.2.1 The fundamental differences with classical MBAC mechanisms 

Firstly,  the decision on whether to accept or reject a connection is not taken  by the 

internal network nodes/routers but it is independently taken by the edge nodes of 

each specific connection. Secondly, the measures are taken end-to-end by each 

connection instead of being centrally taken by core routers.  

Figure 3.2.1.1 EMBAC Connection setup scheme [3] 

As shown in the diagram of figure 3.2.1.1, a connection is composed of two phases: a 

probing phase eventually followed  in the case the connection is accepted, by a data 
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phase. First the sender issues a probe; i.e., a stream of packets all of the same length 

sent at constant inter arrival times. Each probe packet includes specification of the 

transmission rate as well as the session identifier. It may also carry additional 

information about the session such as specification of the source and channel 

encodings, but not data. After a certain time interval, the first probing packet arrives 

at the destination  node and the probing packets statistics are measured over a fixed 

length measurement period T. 

The destination then sends a measurement report (which consists of the  number of 

probe packets received) to the source. The measurement report is sent with high 

priority to ensure that it is transmitted with low loss. Based on the admission report, 

the source decides about the admission and then it either switches from probing to 

data phase (and starts sending high priority data packets) or aborts the call setup. In 

the latter case, the source backs off a random time before issuing a new probe. 

As an additional possibility, disconnection occurs when a timeout expires. This 

feature is important in practice when network congestion does not allow any of the 

probing packets to reach destination. The role of the probing phase is simply to stress 

the network as much as if the connection were already offered to the network in its 

data phase. This implies that the probing packet rate must be as large as the 

additional load generated by the call when accepted. This new mechanism is also 

known as Distributed Admission Control [18]. 

Also in [12], the controlled-load service [7] with its admission control based on end-

to-end measurements is described. 

3.3 Measurement-based admission control in egress routers 

In this scheme [56], the admission control decisions are only performed by egress 

routers, without maintaining per-flow state neither in core nor in egress routers. The 

admission decisions are based only on aggregate measurements collected in the 

egress router. The key technique is to passively measure the available service in the 

end-to-end path. Using a black box system model, the measurements can incorporate 

the cross traffic effects without explicitly measuring it or controlling it. Cross traffic 

is the traffic that is merged in some links with the traffic that is being measured in the 

egress, but has a different egress router. 

For this purpose, the measurement-based theory of envelopes [57] is used to 

characterize and control both arrivals and services in a general way. Arrival 
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envelopes are based on the maximum rate of the arrivals. Service envelopes are 

based on the minimum service available. By measuring the aggregate rate envelope, 

the short time scale burstiness of the traffic is captured, which is employed in 

resource reservation and admission control. Then, measuring the variation of the 

aggregate rate envelope, characterizes the measurement errors at longer time scales, 

so the variance of the measured envelope can be used to determine the confidence 

value of the schedulability condition and estimate the expected fraction of packets 

that a new flow would have in the system if it would be admitted. In the service 

envelope the cross-traffic effects are measured using the delay of each packet 

between the ingress and the egress node.  

The egress node computes the aggregate arrival envelope and the minimum available 

service, and then executes the admission control algorithm to accept or deny the new 

flow. If the minimum available service is sufficient to guarantee a maximum 

admissible delay for the new flow and to guarantee that the QoS requirements for the 

already admitted flows are not violated, the flow is admitted. 

Disadvantages of Measurement-Based Admission Control in Egress Routers 

Although the only router that needs to perform admission control is the egress one, 

only a large-scale prediction of the congestion level is made. The network conditions 

may change and the QoS requirements may be degraded. 

3.4 End-Point admission control through probing 

In this mechanism, [12] the admission of a new flow is performed by the end-hosts 

or egress/ingress routers through the inference of the network congestion state in the 

flow‟s path. Before a new flow is established, the sender sends a packet stream to the 

flow‟s path with the same traffic characteristics of the flow that is requesting 

admission. The packet loss ratio, the delay or delay variation, are measured at the 

receiver, which verifies the network congestion level. This is called probing. If the 

measured performance is acceptable (according to the required service QoS), the 

flow is admitted; otherwise it is rejected. 

Advantages of End-Point Admission Control through Probing 

The QoS functionalities in this mechanism are pushed to the end-points, precluding 

the need of a signaling protocol or special functions in the core or edge routers. 

Disadvantages of End-Point Admission Control through Probing 

The overhead introduced with active probing and the set-up time required to initiate a 

call are some disadvantages of this technique. 
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3.5 Bandwidth Broker based admission control 

Bandwidth Brokers (BB) remove the need for QoS reservation states in the core 

routers, by centrally storing and managing this information. A BB [59] may be a 

router or a software package installed in a router/switch in the network. 

3.5.1 Main modules of a BB 

The main modules of the BB are the call admission control and routing ones. The 

former maintains the QoS state of the network domain and is responsible for the 

admission control and resources reservation. The latter decides the path that the 

admitted flow will traverse towards the receiver. The BB also contains databases 

with information about network topology, flows and QoS state in each path and 

node. Usually there is a BB per network domain. Since the sender and receiver can 

belong to different domains, the BB from their domains and the intermediate ones 

must communicate the QoS reservation states between each other. 

The general description of the call admission control module is as follows: When a 

new flow with specific traffic parameters, delay and loss requirements requests 

admission, it sends a QoS request message to the BB. The BB recalculates the 

available bandwidth in each link, and verifies if there is a path where the new flow 

can be admitted or not. If the flow is admitted, the BB sends a message to the sender 

with a positive answer to the flow‟s request, and updates its database. 

3.5.2 General problems in BB 

Various BB architectures have been proposed in the recent past, some of them even 

have been implemented, but all of them are in preliminary stage or do not address 

important issues such as bi-directional resource allocation. 

Note that most candidate QoS applications require either bi-directional or such a 

destination requested flow, e.g. Internet telephony or video-on-demand [53]. 

3.5.3 An example BB implementation in a DiffServ network 

An example BB in a DiffServ network can be seen in Figure 3.5.3.1 Roughly, if user 

A wants to reserve resources for sending data to user B, he will send a request to the 

BB1. BB1 checks the SLA of user A  (policy server function) and if authentication and 

permissions are adequate BB must check resource availability in its domain (call 

admission control). Since the reservation is initiated for multiple domains in that 

case, there is a need for communication between bandwidth broker BB1 and BB2 
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(inter-domain communication). Note that BB2 also has to make the call admission 

control for its own domain to establish end-to-end reservation. Finally, the BB1 

configures the edge routers to classify the user A data into the appropriate class.  

3.5.3.1 Current BB Implementations 

 Qbone 

 Globus: Architecture for Reservation and Allocation (GARA) 

 MCI/WorldCom: Reserved Bandwidth System (RBS) 

 Merit: BB 

 Siemens: QoS-Manager (QoSM) 

 Telia: BB 

 University of Kansas: BB 

 Others 

 CKP/NGI BB 

Figure 3.5.3.1 Bandwidth Broker in a DiffServ domain [58] 

Advantages of BB based CAC 

In this architecture, the core routers will be freed from performing admission control 

decisions. 

Disadvantages of BB based CAC 

1. The BB needs to manage the overall network and to store information about all 

elements, flows and paths in the network. This is very hard for only one element.  

2. Therefore, for a large network, a distributed mechanism is preferable. 
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3.6 Dynamic packet state (DPS) 

In the DPS [60] technique, the flow state information (like reserved rate, variables 

used in the scheduling process) is inserted into packet headers, which overcomes the 

need for per-flow signaling and state management. The ingress router initializes the 

state information. Core routers process each incoming packet based on the state (the 

state can be inserted in four bits of the Type of Service (ToS) bytes, which are 

reserved for experimental use, and into the 13 bits of the ip_off field in the IPv4 

header, which is used to support packet fragmentation and reassembly carried on it 

and eventually update its internal state and the state in the packet‟s header before 

forwarding it to the next hop. 

In terms of admission control, RSVP signaling is used to communicate between the 

sender and receiver, but RSVP messages are only processed by edge nodes. The 

ingress node, upon receiving a PATH message, simply forwards it through the 

domain towards the egress node. The egress node, upon receiving the first RESV 

message for a flow, forwards the message to the corresponding ingress node, which 

in turn will send with a special signaling message along the path towards the egress 

node. Upon receiving this signaling message, each node along the path performs a 

local admission control test based on the aggregate reservation rate in that node. 

When a flow terminates, reservation termination messages are sent in order to release 

the reserved bandwidth. 

Advantages of DPS 

With this technique, the core routers are freed from maintaining per flow state. 

Disadvantages of DPS 

1. A deterministic service is provided since the admission control is based only on 

the flow‟s rate inserted in the packet header. This reduces the utilization. 

2. Moreover, it is required that all routers in the flow‟s path implement the same 

scheduling discipline. 
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4.1. Differentiated Service types: qualitative services (Implementations and 

scheduling mechanisms) 

4.1.1 Proportional Differentiated Services: delay differentiation and packet 

scheduling 

 

A different approach in the DS architecture is the relative differentiated services. In 

this approach, the network traffic is grouped into classes of service which are 

ordered, such that one Class is better (or at least no worse) than the other Class for, 

in terms of local (per-hop) metrics for the queueing delays and packet losses [83]. 

The eight Class SelectorPHBs, standardized by the IETF [25], follow the relative 

service differentiation model. In this context, applications and users do not get an 

absolute service level assurance, such as an end-to-end delay bound or throughput, 

since there is no admission control and resource reservations. Instead, the network 

assures that higher classes will offer better QoS than lower classes, and so it is up to 

the applications and users to select the class that best meets their requirements, cost, 

and policy constraints, etc. [26]. Also proportional differentiation model provides the 

network operator with the tuning knobs for adjusting the per-hop quality-of-service 

(QoS) ratios between classes, independent of the class loads [82]. 

The paper [80] applies the proportional model in the differentiation of queueing 

delays, and investigates appropriate packet scheduling mechanisms. Starting from the 

proportional delay differentiation (PDD) model, they derive the average queueing 

delay in each class, show the dynamics of the class delays under the PDD 

constraints, and state the conditions in which the PDD model is feasible. The 

feasibility model of the model can be determined from the average delays that result 

with the strict priorities scheduler. 

They, then focus on scheduling mechanisms that can implement the PDD model in 

heavy load conditions, when it is feasible to do so. They propose three scheduler. 

The three schedulers differ in the tradeoff between approximating the PDD model 

closely, and providing consistent delay differentiation in short timescales. 

The proportional average delay (PAD) scheduler meets the PDD constraints, when 

they are feasible, but it exhibits a pathological behavior in short timescales. 

The waiting time priority (WTP) scheduler, on the other hand, approximates the PDD 

model closely, even in the short timescales of a few packet departures, but only in 

heavy load conditions. 

PAD and WTP serve as motivation for the third scheduler, called hybrid 

proportional delay (HPD). HPD approximates the PDD model closely, when the 
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model is feasible, independent of the class load distribution. Also, HPD provides 

predictable delay differentiation even in short timescales [82]. 

4.1.2 A case for relative Differentiated Services and the proportional differentiation 

model 

Internet applications and users have very diverse quality of service expectations, 

making the same-service-to-all model of the current Internet inadequate and limiting. 

There is a widespread consensus today that the Internet architecture has to be 

extended with service differentiation mechanisms so that certain users and 

applications can get better service than the others at a higher cost. 

One approach, referred to as absolute differentiated services, is based on 

sophisticated admission control and resource reservation mechanisms in order to 

provide guarantees or statistical assurances for absolute performance measures, such 

as a minimum service rate or maximum end-to-end delay. 

Another approach, which is simpler in terms of implementation, deployment, and 

network manageability, is to offer relative differentiated services between a small 

number of service classes. 

These classes are ordered based on their packet forwarding quality, in terms of per-

hop metrics for the queuing delays and packet losses, giving the assurance that 

higher classes are better than lower classes. The applications and users, in this 

context, can dynamically select the class that best meets their quality and pricing 

constraints, without a priori guarantees for the actual performance level of each class. 

The relative differentiation approach can be further refined and quantified using the 

proportional differentiation model. This model aims to provide the network operator 

with the tuning knobs for adjusting the quality spacing between classes, independent 

of the class loads. When this spacing is feasible in short timescales, it can lead to 

predictable and controllable class differentiation, which are two important features 

for any relative differentiation model. The PDM can be approximated in practice 

with simple forwarding mechanisms (packet scheduling and buffer management) that 

is described in that paper. 

In the absolute differentiation approach, these mechanisms can offer absolute 

assurances, which are mainly useful for unelastic applications and for deployment 

scenarios that require specific service measures (e.g., virtual private networks). 

In this article, the writers –first- make a case for the relative differentiation approach, 

as a simply implemented, deployed, and managed solution for service differentiation 

in the global Internet. They then propose a specific type of relative services, based on 

the proportional differentiation model. This model allows the network operator to 

control the quality spacing between classes independent of class loads, and can 
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provide consistent class differentiation in short timescales. Finally, they describe a 

packet scheduling (WTP-Waiting Time Priority) and buffer management 

(Proportional Loss Rate Dropper) mechanism for approximating the proportional 

differentiation model in the forwarding engine of a router [83]. 

4.2 Differentiated Service types: quantitative services (Implementations and 

Scheduling Mechanisms) 

4.2.1 Providing packet loss guarantees in Differentiated Services architectures 

Premium services (PS) and Assured services (AS) are the first two types of services 

in DS. PS provides low delay and low jitter service by reserving the peak rate of user 

flows, thus is more expensive and is used for high-demand applications. But AS 

provides users with a relatively reliable service, without any quantitative guarantee. 

In the paper a new type of service is proposed called Loss Guaranteed Service (LGS) 

for the DS architecture. The LGS can provide a quantitative Qos guarantee in terms 

of loss rate without per flow based resource reservation. To implement the LGS in 

DS, a signaling protocol conforming to the Diffserv model, along with a 

measurement-based admission control is designed. For proposed service model, a 

simulation model and measurement algorithms in DS architecture developed to study 

the performance and viability of the model. 

Results show that LGS can achieve a high level of utilization while keeping the 

packet loss within desired level, if the parameters are settled properly. Comparing 

with PS higher utilization is achieved under the LGS. As a conclusion, LG service 

can guarantee a loss bound even during congestion periods.[79] 

4.2.3 End-to-End QoS guarantees over DiffServ networks 

The IntServ uses per-flow signaling and per-flow traffic management, thus 

introduces significant overhead and scalibility problem. The DiffServ is scalable but 

can not provide end-to-end service with QoS guarantees by itself. [80] studies 

various aspects of end-to-end service provisioning over the Internet. Also proposes a 

new architecture for providing scalable end-to-end QoS, and evaluate the 

performance of the proposed architecture. 

Proposed architectue is based on a signaling protocol over the DiffServ network. The 

architecture combines per–flow connection setup and per-aggregate traffic handling 

together. So it guarantees per-flow guarantee during whole network, also scalable. 

Instead of RSVP a new sender initiated resource reservation protocol is proposed. It 

is more simple and can be easily implemented. A simulation study is made by using 

NS2. Diffserv implementation module and signaling protocol module are developed. 
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And various results are given in terms of throughput, end-to-end delay, packet loss 

rate. 

The results of signaling protocol is; the increase of network load both increases end 

to end delay and packet loss rate of each DS services. DWRR (Dynamic Weighted 

Round Robin) scheduler can provide clear service differentiation between DS traffic 

classes. Also throughput assurance can be provided by DWRR. Seperating different 

traffic classes to different queues provide a well-defined fairness of resource 

allocation between traffic classes [80]. 

4.3 SIMULATION and software tools for DiffServ network modelling 

4.3.1 QUIPS-II : a simulation tool for the design and performance evoluation of 

Diffserv-based networks 

The article in [84] presents a discrete event simulator, called “Queen’s University IP 

Simulator-II (QUIPS-II)”. 

Simulation plays an important role in computer-aided analysis and design of 

communication networks. QUIPS-II is a such simulation tool written in Java 

programming language on a UNIX platform. It contains a number of network 

modules (periodically gathers statistically informations), control modules (for 

controlling and monitoring the simulation), and a GUI  (also writes the performance 

result to some record files), sharing many features of IETF proposals. The discrete 

even simulator can be used to investigate and evaluate the behaviour of Diffserv 

based networks. Also some examples of using QUIPS-II to evaluate the performance 

of the Premium and Assured Services are given in the paper. 
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5 REAL TIME APPLICATIONS AND INTERNET 

The most important solutions to the real time applications over Internet is Integrated 

Services/RSVP model and Diffferentiated Services (DiffServ) model. RSVP is able to 

provide QoS to each microflow. But it is very difficult to implement on the Internet 

routers (especially on the backbone routers) because they have to handle hundreds of 

thousands of flows at the same time. Keeping per flow states in the core routers 

causes scalibility problems. As stated above, in the DiffServ model packets are 

marked differently to create several packet classes. The core routers only classify 

packets based on the packet class instead of the individual micro flow. Core routers 

do not need to process per flow signaling and resource reservation. So it is relatively 

easier to implement in the Internet and has better scalibility. 

5.1 IP telephony; main advantages and disadvantages 

Advantages 

1. Internet telephony has been a candidate for the next generation telephone system. 

Because it uses less bandwidth (hence much cheaper) than traditional circuit 

switched telephone system [63]. It is more important that the Public Switched 

Telephone Networks (PSTN) toll services can be bypassed using the Internet 

backbone to reduce the price of long distance calls [64]. 

2. It is more flexible and it will simplify the physical network. 

Disadvantages 

Unstable voice quality is the main problem for IP telephony. Because current Internet 

is designed for the overall transmission throughput and reliability by employing the 

best effort traffic model. So, TCPIP and best effort services are not suitable for real 

time traffic models, since they can‟t guarantee any bandwidth or delay guarantees. 

5.1.1 Structure of the IP telephony Packets 

Internet phone is usually delivered by Real-Time Transfer Protocol. RTP lies on top 

of the UDP protocol. 

The telephony audio packets belong to live real time protocol packets (they are more 

sensitive to latency). Voice is sampled and coded into audio frames. One or more 

audio frames form an audio packet. Then, RTP headers (time stamp and sequence 
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numbers) and are added to audio packets to form RTP audio packets. The packet is 

then sent as a UDP packet to the receiver. At the receiver side, reverse processes are 

made and the audio packets are played back according to the time stamp in real time. 

The International Telecommunication Union (ITU) has several standards for the IP 

telephony codecs [63]. 

The quality of packet voice on the Internet has not been so good because of high 

packet loss rates. This is especially true on wide-area connections. Unfortunately, the 

strict delay requirements of real-time multimedia usually eliminate the possibility of 

retransmissions. It is for this reason that forward error correction (FEC) has been 

proposed to compensate for packet loss in the Internet [65] [66]. In particular, the use 

of traditional error correcting codes, such as parity, Reed-Solomon, and Hamming 

codes, has attracted attention. To support these mechanisms, protocol support is 

required. FEC protocol is independent of the nature of the media being protected, be 

it audio, video, or otherwise, flexible enough to support a wide variety of FEC 

mechanisms, designed for adaptivity so that the FEC technique can be modified 

easily without out of band signaling, and supportive of a number of different 

mechanisms for transporting the FEC packets [67]. 

5.1.2 ITU recommendations for voice and video transmission 

As stated in [64] and [68], ITU-T Recommendation G.114 specifies that one-way 

transmission time for connections with adequately controlled echo of voice should be 

ranging from 0 to 150 ms must be acceptable for most user applications (Some other 

time ranges are given in Table 5.1.2). However video streaming over IP is able to 

handle a large jitter margin up to 2s by using play back buffer at the receiver end. 

Table 5.1.2. IP telephony requirements [85]. 

Quality Packet Loss (%) Peak Jitter (ms) 

PERFECT 0 0 

GOOD 3 75 

MEDIUM 10 125 

POOR 25 225 
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5.1.3 Problems (and main solutions) in IP telephony 

5.1.3.1 Jitter problem in IP telephony: 

Packets may arrive with different end-to-end delay called as jitter. Small jitters can 

be hiden from user by using limited buffer size. But, large buffers are unacceptable, 

since they introduce long delay. 

 

Figure 5.1.3.1 Queueing model for delay jitter [64] 

5.1.3.2 Packet losses: 

If a packet gets lost or misses the deadline then the receiver will generate a predicted 

packet based on the neighbouring packets. Retransmission is not acceptable, since it 

misses the deadline in most cases [63]. 

5.1.3.3 Bursty nature of TCP traffic: 

Another problem for real time IP telephony packets is the bursty nature of  TCP 

traffic. Routers use large size buffers to absorb bursty traffic. So, this poses the 

problem for real time packets because during congestion, the real time packets will 

miss their deadlines because of being buffered for extended periods of time. One 

solution to that problem is mentioned in [44] as; Techniques like interpolation could 

be used to tolerate occasional deadline misses. Also if a few consecutive audio 

packets miss their deadlines then, a vital portion of the talk may miss so the quality 

of the reconstructed audio signal may not be satisfactory [69]. The number of the 

congested packets depend on the congestion time from several hundreds of 

miliseconds to several seconds. 

The real time services should use a limited buffer size in the routers to limit the total 

amount of RTP traffic in the core network. Light congestion can still occur in the real 

time services because there is no strict end to end resource reservation. One way to 
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avoid following packets be dropped, selective dropping mechanism can be used 

during congestion [63]. 

5.1.4 Delay types in VoIP call connection 

Delay types in VoIP call connection are collected in 3 headlines in [64]: 

1. Accumulation delay: It is ranging from 25 microsecond to several miliseconds 

that are caused by the processing of voice samples. 

2. Processing delay: Is caused by the packetization of voice samples. 

3. Network delay: Is caused by multiplexing and buffering of voice packets when 

they are transmitted across networks. 

5.1.5 An experiment to see the behaviour of the Internet to the real time packets 

In Figure 5.1.8.1 there are three IP telephony streams sent from Iowa State 

University to the three destinations: China, California and Canada. The experiment 

was done once every 24 hours a day. Figure 5.1.6.1 shows average lost rate and 

Figure 5.1.8.2 shows average delay of each call. 

5.1.6 Two observations from the experiments 

Figure 5.1.6.1 Average loss rate of each connection [70] 

1. The overall service quality from ISU to California is pretty good. Also most of 

the time it is acceptable. But from ISU to China has the worst service quality. 

Without any technological advancement it can‟t be used in IP telephony.  

2. In the same connection type, the service quality may vary noticeably during 

different times of a day. During day time the network traffic is heavy so longer 



 

 65 

delay and loss rate is higher. However, loss rate is lower  in the day time at the 

stream to China because during day time it is night at China. 

Figure 5.1.6.2 Average packet delay of each connection [70] 

5.1.7 Results about the experiments 

Average loss rate and the delay of a connection is not sufficient to characterize the 

voice quality. The voice quality also depends on the distribution of the lost packets, 

or loss pattern. Packets delayed longer than 200 ms. are accepted as lost packets in 

the experiment. 

5.1.8 (m,k)-firm guarantee 

The perceived QoS due to packet losses in a burst is often worse than when the 

occurences in these losses are adequately spaced. To address this problem a finite 

horizon QoS criterion called (m,k)-firm guarantee was proposed by Ramanathan and 

Hamdaoui in [70]. A real time stream is said to have an (m,k) firm guarantee 

requirement if m out of any k consecutive packets in the stream must meet their 

respective deadlines. In Figure 5.1.10.1, „1‟ denotes that  a  packet arrived on time 

and „0‟ denotes a packet loss or deadline miss (delay > 200 ms). Consecutive packets 

of a telephony stream may get lost since it sends multiple packets during a 

congestion period. 

Figure 5.1.8.1 Packet loss during congestion, from ISU to Berkeley, 19 o‟clock, 

CDT [70] 
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5.2 Congestion difference btw. TCP applications and Internet telephony 

Internet telephony is a live real-time process. The service requirement is different 

from TCP applications. For example, it needs a bounded delay for each packet and a 

guaranteed bandwidth for the active „talk‟ period. 

TCP is different in nature, uses the sliding window flow control mechanism, which 

increases the sender rate whenever no congestion is detected. So the network 

congestion is not avoidable for the TCP traffic. 

5.3 Using Differentiated Services to Improve voice quality (CBQ) 

If the Internet telephony stream coexists with the TCP streams, during the 

congestion, some packets may get dropped or delayed. This is not a problem for non 

real-time TCP streams since they can retransmit the lost packets. But for real time 

streams, this behaviour is not acceptable because retransmitted packets will miss the 

deadline in most cases even in short RT time connections as mentioned before. 

During the congestion period the retransmitted packets are likely to be dropped or 

delayed again without meeting the deadline. A model can be suggested like in Figure 

5.3.1, in the core routers for the real time streams and for the best effort service for 

the TCP streams. 

Figure 5.3.1 CBQ model for core routers 

5.4 How the model works 

Both of the queues are drop tail queues. The buffer size of the real time queue is 

limited so that a bounded delay could be guaranteed for the real-time services Before 

a packet enters the Internet from the edge router the one bit of the ToS byte is 

marked as „1‟, if the packet is a real time packet and „0‟ if the packet is a best-effort 

packet. The packets buffered in the two queues are served using a Weighted Round 
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Robin scheduling schema (instead of priority based servicing in order to avoid 

starvation of the best effort packets). 

A packet dropped by the real time queue is enqueued to the best effort queue. Using 

this queueing model real time streams are isolated from bursty best–effort streams. 

Also shaping and policing of the real time traffic are done in the network edge. It is 

not guaranteed that each real time packet entering the Internet will never get 

dropped. 

However, this can‟t avoid congestion, as a conclusion in [63]; main aim is to avoid 

consecutive packet losses. 

5.5 Implementation  of (m-k) firm guarantee model 

In reference [70], Hamdaoui and Ramanathan proposed a Distance-based Priority 

assignment scheme to meet the (m,k) firm guarantee QoS requirement of Real Time 

Streams. The basic idea is that the routers keep the loss history of the last k packets 

for each stream. Based on this history the distance from (m,k)-firm guarantee failure 

is calculated and then a priority is assigned to the current packet based on the 

distance. The policy is to assign higher priority to streams that are closer to 

experiencing  a failure as defined by the (m,k) firm model. The priority can be from 2 

levels to 2
n
 levels. Every 2

n
 packets from a group and the priority of the packet is the 

position of that packet in the stream. This priority is assigned at the edge routers. 

And at the real time queue of the core routers, packets with different priorities are 

dropped with different probability during the congestion. 

5.6 Example queueing model for (m-k) firm guarantee model 

Assume that core routers only support 2 priority levels („0‟ and „1‟) in the real-time 

queue. The queue is a variaton of RED queue. Difference is that, it is configured with 

two sets of parameters, one for priority „0‟ and one for priority „1‟. The queue works 

like this: 

1. It could drop priority „1‟ packets earlier than priority „0‟ packets. 

2. Second it drops priority „1‟ packets with a high probability by setting pmax1 higher 

than pmax0 (marking probability in RED algorithm). 
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3. Third, if average queue size is greater than MAX (maximum queue size) but 

smaller than MAX0, all of the arriving priority „1‟ packets are dropped, but 

priority „0‟ packets may only be dropped with a certain probability (Figure 5.6.1). 

By dropping lower priority packets earlier, higher priority packets are transmitted 

with a lower loss rate. This process is called selective dropping. The process can be 

generalized to more than 2 priority levels. But it could be selected by tradeoff 

between the queue complexity and the performance improvement.The schema works 

well for real time streams that have (m,k) firm guarantee requirements. However it is 

difficult to implement this model in the internet. 

Figure 5.6.1 A selective dropping queueing model 

5.7 Advantages of IBO implementation over DB prioritization schema 

1. The process is static. A priority is selected before packet enters the Internet. 

2. The core routers does not have to keep the loss history of each stream  and make 

the priority assignment decision. Therefore more scalable. 

3. It can support an adaptive QoS guarantee based on the network congestion depth. 

5.8 Example (m,k) firm guarantee models 

For example, assuming that the real time queue in the core router could support 8 

priority levels, if the loss rate is less than 12.5%, it is (7,8) guarantee. If the loss rate 

is between 12.5% and 25% it is (3,4)-guarantee. If the loss rate is between 25% and 

50% it is (1,2)-guarantee. This is nice for the voice stream because it is hard and 

necessary to predefine the m and k in the (m,k)-firm guarantee model. If the network 

can not satisfy (7,8)-firm guarantee, satisfying (3,4) firm guarantee may also be 

acceptable. 
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5.8.1 Main problems of (m-k) firm guarantee implementation 

1. It needs to keep the loss history of each flow in each router. In the Internet, this 

will introduce scalebility problems. 

2. Routers can only get the local loss history of each stream, they do not know the 

end-to-end loss history, therefore can‟t make the global optimum priority 

assignment. 

5.9 Some Conclusions About Real Time Applications in the Internet 

1. Since there is no perflow resource reservation in the DiffServ model, the packet 

loss is unavoidable. Some methods like selective dropping, consecutive packet 

losses could be avoided during congestion. Also another method can be that each 

packet can keep some redundant information about the neighboring packet. 

2. In the above schema when a packet is lost in a stream than the loss probability of 

the neighboring packet is low. So redundant information can be used at the 

receiver side to better predict the lost packet [63]. 

3. In [71] there is a selective dropping mechanism that can be used also in the 

transmission of video streams. In an MPEG stream P and B frames depend on the 

I frame. MPEG video sequences are arranged into Group of Pictures (GOP). 

Each GOP contains three different types of frames: 

 Intra (I): At the beginning of a GOP, an I-frame is transmitted. It is much 

larger than other frames because complete image is transmitted. 

 Bi-directional (B): After the I-frame, a number of B-frames are transmitted. 

Has the least number of frames. 

 Predictive (P): P frames are inserted btw. B frames. Require fewer bits than 

the I-frame. 

If an I frame is lost, than the following P and B frames are useless even if they met 

their deadline. So high priorities can be assigned to the I frames and low priorities to 

the P and B frames. If the network congestion is not very deep, than the I frames are 

dropped rarely. 

4. Supporting more priority levels in the real time queue could provide finer (m,k) 

firm guarantee. But it is not easy because there is limited buffer size in the real 
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time queue. Implementing too many RED thresholds in the queue is very difficult  

[63]. 

5.10 A simulation study of adaptive voice communications on IP networks  

Paper [81] presents simulation results outlining the behaviour of rate-adaptive voice 

communications over IP networks. In the considered architecture, voice coders adapt 

their rate to the current state of the network so as to generate only the bandwidth that 

the network is capable of carrying. An algorithm is proposed for driving the 

transmission rate of voice sources on the basis of the estimations,according to the 

network conditions, measured in terms of packet delays and losses. 

The effectiveness of the proposed solution is then investigated in such scenarious 

like: 

(i) a dedicated network in which the available bandwidth is exclusively shared 

between adaptive voice connections; 

(ii)  a scenario in which adaptive voice sources compete with other TCP-like 

sources; 

(iii) uncontrolled  (heterogenous) network environment. 

In the proposed architectural solution, variable bit-rate voice coders adapt their rate 

to the time varying network conditions by means of a control algorithm whose aim is 

to maximizing the utilization of the available bandwidth while reducing and 

preventing the occurance of packet losses. Delay and packet loss estimates are 

employed to drive the algorithm‟s response to building the congestion. Delay jitter 

does not play a part in the rate adaptation algorithm, but could be used to devise an 

algorithm that controls the size of the playout buffer, which is ususally employed to 

smooth out delay variations. 

The results are compared against the performance of non-adaptive (i.e. fixed rate) 

sources. It is shown that adaptive approach is more effective, being able to carry 

more voice communications while maintaining an acceptable QoS, even on non-

segregated networks [81]. 
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6. A DIFFSERV APPLICATION WITH NS2 

6.1 Simulation Environment and Results for Various Queue Types  

The topology shown in the Figure 6.1.1 has seven nodes. Three of them are source 

nodes (node 0, 1 and 2) and one of them is the destination node (node 6). The sources 

use constant bit rate traffic senders using UDP protocol. The traffic sources simulate 

real time traffic senders. The link between node 4 (core node) and node 5 is the 

congested link. The capacity of the link between sources and edge node (node 3) is 

10 Mb and the link between edge and core node is also 10 Mb. The bandwidth of 

congested link is 5 Mb (between node 4 and node 5). All link delays are 5 ms. Packet 

size in the simulation is 1000 Bytes. Simulation period is for 30 seconds long. The 

rates of the CBR traffic sources are changed from 1 Mb (1.7, 1.8, 2, 2.5, 3 Mb) to 3.3 

Mb. The abbreviation CP in the result tables are the code points showing the packet 

classes. The Tx Pkts is the number of transmitted packets. The Total Packets is the 

total number of the packets that are sent from the source during the simulation 

period.  

All delay measurements are taken between source edge and destination edge. In the 

source edge, the codepoint and the packet arrival time is put on the each packets 

header and then this time value is subtracted from the system time in the destination 

edge. The minimum and maximum delay values of the classes are also given in the 

tables. 
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 Figure 6.1.1 Non-DiffServ implementation 

6.1.1 DiffServ with various queue types 

6.1.1.1 DropTail (DT) queue 

DT queue sizes are 60 packets long. Packets are dropped in the queue, as the queue 

overflows. So, there are no QoS guarantee given any of the sources. Each of the 

sources take the same behaviour from the core and edge routers. All packet drop 

statistics results for a randomly selected run on the core node are given in the Table 

6.1.1.1. Also the average number of dropped packets of 10 random tryings are given 

at the last column of the table. The starting order of the traffic sources effects the 

dropped quantity of the packets of the sender. When the total bandwidth 

consumption of the sources arises the bandwidth of the congested link, then packet 

dropping starts. This rate limit is 1.7 Mb of each (5.1 Mb total). Also the number of 

the dropped packets is not stable. It changes randomly. We can see from here that BE 

service can not give service differentiation to the nodes. It does not give any 

precedence to any of the sources. Also any of the sources can take enormous amount 

of the bandwidth. The delay results are given in Table 6.1.1.2. As seen from the 

charts (also from the Figure 6.1.5) all classes take almost the same delay values. The 

script code is given in Appendix 1. 
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Table 6.1.1.1. Results for NonDiffServ implementation. 

Rate CP 
Tot. 
Pkts 

Tx 
Pkts 

Total 
Dropped 

Average dropped 
#s of 10 runs 

1 Mb 10 3751 3751 0 0 

1 Mb 20 3751 3751 0 0 

1 Mb 30 3751 3751 0 0 

      

1.7 Mb 10 6376 6376 0 0 

1.7 Mb 20 6376 6376 0 0 

1.7 Mb 30 6376 6049 327 326,1 

      

1.8 Mb 10 6750 6750 0 0 

1.8 Mb 20 6750 6750 0 0 

1.8 Mb 30 6750 5299 1451 1451,4 

      

2 Mb 10 7500 7500 0 0 

2 Mb 20 7500 7499 1 0,2 

2 Mb 30 7500 3800 3700 3701,2 

      

2.5 Mb 10 9376 9375 1 958,7 

2.5 Mb 20 9376 550 8826 4279,2 

2.5 Mb 30 9376 8877 499 4088,3 

      

3 Mb 10 11251 7514 3737 3748,4 

3 Mb 20 11251 4006 7245 6449,8 

3 Mb 30 11251 7282 3969 4752,3 

      

3.3 Mb 10 12375 6392 5983 5983,9 

3.3 Mb 20 12375 6162 6213 6299,9 

3.3 Mb 30 12375 6246 6129 6042,2 

Table 6.1.1.2. Delay results for nonDiffServ implementation for each classes. 

CP Rate delay (min) delay (max) goodput 

10 1 Mb 10.8 ms 10.8 ms 100 

20 1 Mb 12.4 ms 12.4 ms 100 

30 1 Mb 14.0 ms 14.0 ms 100 

         

10 1.7 Mb 10.8 ms 89.3 ms 100 

20 1.7 Mb 12.4 ms 90.9 ms 100 

30 1.7 Mb 14.0 ms 92.4 ms 94,87 

         

10 1.8 Mb 10.8 ms 89.3 ms 100 

20 1.8 Mb 12.4 ms 90.8 ms 100 

30 1.8 Mb 14.0 ms 92.4 ms 78,5 

         

10 2 Mb 10.8 ms 90.0 ms 100 

20 2 Mb 12.4 ms 91.6 ms 99,99 

30 2 Mb 14.0 ms 92.4 ms 50,67 

         

10 2.5 Mb 10.8 ms 90.8 ms 100 

20 2.5 Mb 12.4 ms 90.8 ms 5,866 
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30 2.5 Mb 14.0 ms 92.4 ms 94,68 

         

10 3 Mb 10.8 ms 90.8 ms 100 

20 3 Mb 12.4 ms 91.3 ms 35,61 

30 3 Mb 14.0 ms 92.4 ms 64,72 

         

10 3.3 Mb 10.8 ms 90.8 ms 100 

20 3.3 Mb 12.4 ms 91.6 ms 49,79 

30 3.3 Mb 14.0 ms 92.4 ms 50,47 
 

Delay Results for CP 10,20,30  (NonDiffServ) 
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Figure 6.1.1.1. Minimum and maximum delay values of all classes in the same chart. 
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Goodput of All Classes (NonDiffServ)
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Figure 6.1.1.2 Goodput values of all classes in the same chart. 

NonDiffserv implementation with Source Routing 

Below, there is a topology with eight nodes. Three nodes are UDP sources, one node 

is the destination node, twos are edge nodes and rest twos are core nodes. Strict 

source routing is used. In the source routing all path of the packets from source to 

destination is put on the header of the packets. So each node routes the packets 

according to that path in the header. Also the routes of  three sources are given on the 

figure. This study is a preparation for the BB implementation. The main 

disadvantage of source routing is if there is a link down state in the network, packets 

that use those link are dropped. 
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Figure 6.1.1.1.1 Non DiffServ implementation with Source Routing 

6.1.1.2 Diffserv with RED queues 

In the same topology as in Figure 6.1.1 (except all queues are RED queues) RED 

queue parameters are given in the Figure 6.1.1.2. There are three physical queues that 

contains one virtual queue attached to the each physical queue in the topology. Each 

physical queue is matched with a codepoint. So codepoint 10 is mapped to queue 1, 

codepoint 20 is mapped to queue 2 and codepoint 30 is mapped to queue 3. The 

scheduling algorithm is Round Robin. As seen from the Table 6.1.1.2.1, when the 

total bandwidth consumption of the sources is bigger than 5 Mb the packet dropping 

occurs. Since the RED parameters of each physical queue are different, the number 

of dropped packets per class is different that those of others. Classes are sorted high 

to low. The column edrops shows the number of early dropped packets. As shown in 

the parameters Figure, the dropping probability, minimum and maximum queue sizes 

become smaller as the codepoint increases and dropping probability increases as the 

codepoint increases. The delay results are given in the Table 6.1.1.2.2. 

 

Figure 6.1.1.2.1 RED Queus structure and parameters 
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Table 6.1.1.2.1. Results for DiffServ Implementation with RED Queues. 

Rate CP 
Total 
Pkts 

Tx 
Pkts 

Total 
Dropped 

ldrops edrops 
Average 

dropped #s 
of 10 runs 

1 Mb 10 3751 3751 0 0 0 0 

1 Mb 20 3751 3751 0 0 0 0 

1 Mb 30 3751 3751 0 0 0 0 

        

1.7 Mb 10 6376 6300 76 61 15 82,9 

1.7 Mb 20 6376 6278 98 0 98 110 

1.7 Mb 30 6376 6259 117 0 117 127,1 

        

1.8 Mb 10 6750 6304 446 426 20 491,9 

1.8 Mb 20 6750 6288 462 20 442 508,5 

1.8 Mb 30 6750 6258 492 0 492 543,4 

        

2 Mb 10 7500 6315 1185 1155 30 1190,2 

2 Mb 20 7500 6306 1194 598 596 1199,2 

2 Mb 30 7500 6249 1251 0 1251 1256,3 

        

2.5 Mb 10 9376 6337 3039 3016 23 3055,9 

2.5 Mb 20 9376 6336 3040 2399 641 3064,6 

2.5 Mb 30 9376 6202 3174 29 3145 3149,6 

        

3 Mb 10 11251 6320 4931 4912 19 4935,3 

3 Mb 20 11251 6311 4940 4262 678 4946,4 

3 Mb 30 11251 6220 5031 82 4949 5014,6 

        

3.3 Mb 10 12375 6317 6058 6033 25 6065,3 

3.3 Mb 20 12375 6306 6069 5445 624 6074,5 

3.3 Mb 30 12375 6233 6142 160 5982 6129,6 

Table 6.1.1.2.2. Delay results for DiffServ implementation with RED Queues. 

CP Rate delay (min) delay (max) goodput 

10 1 Mb 10.8 ms 10.8 ms 100 

20 1 Mb 12.4 ms 12.4 ms 100 

30 1 Mb 14.0 ms 14.0 ms 100 

         

10 1.7 Mb 10.8 ms 250.8 ms 98,81 

20 1.7 Mb 12.4 ms 175.0 ms 98,46 

30 1.7 Mb 14.0 ms 102.5 ms 98,16 

         

10 1.8 Mb 10.8 ms 250.8 ms 93,39 

20 1.8 Mb 12.4 ms 220.0 ms 93,16 

30 1.8 Mb 14.0 ms 200.8 ms 92,71 

         

10 2 Mb 10.8 ms 250.8 ms 84,2 

20 2 Mb 12.4 ms 251.6 ms 84,08 

30 2 Mb 14.0 ms 237.2 ms 83,32 

         

10 2.5 Mb 10.8 ms 250.8 ms 67,59 
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20 2.5 Mb 12.4 ms 250.8 ms 67,58 

30 2.5 Mb 14.0 ms 252.4 ms 66,15 

         

10 3 Mb 10.8 ms 250.8 ms 56,17 

20 3 Mb 12.4 ms 251.3 ms 56,09 

30 3 Mb 14.0 ms 252.4 ms 55,28 

         

10 3.3 Mb 10.8 ms 250.8 ms 51,05 

20 3.3 Mb 12.4 ms 251.6 ms 50,96 

30 3.3 Mb 12.5 ms 252.4 ms 50,37 
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Figure 6.1.1.2.2 Delay values of all classes. 
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Goodput of All Classes (RED)
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Figure 6.1.1.2.3 Goodput of  all classes. 

The Figure 6.3.5 shows the delay values of all packets that are reached to the 

destination. So, because of packet dropping probability of  class 30 is more strict, the 

delay values of that class is better. The class 10 has the worst delay value because of 

the long queue delays. Because the class 10 packets are not dropped easily. The 

script code is also given in Appendix 2.  

6.1.1.3 Diffserv with RED queues (WRR Scheduling) 

In the same topology as in Figure 6.1.1 (except all queues are RED queues and the 

scheduling algorithm for the queues is WRR scheduling algorithm) RED queue 

parameters are given in the Figure 6.1.1.2. The WRR queue rates are; for CP 10 

packets queue it is 7, for the CP 20 packets it is 2 and for the CP 1 packets it is 1. As 

seen from the Table 6.1.1.3.1, with the WRR scheduling the goodput of the third 

class increases when using same parameters with the RR schedular. The delay results 

are given in the Table 6.1.1.3.2. The script code is also given in Appendix 3. 

Table 6.1.1.3.1. Results for DiffServ Implementation with RED (with WRR 

Scheduling) Queues. 

Rate CP 
Total 
Pkts 

Tx 
Pkts 

Total 
Dropped 

ldrops edrops 

Average 
dropped 
#s of 10 

runs 

1 Mb 10 3751 3751 0 0 0 0 

1 Mb 20 3751 3751 0 0 0 0 
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1 Mb 30 3751 3751 0 0 0 0 

                

1.7 Mb 10 6376 6299 289 68 221 295,3 

1.7 Mb 20 6376 6278 98 0 98 105,2 

1.7 Mb 30 6376 6259 114 0 114 122,2 

                

1.8 Mb 10 6750 6308 442 426 16 485,9 

1.8 Mb 20 6750 6291 459 13 446 495,5 

1.8 Mb 30 6750 6236 514 0 514 553,2 

                

2 Mb 10 7500 6314 1186 1160 26 1191,2 

2 Mb 20 7500 6298 1202 623 579 1207,3 

2 Mb 30 7500 6229 1271 0 1271 1276,3 

                

2.5 Mb 10 9376 6341 3035 3015 20 3055,9 

2.5 Mb 20 9376 6327 3049 2378 671 3062,6 

2.5 Mb 30 9376 6191 3185 31 3154 3159,6 

                

3 Mb 10 11251 6316 4935 4911 24 4939,3 

3 Mb 20 11251 6304 4947 4318 629 4951,2 

3 Mb 30 11251 6227 5024 68 4956 5025,6 

                

3.3 Mb 10 12375 6311 6064 6036 28 6070,2 

3.3 Mb 20 12375 6304 6071 5411 660 6077,4 

3.3 Mb 30 12375 6252 6123 155 5968 6128,6 

Table 6.1.1.3.2. Delay results for DiffServ implementation with RED (with WRR 

Scheduling) Queues. 

CP Rate delay (min) delay (max) goodput 

10 1 Mb 10,80 10,80 100 

20 1 Mb 12,40 12,40 100 

30 1 Mb 14,00 14,00 100 

          

10 1.7 Mb 10,80 255,55 98,79235 

20 1.7 Mb 12,40 256,32 98,46299 

30 1.7 Mb 12,40 257,10 98,16499 

          

10 1.8 Mb 10,80 251,51 93,45185 

20 1.8 Mb 11,68 252,22 93,2 

30 1.8 Mb 12,57         253,30 
 

92,38519 

          

10 2 Mb 10,80 252,40 84,18667 

20 2 Mb 12,40 253,20 83,97333 

30 2 Mb 12,40 241,20 83,05333 

          

10 2.5 Mb 10,80 254,00 67,63012 

20 2.5 Mb 12,40 254,00 67,4808 

30 2.5 Mb 12,40 255,60 66,03029 

          

10 3 Mb 10,80 255,06 56,13723 

20 3 Mb 12,40 255,60 56,03058 

30 3 Mb 12,40 256,66 55,34619 
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10 3.3 Mb 10,80 255,55 50,99798 

20 3.3 Mb 12,40 256,32 50,94141 

30 3.3 Mb 12,50 257,10 50,52121 

 

Delay Result for CP 10,20,30  (RED with WRR) 
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Figure 6.1.1.3.1 Delay values of all classes. 
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Figure 6.1.1.3.2 Goodput of  all classes. 
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6.1.1.4 RED with multipriority traffic 

We used again the topology in the Figure 6.1.1 with the RED - multipriority traffic 

with three profiles. RED multipriority parameters are same as with the RED 

parameters and are given in the Figure 6.1.1.2.1. There are three physical queues in 

the Figure 6.1.1.2.1, but in the RED – multipriority traffic there are three virtual, one 

physical queues. In the algorithm, the probability of dropping an out-of-profile 

packet is based on the weighted average lengths of all virtual queues; while the 

probability of dropping an in-profile packet is based solely on the weighted average 

length of its virtual queue. The results of the randomly selected simulation are given 

in the Table 6.1.1.4.1. If we compare the total dropped column with the same column 

of RED Table results, the RED-multipriority algorithm gives strict proritization to 

the packets that are in the CodePoint 10 class at the congestion periods. The script 

code is also given in Appendix 4. 

Table 6.1.1.4.1. Results for DiffServ Implementation with RED-multipriority 

Queues. 

Rate CP 
Tot 
Pkts 

Tx 
Pkts 

Total 
Dropped 

ldrops edrops 
Average 

dropped #s 
of 10 runs 

3 Mb All 11253 11253 0 0 0  

1 Mb 10 3751 3751 0 0 0 0 

1 Mb 20 3751 3751 0 0 0 0 

1 Mb 30 3751 3751 0 0 0 0 

        

1.7 Mb 10 6376 6376 0 0 0 0 

1.7 Mb 20 6376 6376 0 0 0 0 

1.7 Mb 30 6376 6010 366 0 366 366,7 

        

1.8 Mb 10 6750 6750 0 0 0 0 

1.8 Mb 20 6750 6750 0 0 0 0 

1.8 Mb 30 6750 5253 1497 0 1497 1497,5 

        

2 Mb 10 7500 7500 0 0 0 0 

2 Mb 20 7500 7500 0 0 0 0 

2 Mb 30 7500 3757 3743 94 3649 3742 

        

2.5 Mb 10 9376 9376 0 0 0 5,2 

2.5 Mb 20 9376 9268 108 52 56 62,1 

2.5 Mb 30 9376 129 9247 9175 72 9287,9 

        

3 Mb 10 11251 11229 22 22 0 6,2 

3 Mb 20 11251 7480 3771 2963 808 3747,9 

3 Mb 30 11251 80 11171 11146 25 11206,5 
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3.3 Mb 10 12375 12337 38 38 0 9,6 

3.3 Mb 20 12375 6381 5994 5290 704 5988,4 

3.3 Mb 30 12375 74 12301 12278 23 12337,8 

 

Table 6.1.1.4.2. Delay results for DiffServ implementation with RED-multipriority 

Queues. 

CP Rate delay (min) delay (max) goodput 

10 1 Mb 10.8 ms 10.8 ms 100 

20 1 Mb 12.4 ms 12.4 ms 100 

30 1 Mb 14.0 ms 14.0 ms 100 

         

10 1.7 Mb 10.8 ms 41.8 ms 100 

20 1.7 Mb 12.4 ms 43.4 ms 100 

30 1.7 Mb 14.0 ms 44.9 ms 94,26 

         

10 1.8 Mb 10.8 ms 63.2 ms 100 

20 1.8 Mb 12.4 ms 64.8 ms 100 

30 1.8 Mb 14.0 ms 66.1 ms 77,822 

         

10 2 Mb 10.8 ms 88.4 ms 100 

20 2 Mb 12.4 ms 90.0 ms 100 

30 2 Mb 14.0 ms 90.8 ms 50,093 

         

10 2.5 Mb 10.8 ms 90.8 ms 100 

20 2.5 Mb 12.4 ms 90.8 ms 98,848 

30 2.5 Mb 14.0 ms 92.4 ms 1,3759 

         

10 3 Mb 10.8 ms 90.8 ms 99,804 

20 3 Mb 12.4 ms 91.3 ms 66,483 

30 3 Mb 14.0 ms 92.4 ms 0,711 

         

10 3.3 Mb 10.8 ms 90.8 ms 99,693 

20 3.3 Mb 12.4 ms 91.6 ms 51,564 

30 3.3 Mb 14.0 ms 92.4 ms 0,598 
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Figure 6.1.1.4.1 Goodput of all classes with RED-multipriority Queues. 
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Figure 6.1.1.4.2 Delay results of all classes with RED-multipriority Queues in the 

same chart. 

6.1.1.5 Diffserv with PFQ 

Again with the same topology as above, all of the queue algorithms are changed to 

Priority based queue algorithm. In the PFQ (Priority Fair Queueing) the router does 

not drop packets of priority X if there are still packets with priority Y (with X higher 

than Y). In the below configurations class 10 has the highest priority. The results 

show that PFQ gives better and strict priorities to the classes than RED algorithm. 

The script code is given in Appendix 5. 

Table 6.1.1.5.1. Codepoints and PFQ parameters for DiffServ Implementation with 

PFQ Queues 

 Queue Pri. Sim Time Packet Size 

CP 10 
3 30 secs 1000 B 

CP 20 2   

CP 30 1  
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Table 6.1.1.5.2. Results for DiffServ Implementation with PFQ Queues. 

 

Rate CP 
Tot 
Pkts 

Tx 
Pkts 

Total 
Dropped 

ldrops edrops 
Average 

dropped #s 
of 10 runs 

1 Mb 10 3751 3751 0 0 0 0 

1 Mb 20 3751 3751 0 0 0 0 

1 Mb 30 3751 3751 0 0 0 0 

        

1.7 Mb 10 6376 6376 0 0 0 0 

1.7 Mb 20 6376 6376 0 0 0 0 

1.7 Mb 30 6376 6050 326 326 0 325,1 

        

1.8 Mb 10 6750 6750 0 0 0 0 

1.8 Mb 20 6750 6750 0 0 0 0 

1.8 Mb 30 6750 5300 1450 1450 0 1450,4 

        

2 Mb 10 7500 7500 0 0 0 0 

2 Mb 20 7500 7500 0 0 0 0 

2 Mb 30 7500 3800 3700 3700 0 3700,4 

        

2.5 Mb 10 9376 9376 0 0 0 0 

2.5 Mb 20 9376 9376 0 0 0 0 

2.5 Mb 30 9376 51 9325 12325 0 9325,3 

        

3 Mb 10 11251 11251 0 0 0 0 

3 Mb 20 11251 7546 3705 2942 763 3708,8 

3 Mb 30 11251 50 11201 11201 0 11200,3 

        

3.3 Mb 10 12375 12375 0 0 0 0 

3.3 Mb 20 12375 6416 5959 5309 650 5958,2 

3.3 Mb 30 12375 50 12325 12325 0 12325,9 

 

Table 6.1.1.5.3. Delay results for DiffServ implementation with PFQ Queues. 

 

CP Rate delay (min) delay (max) goodput 

10 1 Mb 10.8 ms 10.8 ms 100 

20 1 Mb 12.4 ms 12.4 ms 100 

30 1 Mb 14.0 ms 14.0 ms 100 

         

10 1.7 Mb 10.8 ms 10.8 ms 100 

20 1.7 Mb 12.4 ms 14.0 ms 100 

30 1.7 Mb 14.0 ms 263.6 ms 94,89 

         

10 1.8 Mb 10.8 ms 10.8 ms 100 

20 1.8 Mb 12.4 ms 14.0 ms 100 

30 1.8 Mb 14.0 ms 342.2 ms 78,52 

         

10 2 Mb 10.8 ms 12.4 ms 100 

20 2 Mb 12.4 ms 14.0 ms 100 

30 2 Mb 14.0 ms 414.0 ms 50,67 
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10 2.5 Mb 10.8 ms 12.4 ms 100 

20 2.5 Mb 12.4 ms 15.6 ms 100 

30 2.5 Mb 36.4 ms 30012.4 ms 0,544 

         

10 3 Mb 10.8 ms 12.4 ms 100 

20 3 Mb 12.4 ms 212.4 ms 67,07 

30 3 Mb 30033.7 ms 30086.0 ms 0,444 

         

10 3.3 Mb 10.8 ms 12.4 ms 100 

20 3.3 Mb 12.4 ms 247.6 ms 51,85 

30 3.3 Mb 30036.0 ms 30076.4 ms 0,404 
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Figure 6.1.1.5.1 Delay results of all classes. 

 



 

 87 

Goodput of All Classes (PFQ)
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Figure 6.1.1.5.2 Goodput of all classes with PFQ. 

6.1.2. Diffserv implementation with Bandwidth Broker 

The BB implementation is composed of two main modules: Admission Control 

module and Routing Module shown in the Figure 6.1.2.1. The Dijkstra algorithm is 

used to select a path from a source to the destination as shown in Figure 6.1.2.2. The 

algorithm uses a traffic matrix to find the path of the source that satisfies the traffic 

requirement of the source. Route metric is the bandwidth required by the traffic 

source. In the traffic matrix, each row and column show the capacity of the links 

between the nodes. The link capacity of each link is divided among three classes and 

the portion per class should be specified as in Table 6.1.2.1 by the BB policy. Like, 

the Class 1 packets take the 50% of the bandwidth and the Class 2 packets take the 

30% of the bandwidth etc. 

Table 6.1.2.1. Each cell of the traffic matrix 

Nodes 5 

1 
Total Class1 Class2 Class3 

10 5 3 2 

In the topology that is shown in the Figure 6.1.2.2., the BB agent defines the paths of 

the sources using the Dijkstra algorithm with the defined costs according to the 

traffic descriptors that the sources wanted. The edge node that is shown with node 
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number 3 is a policer, dropper, marker node. This node marks DS codepoints of the 

packets with the defined policy rules. And the core nodes only forwards packets 

according to their codepoints to the defined queues. The script code and the source 

code of the BB are given Appendix 6 and 7. 

In the implemented BB the cost matrix shown in Table 6.1.2.2 is used. In the table all 

row and columns show the cost in Mb between each nodes. The cells those are in 

grey color is the total bandwidth between each nodes. Also the area shown in yellow 

color is used to mention the cost between ith and jth nodes of the class 10. The other 

areas are similar to class 20 and class 30. These values determined by the BB after 

setting the policy (described in 6.1.2.2) of each classes. Like, the class 10 packets 

take the 50% of the bandwidth and etc. 

 

Figure 6.1.2.1 General Modules of a BB 

 

Figure 6.1.2.2 General DiffServ topology with BB 
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6.1.2.1 General routing strategies 

QoS routing perform two tasks: first, collect the state information and keep the traffic 

matrix up to date. Second, find a feasible path for a new connection according to its 

service class and traffic descriptor. According to how the state information is 

maintained and the search of feasible paths is carried out, routing can be divided into 

three categories as mentioned in [87]: 

1. Source Routing: As implemented in our applications, source routing achieves 

simpilicity by transforming a distributed problem into a centralized one (BB), 

easy to implement, eavulate, debug and upgrade. Disadvantages include 

communication overhead excessively high for large-scale network, the 

inaccuracy in the global state may cause the QoS routing failure, computation 

overhead at the source is excessively high. 

2. Distributed Routing: The path computation is distributed among the 

intermediate nodes between the source and destination. 

3. Hierarchical Routing: The nodes are grouped into multilevel hierarchy. Each 

physical node maintains an aggregated global state. 

6.1.2.2 Policy for each class 

The policy used to share the total bandwidth between each link pair is defined by the 

commands to the BB before the simulation started: 

$BB BBPolicy ClassType PercentageOfTotalBandwidth 

Such an example can be, $BB BBPolicy 0 50. After that command the BB changes 

the colored yellow of the traffic matrix to the 50% of the cost (colored gray) of all 

the cells. 

6.1.2.3 Link state informations 

The routers in the topology send the information of how many packets have passed 

during the last second. The routers use the formula given below: 

Link usage = ((Cumulative sent packet numbers – Last sent packet numbers) / 

period) * Packet size * 8 / 1Mb 
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Figure 6.1.2.3 General Dijkstra Algorithm. 

Table 6.1.2.2. Traffic matrix of the Routing Module. 

 0 1 2 3 4 5 6 

0 0 0 0 0         10 5 3 2             

1     0 0 0 0     10 5 3 2             

2         0 0 0 0 10 5 3 2             

3 10 5 3 2 10 5 3 2 10 5 3 2 0 0 0 0 10 5 3 2     10 5 3 2 

4             10 5 3 2 0 0 0 0 5 2.5 1.5 1     

5                 5 2.5 1.5 1 0 0 0 0 10 5 3 2 

6                     10 5 3 2 0 0 0 0 

6.1.2.4 BB with multiple sources 

In the topology below, five sources of each class are created to test the BB with 

multiple sources of each class. To understand the use of the routing module of the 

BB, one more core node is added to the topology above. The bandwidth between 

core nodes is also 10 Mb. The capacity of the links between the core nodes to the 

destination edge node are raised up to the 6 Mb. Also the capacity between 

destination edge and destination node is raised up to 50 Mb. Bandwidth policy for 

each class is 60% for class 1 (CP 10), 20% for class 2 (CP 20) and 20% for class 3 

(CP 30). In the topology figures, the green colored packets show the class 1 packets, 

the red colored packets show the class2 packets and the black colored packets show 

the class 3 packets. Again RED queue algorithm is used at the routers with the same 
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parameters as above. The simulation duration is about 30 seconds. The rate of each 

class, CPs, the result of the admission control and the route of the sources are given 

in the Table 6.1.2.3. The total packet loss results are given in the Table 6.1.2.4. The 

same topology used without BB and the packet loose results are given in the Table 

6.1.2.5. Although the goodput of the first class is 100% in the topology with BB, the 

goodput becomes 70% in the topology without BB. To show the capability of the AC 

and routing modules of the BB the configurations in the Table 6.1.2.6. are used and 

the diagram for that configuration is given in the Figure 6.1.2.5. 

 

Figure 6.1.2.4 The topology of multiple sources DiffServ network with BB. 

Table 6.1.2.3. The results of the AC and routing modules of the BB. 

CP (Class) QoS (Mb) AC Result Source Destination Route 

10 1 Mb Accepted 0 19 0,15,16,17,18,19 

10 1 Mb Accepted 1 19 1,15,16,17,18,19 

10 1 Mb Accepted 2 19 2,15,16,17,18,19 

10 1 Mb Accepted 3 19 3,15,16,18,19 

10 1 Mb Accepted 4 19 4,15,16,18,19 

20 0.3 Mb Accepted 5 19 5,15,16,17,18,19 

20 0.3 Mb Accepted 6 19 6,15,16,17,18,19 

20 0.3 Mb Accepted 7 19 7,15,16,17,18,19 

20 0.3 Mb Accepted 8 19 8,15,16,17,18,19 

20 0.3 Mb Accepted 9 19 9,15,16,18,19 

30 0.2 Mb Accepted 10 19 10,15,16,17,18,19 

30 0.2 Mb Accepted 11 19 11,15,16,17,18,19 

30 0.2 Mb Accepted 12 19 12,15,16,17,18,19 
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30 0.2 Mb Accepted 13 19 13,15,16,17,18,19 

30 0.2 Mb Accepted 14 19 14,15,16,17,18,19 

Table 6.1.2.4. Packet loss results for the above topology with BB. 

CP Total Tx ldrops early 

10 18744 18744 0 0 

20 5625 5625 0 0 

30 3752 3752 0 0 

Table 6.1.2.5. Packet loss results for the above topology without BB. 

CP Total Tx ldrops early 

10 18745 13166 5529 50 

20 5625 5625 0 0 

30 3750 3750 0 0 

Table 6.1.2.6. The results of the AC and routing modules of the BB. 

CP (Class) QoS (Mb) AC Result Source Destination Route 

10 2 Mb Accepted 0 19 0,15,16,17,18,19 

10 2 Mb Accepted 1 19 1,15,16,18,19 

10 2 Mb Not Accepted 2 19 - 

10 2 Mb Not Accepted 3 19 - 

10 2 Mb Not Accepted 4 19 - 

20 0.6 Mb Accepted 5 19 5,15,16,17,18,19 

20 0.6 Mb Accepted 6 19 6,15,16,17,18,19 

20 0.6 Mb Accepted 7 19 7,15,16,18,19 

20 0.6 Mb Accepted 8 19 8,15,17,16,18,19 

20 0.6 Mb Not Accepted 9 19 - 

30 0.6 Mb Accepted 10 19 10,15,16,17,18,19 

30 0.6 Mb Accepted 11 19 11,15,16,17,18,19 

30 0.6 Mb Accepted 12 19 12,15,16,18,19 

30 0.6 Mb Accepted 13 19 13,15,17,16,18,19 

30 0.6 Mb Not Accepted 14 19 - 

The results for the above table are given in the Tables 6.1.2.7 and 6.1.2.8. The tables 

show that in the network that includes BB, the goodput results are 100%. But in the 

other hand if there is no BB in the network, the goodput of the classes falls down 

approximately to 50%s. This shows that BB gives definite service qualities to the 

sources. The script code of the topology with BB is given in Appendix 5 and the 

script code of the topology without BB is given in Appendix 6. Also the C++ code of 

the BB is given in the Appendix 7. 

Table 6.1.2.7. Packet loss results for the Table 6.1.2.6 with BB. 

CP Total Tx ldrops early goodput 

10 14943 14943 0 0 100 

20 8968 8968 0 0 100 

30 8967 8967 0 0 100 
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Table 6.1.2.8. Packet loss results for the Table 6.1.2.6 without BB. 

CP Total Tx ldrops early goodput 

10 14994 7567 7398 29 0,504669 

20 11246 7554 2923 769 0,671705 

30 11246 7464 29 3753 0,663703 

 

Figure 6.1.2.5 The flows of the classes in the Table 6.1.2.6 with BB. 
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7. CONCLUSIONS AND FUTURE WORK 

Using DiffServ model on edge and core routers creates a QoS enhancement on the 

special sources. So the packets of those nodes take a better service while traversing 

the network. But in non-DS environment there is not a service differentiation for the 

packets of sources. Packets are dropped randomly. 

In order to increase QoS in DiffServ environment, the use of BB (Bandwidth Broker) 

is proposed in [80]. In our work, by using the NS simulation tool, we simulated a BB 

environment by employing various types of queues. 

In our studies we used DropTail, RED, PFQ mechanisms in order to manage queues 

at the routers. 

RED queueing algorithm creates service differentiaton on the routers in the IP 

networks. The selection of RED parameters play important role in the performance 

of the DS architectures. These parameters must be setted according to the topology, 

traffic source types, the type and quality of your service. 

In the multiple RED case, RR (Round Robin) scheduling algorithm is used to extract 

packets from the RED queues. Another case with the WRR (Weighted Round Robin) 

scheduling is also generated. In the RED with WRR the goodput of the first and third 

classes are a bit increased. 

The results of the PFQ (Priority Fair Queueing) algorithm show that the PFQ gives 

strict priorities to the classes than the RED algorithm. The goodput results of the 

RED-multipriority and PFQ are similar. 

Source routing is a useful way of routing in smaller topologies, but it is not scalable 

as topology gets larger. In that case, using distributed routing is more scalable. 

The BB achieved its keypoint role in supplying QoS to the sources succesfully. In the 

implementation of BB, Dijkstra algorithm with the QoS requirement which is 

explained in the thesis is used to find the appropriate path between a source and a 

destination. 

In order to test the performance of the BB, the number of the sources of each class 

are increased gradually. The results show that implemented BB can achieve the 

admission control considering the information available at the BB. 
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Main disadvantage of BB based DiffServ domains is collecting all information on 

one node (BB). This may cause a problem when that node collapses. Also for the 

larger topologies, distributed BB mechanisms can be preferred. 

In the future, we want to apply active queue management technique BIO, in order to 

observe the performance of our BB system. 
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