919 research outputs found

    Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology

    Get PDF
    Mathematical morphology (MM) offers a wide range of tools for image processing and computer vision. MM was originally conceived for the processing of binary images and later extended to gray-scale morphology. Extensions of classical binary morphology to gray-scale morphology include approaches based on fuzzy set theory that give rise to fuzzy mathematical morphology (FMM). From a mathematical point of view, FMM relies on the fact that the class of all fuzzy sets over a certain universe forms a complete lattice. Recall that complete lattices provide for the most general framework in which MM can be conducted. The concept of L-fuzzy set generalizes not only the concept of fuzzy set but also the concepts of interval-valued fuzzy set and Atanassov’s intuitionistic fuzzy set. In addition, the class of L-fuzzy sets forms a complete lattice whenever the underlying set L constitutes a complete lattice. Based on these observations, we develop a general approach towards L-fuzzy mathematical morphology in this paper. Our focus is in particular on the construction of connectives for interval-valued and intuitionistic fuzzy mathematical morphologies that arise as special, isomorphic cases of L-fuzzy MM. As an application of these ideas, we generate a combination of some well-known medical image reconstruction techniques in terms of interval-valued fuzzy image processing

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Quasi-arithmetic means and OWA functions in interval-valued and Atanassov's intuitionistic fuzzy set theory

    Get PDF
    In this paper we propose an extension of the well-known OWA functions introduced by Yager to interval-valued (IVFS) and Atanassov’s intuitionistic (AIFS) fuzzy set theory. We first extend the arithmetic and the quasi-arithmetic mean using the arithmetic operators in IVFS and AIFS theory and investigate under which conditions these means are idempotent. Since on the unit interval the construction of the OWA function involves reordering the input values, we propose a way of transforming the input values in IVFS and AIFS theory to a new list of input values which are now ordered

    Triangular norms which are join-morphisms in 3-dimensional fuzzy set theory

    Get PDF
    The n-dimensional fuzzy sets have been introduced as a generalization of interval-valued fuzzy sets, Atanassov's intuitionistic and interval-valued intuitionistic fuzzy sets. In this paper we investigate t-norms on 3-dimensional sets which are join-morphisms. Under some additional conditions we show that they can be represented using a representation which generalizes a similar representation for t-norms in interval-valued fuzzy set theory

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference

    Full text link
    The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.Comment: 20 page
    • 

    corecore