287 research outputs found

    Parameter identification for an abstract Cauchy problem by quasilinearization

    Get PDF
    A parameter identification problem is considered in the context of a linear abstract Cauchy problem with a parameter-dependent evolution operator. Conditions are investigated under which the gradient of the state with respect to a parameter possesses smoothness properties which lead to local convergence of an estimation algorithm based on quasi-linearization. Numerical results are presented concerning estimation of unknown parameters in delay-differential equations

    Method of the quasilinearization for nonlinear impulsive differential equations with linear boundary conditions

    Get PDF
    The method of quasilinearization for nonlinear impulsive differential equations with linear boundary conditions is studied. The boundary conditions include periodic boundary conditions. It is proved the convergence is quadratic

    Maneuver simulations of flexible spacecraft by solving TPBVP

    Get PDF
    The optimal control of large angle rapid maneuvers and vibrations of a Shuttle mast reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam. The nonlinear terms in the equations come from the coupling between the angular velocities, the modal coordinates, and the modal rates. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem (TPBVP) is then solved by using the quasilinearization algorithm and the method of particular solutions. In the numerical simulations, the structural parameters and the control limits from the Spacecraft Control Lab Experiment (SCOLE) are used. In the 2-D case, only the motion in the plane of an Earth orbit or the single axis slewing motion is discussed. In the 3-D slewing, the mast is modeled as a continuous beam subjected to 3-D deformations. The numerical results for both the linearized system and the nonlinear system are presented to compare the differences in their time response

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure

    An extended method of quasilinearization for nonlinear impulsive differential equations with a nonlinear three-point boundary condition

    Get PDF
    In this paper, we discuss an extended form of generalized quasilinearization technique for first order nonlinear impulsive differential equations with a nonlinear three-point boundary condition. In fact, we obtain monotone sequences of upper and lower solutions converging uniformly and quadratically to the unique solution of the problem

    Point reactor kinetics using Galerkin weighted residuals

    Get PDF

    Generalized quasilinearization method for nonlinear boundary value problems with integral boundary conditions

    Get PDF
    The quasilinearization method coupled with the method of upper and lower solutions is used for a class of nonlinear boundary value problems with integral boundary conditions. We obtain some less restrictive sufficient conditions under which corresponding monotone sequences converge uniformly and quadratically to the unique solution of the problem. An example is also included to illustrate the main result

    On paired decoupled quasi-linearization methods for solving nonlinear systems of differential equations that model boundary layer fluid flow problems.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Two numerical methods, namely the spectral quasilinearization method (SQLM) and the spectral local linearization method (SLLM), have been found to be highly efficient methods for solving boundary layer flow problems that are modeled using systems of differential equations. Conclusions have been drawn that the SLLM gives highly accurate results but requires more iterations than the SQLM to converge to a consistent solution. This leads to the problem of figuring out how to improve on the rate of convergence of the SLLM while maintaining its high accuracy. The objective of this thesis is to introduce a method that makes use of quasilinearization in pairs of equations to decouple large systems of differential equations. This numerical method, hereinafter called the paired quasilinearization method (PQLM) seeks to break down a large coupled nonlinear system of differential equations into smaller linearized pairs of equations. We describe the numerical algorithm for general systems of both ordinary and partial differential equations. We also describe the implementation of spectral methods to our respective numerical algorithms. We use MATHEMATICA to carry out the numerical analysis of the PQLM throughout the thesis and MATLAB for investigating the influence of various parameters on the flow profiles in Chapters 4, 5 and 6. We begin the thesis by defining the various terminologies, processes and methods that are applied throughout the course of the study. We apply the proposed paired methods to systems of ordinary and partial differential equations that model boundary layer flow problems. A comparative study is carried out on the different possible combinations made for each example in order to determine the most suitable pairing needed to generate the most accurate solutions. We test convergence speed using the infinity norm of solution error. We also test their accuracies by using the infinity norm of the residual errors. We also compare our method to the SLLM to investigate if we have successfully improved the convergence of the SLLM while maintaining its accuracy level. Influence of various parameters on fluid flow is also investigated and the results obtained show that the paired quasilinearization method (PQLM) is an efficient and accurate method for solving boundary layer flow problems. It is also observed that a small number of grid-points are needed to produce convergent numerical solutions using the PQLM when compared to methods like the finite difference method, finite element method and finite volume method, among others. The key finding is that the PQLM improves on the rate of convergence of the SLLM in general. It is also discovered that the pairings with the most nonlinearities give the best rate of convergence and accuracy
    • …
    corecore