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Abstract

In this paper, we discuss an extended form of generalized quasilineariza-
tion technique for first order nonlinear impulsive differential equations with
a nonlinear three-point boundary condition. In fact, we obtain monotone se-
quences of upper and lower solutions converging uniformly and quadratically
to the unique solution of the problem.
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1 Introduction

The method of quasilinearizaion provides an adequate approach for obtaining ap-
proximate solutions of nonlinear problems. The origin of the quasilinearizaion lies
in the theory of dynamic programming [1-3]. This method applies to semilinear
equations with convex (concave) nonlinearities and generates a monotone scheme
whose iterates converge quadratically to the solution of the problem at hand. The
assumption of convexity proved to be a stumbling block for the further development
of the method. The nineties brought new dimensions to this technique. The most
interesting new idea was introduced by Lakshmikantham [4-5] who generalized the
method of quasilinearizaion by relaxing the convexity assumption. This develop-
ment proved to be quite significant and the method was studied and applied to a
wide range of initial and boundary value problems for different types of differential
equations, see [6-17] and references therein. Some real-world applications of the
quasilinearizaion technique can be found in [18-20].
Many evolution processes are subject to short term perturbations which act instan-
taneously in the form of impulses. Examples include biological phenomena involving
thresholds, bursting rhythm models in medicine and biology, optimal control models
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in economics and frequency modulated systems. Thus, impulsive differential equa-
tions provide a natural description of observed evolution processes of several real
world problems. Moreover, the theory of impulsive differential equations is much
richer than the corresponding theory of ordinary differential equations without im-
pulse effects since a simple impulsive differential equation may exhibit several new
phenomena such as rhythmical beating, merging of solutions and noncontinuability
of solutions. Thus, the theory of impulsive differential equations is quite interesting
and has attracted the attention of many scientists, for example, see [21-24]. In par-
ticular, Eloe and Hristova [23] discussed the method of quasilinearization for first
order nonlinear impulsive differential equations with linear boundary conditions.
Multi-point nonlinear boundary value problems, which refer to a different family of
boundary conditions in the study of disconjugacy theory [25], have been addressed
by many authors, for instance, see [26-27] and the references therein. In this paper,
we develop an extended method of quasilinearization for a class of first order non-
linear impulsive differential equations involving a mixed type of nonlinearity with a
nonlinear three-point boundary condition

x′(t) = F (t, x(t)) for t ∈ [0, T ], t 6= τk, τk ∈ (0, T ), (1)

x(τk + 0) = Ik(x(τk)), k = 1, 2, ..., p, (2)

γ1x(0) − γ2x(T ) = h(x(
T

2
)), (3)

where F ∈ C[[0, T ] × R,R] and F (t, x(t)) = f(t, x(t)) + g(t, x(t)), γ1, γ2 are con-
stants with γ1 ≥ γ2 > 0, τk < τk+1, k = 1, 2, ..., p and the nonlinearity h : R −→ R

is continuous. Here, it is worthmentioning that the convexity assumption on f(t, x)
has been relaxed and instead f(t, x) +M1x

2 is taken to be convex for some M1 > 0
while a less restrictive condition is demanded on g(t, x), namely, [g(t, x) +M2x

1+ε]
satisfies a nondecreasing condition for some ε > 0 and M2 > 0. Moreover, we
also relax the concavity assumption (h′′(x) ≤ 0) on the nonlinearity h(x) in
the boundary condition (3) by requiring h′′(x) + ψ′′(x) ≤ 0 for some continuous
function ψ(x) satisfying ψ′′ ≤ 0 on R. We construct two monotone sequences of
upper and lower solutions converging uniformly and quadratically to the unique so-
lution of the problem. Some special cases of our main result have also been recorded.

2 Some Basic Results

For A ⊂ R, B ⊂ R, let PC(A,B) denotes the set of all functions v : A → B
which are piecewise continuous in A with points of discontinuity of first kind at
the points τk ∈ A, that is, there exist the limits limt↓τk

v(t) = v(τk + 0) < ∞
and limt↑τk

v(t) = v(τk − 0) = v(τk). The set PC1(A,B) consists of all functions
v ∈ PC(A,B) that are continuously differentiable for t ∈ A, t 6= τk.
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Definition 1. The function α(t) ∈ PC1([0, T ],R) is called a lower solution of the
BVP (1)-(3) if

α′(t) ≤ F (t, α(t)) for t ∈ [0, T ], t 6= τk, (4)

α(τk + 0) ≤ Ik(α(τk)), k = 1, 2, ..., p, (5)

γ1α(0) − γ2α(T ) ≤ h(α(
T

2
)). (6)

The function β(t) ∈ PC1([0, T ],R) is called an upper solution of the BVP (1)-(3)
if the inequalities are reversed in (4)-(6).

Let us set the following notations for the sequel.

S(α, β) = {x ∈ PC([0, T ],R) : α(t) ≤ x(t) ≤ β(t) for t ∈ [0, T ]},

Ω(α, β) = {(t, x) ∈ [0, T ] × R : α(t) ≤ x(t) ≤ β(t)},

Dk(α, β) = {x ∈ R : α(τk) ≤ x ≤ β(τk)}, k = 1, 2, ..., p.

Theorem 1. (Comparison Result)
Let α, β ∈ PC1([0, T ],R) be lower and upper solutions of (1)-(3) respectively.
Further, F (t, x) ∈ C(Ω(α, β),R) is quasimonotone nondecreasing in x for each
t ∈ [0, T ] and satisfies F (t, x) − F (t, y) ≤ L(x − y), L ≥ 0 whenever y ≤ x.
Moreover, h is nondecreasing on R and Ik : Dk(α, β) → R are nondecreasing in
Dk(α, β) for each k = 1, 2, ..., p and satisfies Ik(x) − Ik(y) ≤ M(x − y), M ≥ 0.
Then α(t) ≤ β(t) on [0, T ].

Proof. The method of proof is similar to the one used in proving Theorem
2.6.1 (page 87 [21]), so we omit the proof.

Theorem 2. (Existence of solution)
Assume that F is continuous on Ω(α, β) and h is nondecreasing on R. Further, we
assume that Ik : Dk(α, β) → R are nondecreasing in Dk(α, β) for each k = 1, 2, ..., p
and α, β are respectively lower and upper solutions of (1)-(3) such that α(t) ≤ β(t)
on [0, T ]. Then there exists a solution x(t) of (1)-(3) such that x(t) ∈ S(α, β).

Proof. There is no loss of generality if we consider the case p = 1, that is,
0 < t1 < T. Let x0 be an arbitrary point such that α(0) ≤ x0 ≤ β(0). Define F and
H by

F (t, x) =






F (t, β(t)) + β(t)−x

1+|x|
, if x(t) > β(t),

F (t, x), if α(t) ≤ x(t) ≤ β(t),

F (t, α(t)) + α(t)−x

1+|x|
, if x(t) < α(t),

H(x) =






h(β(T
2
)), if x > β(T

2
),

h(x), if α(T
2
) ≤ x ≤ β(T

2
),

h(α(T
2
)), if x < α(T

2
).
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Since F (t, x) andH(x) are continuous and bounded, therefore, there exists a function
µ ∈ ([0, T ], [0,∞)) such that sup{|F (t, x)| : x ∈ R} ≤ µ(t) for t ∈ [0, T ]. Thus, the
initial value problem x′(t) = F (t, x), x(0) = x0 has a solution X(t; x0) for t ∈ [0, t1].
We define u(t) = X(t; x0) − β(t) and prove that the function u(t) is non-positive
on [0, t1]. For the sake of contradiction, assume that u(t) > 0, that is, sup{u(t) :
t ∈ [0, t1]} > 0. Therefore, there exists a point t0 ∈ (0, t1) such that u(t0) > 0 and
u′(t0) ≥ 0. On the other hand, we have

u′(t0) = X ′(t0; x0) − β ′(t0)

≤ F (t0, x) − F (t0, β(t0))

= F (t0, β(t0)) +
β(t0) −X(t0; x0)

1 + |X(t0; x0)|
− F (t0, β(t0))

=
−u(t0)

1 + |X(t0; x0)|
< 0,

which is a contradiction. Hence we conclude that X(t; x0) ≤ β(t), t ∈ [0, t1). Simi-
larly, it can be shown that X(t; x0) ≥ α(t), t ∈ [0, t1].
Now we set y0 = I1(X(t1; x0)) and note that y0 depends on x0. From the nonde-
creasing property of I1(x), we obtain

α(t1 + 0) ≤ I1(α(t1)) ≤ I1(X(t1; x0) ≤ I1(β(t1)) ≤ β(t1 + 0),

that is, α(t1 + 0) ≤ y0 ≤ β(t1 + 0).
Consider the initial value problem x′ = F (t, x), x(t1) = y0 for t ∈ [t1, T ] which
has a solution Y (t; y0) for t ∈ [t1, T ]. Employing the earlier arguments, It is not
hard to prove that α(t) ≤ Y (t; y0) ≤ β(t) for t ∈ [t1, T ]. Also, we notice that
Y (t1, y0) = y0 = I1(X(t1, x0)).
Let us define

x(t; x0) =

{
X(t; x0) for t ∈ [0, t1],
Y (t; y0) for t ∈ (t1, T ].

Obviously the function x(t; x0) such that α(t) ≤ x(t; x0) ≤ β(t) is a solution of the
impulsive differential equation (1)-(2) with the initial condition x(0) = x0.
In view of the inequality α(t) ≤ β(t) for t ∈ [0, T ], there are following two possible
cases:
Case 1. Let α(0) = β(0). Then x0 = α(0) = β(0) and

γ1x(0; x0) − γ2x(T ; x0) = γ1x0 − γ2x(T ; x0) ≤ γ1α(0) − γ2α(T ) ≤ h(α(
T

2
)),

γ1x(0; x0) − γ2x(T ; x0) ≥ γ1β(0) − γ2β(T ) ≥ h(β(
T

2
)).

Thus,

h(β(
T

2
)) ≤ γ1x(0; x0) − γ2x(T ; x0) ≤ h(α(

T

2
)). (10)
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Using the nondecreasing property of h(t) together with the fact that α(t) ≤
x(t; x0) ≤ β(t), t ∈ [0, T ], we find that h(α(t)) ≤ h(x(t; x0)) ≤ h(β(t)), t ∈ [0, T ].
In particular, for t = T

2
, we have

h(α(
T

2
)) ≤ h(x(

T

2
; x0)) ≤ h(β(

T

2
)). (11)

Combining (10) and (11), we obtain

γ1x(0; x0) − γ2x(T ; x0) = h(x(
T

2
; x0)).

This shows that the function x(t; x0) is a solution of the BVP (1)-(3).
Case 2. Let α(0) < β(0). We will prove that there exists a point x0 ∈ [α(0), β(0)]
such that the solution x(t; x0) of the impulsive differential equation (1)-(2) with the
initial condition x(0) = x0 satisfies the boundary condition (3). For the sake of
contradiction, let us assume that γ1x(0; x0) − γ2x(T ; x0) 6= h(β(T

2
)), where x(t; x0)

is the solution of (1)-(2).
Letting x0 = β(0) together with the relation α(t) ≤ x(t; x0) ≤ β(t), we obtain

γ1x(0; x0) − γ2x(T ; x0) = γ1β(0) − γ2x(T ; x0)

≥ γ1β(0) − γ2β(T ) ≥ h(β(
T

2
)) ≥ h(x(

T

2
; x0)),

which, according to the above assumption, reduces to

γ1x(0; x0) − γ2x(T ; x0) > h(x(
T

2
; x0)).

Then there exists a number δ satisfying 0 < δ < β(0) − α(0), such that for x0 : 0 ≤
β(0) − x0 < δ, the corresponding solution x(t; x0) of (1)-(2) satisfies the inequality

γ1x(0; x0) − γ2x(T ; x0) > h(x(
T

2
; x0)). (12)

We can indeed assume that for every natural number n there exists a point νn

satisfying 0 ≤ β(0) − νn < 1
n

such that the corresponding solution x(n)(t; νn) of
(1)-(2) with the initial condition x(0) = νn satisfies the inequality

γ1x
(n)(0; νn) − γ2x

(n)(T ; νn) < h(x(
T

2
; νn)).

Let {νnj
} is a subsequence such that limj→∞ νnj

= β(0) and limj→∞ x(nj)(t; νnj
) =

x(t) uniformly on the intervals [0, t1] and (t1, T ]. The function x(t) is a solution of
(1)-(2) such that x(0) = β(0), α(t) ≤ x(t) ≤ β(t) and

γ1x(0) − γ2x(T ) ≤ h(x(
T

2
)), (13)
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which contradicts the inequality (12) and consequently our assumption is false. Now,
we define

δ∗ = sup{δ ∈ (0, β(0) − α(0)] : for which there exists a point x0 ∈ (β(0) − δ, β(0)]

such that the solution x(t; x0) satisfies the inequality (12) }.

Select a sequence of points xn ∈ (α(0), β(0)− δ∗) such that limn→∞ xn = β(0)− δ∗.
From the choice of δ∗ and the assumption, it follows that the corresponding solutions
x(n)(t; xn) satisfy the inequality

γ1x
(n)(0; xn) − γ2x

(n)(T ; xn) < h(x(
T

2
; xn)).

Thus, there exists a subsequence {xnj
}∞0 of the sequence {xn}

∞
0 such that

limj→∞ x(nj)(t; xnj
) = x∗(t) uniformly on the intervals [0, t1] and (t1, T ]. The

function x∗(t) satisfying α(t) ≤ x∗(t) ≤ β(t), is a solution of(1)-(2) with the initial
condition x(0) = β(0)− δ∗ and satisfies the inequality γ1x

∗(0)−γ2x
∗(T ) ≤ h(x(T

2
)).

This contradicts the choice of δ∗. Therefore, there exists a point x0 ∈ [α(0), β(0)]
such that the solution x(t, x0) of (1)-(2) satisfies (3). Thus, the function x(t, x0) is
a solution of (1)-(3). This completes the proof of the theorem.

Theorem 3. Let g, η ∈ PC([0, T ],R) and γ1, γ2, ζ, bk, δk(k = 1, 2, ..., p) be
constants such that [γ1/γ2 − (Πp

k=1bk) exp(
∫ T
0 g(m)dm)] 6= 0. Then the following

linear BVP
x′(t) = g(t)x(t) + η(t), for t ∈ [0, T ], t 6= τk,

x(τk + 0) = bkx(τk) + δk, , k = 1, 2, ..., p,

γ1x(0) − γ2x(T ) = ζ,

has a unique solution u(t) on the interval [0, T ] given by

u(t) = u(0)(
∏

0<τk<t

bk) exp(
∫ t

0
g(m)dm) +

∑

0<τk<t

δk(
∏

τk<τj<t

bj) exp(
∫ t

τk

g(m)dm)

+
∫ t

0
η(s)(

∏

s<τk<t

bk) exp(
∫ t

s
g(m)dm)ds,

where

τ0 = 0, b0 = 1,
n∏

j=k

f(j) = 1, k > n,

u(0) = [γ1/γ2 − (
p∏

k=1

bk) exp(
∫ T

0
g(m)dm)]−1{

p∑

i=1

δi(
p∏

j=i+1

bj) exp(
∫ T

τi

g(m)dm)

+
∫ T

0
η(s)(

∏

s<τj<T

bj) exp(
∫ T

s
g(m)dm)ds+ ζ/γ2}.
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We need the following known theorem (Theorem 1.4.1, page 32 [21]) to prove our
main result.

Theorem 4. Let the function m ∈ PC1[R+,R] be such that

m′(t) ≤ σ(t)m(t) + q(t), for t ∈ [0, T ], t 6= τk,

m(τk + 0) ≤ dkm(τk) + bk, k = 1, 2, ..., p,

where σ, q ∈ C[R+,R], dk ≥ 0 and bk are constants. Then

m(t) = m(0)(
∏

0<τk<t

dk) exp(
∫ t

0
σ(ξ)dξ) +

∑

0<τk<t

(
∏

τk<τj<t

dj) exp(
∫ t

τk

σ(ξ)dξ)bk

+
∫ t

0
(
∏

s<τk<t

dk) exp(
∫ t

s
σ(ξ)dξ)q(s)ds, t ≥ 0.

3 Extended Method of Quasilinearization

Theorem 5. Assume that

(A1) The functions α0(t), β0(t) are lower and upper solutions of the BVP (1)-(3)
respectively such that α0(t) ≤ β0(t) for t ∈ [0, T ].

(A2) fx, fxx exist, are continuous and (f(t, x)+M1x
2)xx ≥ 0 for (t, x) ∈ Ω,M1 > 0.

For some ε > 0, M2 > 0, [g(t, x)+M2x
1+ε] satisfies a nondecreasing condition.

Further, gx satisfies Lipschitz condition and

{[gx(t, x) + (1 + ε)M2x
ε] − [gx(t, y) + (1 + ε)M2y

ε]}(x− y) ≥ 0, ε > 0.

Moreover,
∫ T
0 [Fx(s, β0(s)) − 2M1α0(s)]ds < 0.

(A3) For k = 1, 2, ..., p, the functions Ik ∈ C2(Dk(α0, β0),R) and there exists func-
tions Gk, Jk ∈ C2(Dk(α0, β0),R) such that Gk(x) = Ik(x) + Jk(x), G′′

k(x) ≥
0, J ′′

k (x) ≥ 0,

G′
k(β0(τk)) − J ′

k(α0(τk)) < 1,

G′
k(α0(τk)) − J ′

k(β0(τk)) ≥ 0.

(A4) h(x), h
′(x), h′′(x) exist, are continuous on R with 0 ≤ h′ and h′′(x)+ψ′′(x) ≤ 0

for some continuous function ψ(x) satisfying ψ′′ ≤ 0 on R.

Then there exist monotone sequences {αn(t)}∞0 and {βn(t)}∞0 of lower and upper
solutions respectively that converge uniformly and quadratically on the intervals
(τk, τk+1] for k = 1, 2, ..., p to the unique solution of the BVP (1)-(3) in S(α0, β0).
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Proof. For (t, x1), (t, x2) ∈ Ω(α0, β0) with x1 ≥ x2, it follows from (A2) that

f(t, x1) ≥ f(t, x2) + (fx(t, x2) + 2M1x2)(x1 − x2) −M1(x
2
1 − x2

2), (14)

g(t, x1) ≥ g(t, x2) + (gx(t, x2) + (1 + ε)M2x
ε
2)(x1 − x2) −M2(x

1+ε
1 − x1+ε

2 ). (15)

Define

Q(t, x1, x2) = f(t, x2) + (fx(t, x2) + 2M1x2)(x1 − x2) −M1(x
2
1 − x2

2)

+ g(t, x2) + [gx(t, x2) + (1 + ε)M2x
ε
2](x1 − x2) −M2(x

1+ε
1 − x1+ε

2 ),

and observe that

f(t, x1) + g(t, x1) ≥ Q(t, x1, x2), f(t, x1) + g(t, x1) = Q(t, x1, x1). (16)

Furthermore, for α0(t) ≤ y ≤ x ≤ β0(t), we have

[f(t, x) + g(t, x)] − [f(t, y) + g(t, y)] ≤ L(x− y), L > 0, (17)

Q(t, x, x2) −Q(t, y, x2) ≤ N(x− y), N > 0. (18)

From (A3), we obtain

Ik(x1) ≥ Ik(x2) +G′
k(x2)(x1 − x2) + Jk(x2) − Jk(x1), (19)

Gk(x1) ≥ Gk(x2) +G′
k(x2)(x1 − x2), (20)

where x1, x2 ∈ Dk(α0, β0) with x1 ≥ x2. Since

I ′k(x) = G′
k(x) − J ′

k(x) = G′
k(α0τk) − J ′

k(β0τk) ≥ 0,

it follows that the functions Ik(x) are nondecreasing for k = 1, 2, ..., p.
Now, we define H : R → R by H(x) = h(x) + ψ(x). Using the mean value theorem
and (A4), we obtain

h(x) ≤ h(y)+H ′(y)(x−y)+ψ(y)−ψ(x) = E(x, y), h(x) = E(x, x), x, y ∈ R. (21)

Hence, by Theorem 2, the BVP (1)-(3) has a solution in S(α0, β0). We set

Q(t, x, α0) = f(t, α0) + [fx(t, α0) + 2M1α0](x− α0) −M1(x
2 − α2

0)

+ g(t, α0) + [gx(t, α0) + (1 + ε)M2α
ε
0](x− α0) −M2(x

1+ε − α1+ε
0 ),

Q̂(t, x, β0) = f(t, β0) + [fx(t, α0) + 2M1α0](x− β0) −M1(x
2 − β2

0)

+ g(t, β0) + [gx(t, α0) + (1 + ε)M2α
ε
0](x− β0) −M2(x

1+ε − β1+ε
0 ),

Ck(x(τk), α0(τk)) = Ik(α0(τk)) +B0
k(x(τk) − α0(τk)),

B0
k = G′

k(α0(τk)) − J ′
k(β0(τk)),

Ĉk(x(τk), β0(τk)) = Ik(β0(τk)) +B0
k(x(τk) − β0(τk)),

E(x(
T

2
);α0, β0) = h(α0(

T

2
)) +H ′(β0(

T

2
))(x(

T

2
) − α0(

T

2
)) + ψ(α0(

T

2
)) − ψ(x(

T

2
)),

e(x(
T

2
); β0) = h(β0(

T

2
)) +H ′(β0(

T

2
))(x(

T

2
) − β0(

T

2
)) + ψ(β0(

T

2
)) − ψ(x(

T

2
)).

EJQTDE, 2007 No. 1, p. 8



Obviously

Q(t, α0, α0) = f(t, α0)+g(t, α0) = F (t, α0), Q̂(t, β0, β0) = f(t, β0)+g(t, β0) = F (t, β0),

Ck(α0(τk), α0(τk)) = Ik(α0(τk)), Ĉk(β0(τk), β0(τk)) = Ik(β0(τk)),

E(α0(
T

2
);α0, β0) = h(α0(

T

2
)), e(β0(

T

2
); β0) = h(β0(

T

2
)).

Now, we consider the following three-point impulsive boundary value problem

x′ = Q(t, x, α0), for t ∈ [0, T ], t 6= τk, (22)

x(τk + 0) = Ck(x(τk), α0(τk)), (23)

γ1x(0) − γ2x(T ) = E(x(
T

2
);α0, β0), (24)

and show that α0 and β0 are its lower and upper solutions respectively.
From (A1) and (14)-(15), we obtain

α′
0 ≤ f(t, α0) + g(t, α0) = Q(t, α0, α0),

α0(τk + 0) ≤ Ik(α0(τk)) = Ck(α0(τk), α0(τk)),

γ1α0(0) − γ2α0(T ) ≤ h(α0(
T

2
)) = E(α0(

T

2
);α0, β0),

which implies that α0 is a lower solution of the BVP (22)-(24) and

β ′
0(t) ≥ F (t, β0) = f(t, β0) + g(t, β0)

≥ f(t, α0) + [fx(t, α0) + 2M1α0](β0 − α0) −M1(β
2
0 − α2

0)

+ g(t, α0) + [gx(t, α0) + (1 + ε)M2α
ε
0](β0 − α0) −M2(β

1+ε
0 − α1+ε

0 )

= Q(t, β0, α0).

Using (A1), (19) and the nondecreasing property of J ′
k, we get

β0(τk + 0) ≥ Ik(β0(τk))

≥ Ik(α0(τk)) +G′
k(α0(τk))(β0(τk) − α0(τk)) + Jk(α0(τk)) − Jk(β0(τk))

= Ik(α0(τk)) +G′
k(α0(τk))(β0(τk) − α0(τk)) − J ′

k(η0)(β0(τk) − α0(τk))

≥ Ik(α0(τk)) + (G′
k(α0(τk) − J ′

k(β0(τk))(β0(τk) − α0(τk))

= Ik(α0(τk)) +B0
k(β0(τk) − α0(τk)) = Ck(β0(τk), α0(τk)),

where α0(τk) ≤ η0 ≤ β0(τk). In view of (A1) and (A4), for α0(
T
2
) ≤ c0 ≤ β0(

T
2
), we

find that

h(β0(
T

2
)) − E(β0(

T

2
);α0, β0)

= h(β0(
T

2
)) − h(α0(

T

2
)) −H ′(β0(

T

2
))(β0(

T

2
) − α0(

T

2
))
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− ψ(α0(
T

2
)) + ψ(β0(

T

2
))

= H(β0(
T

2
)) −H(α0(

T

2
)) −H ′(β0(

T

2
))(β0(

T

2
) − α0(

T

2
))

= H ′(c0)(β0(
T

2
) − α0(

T

2
)) −H ′(β0(

T

2
))(β0(

T

2
) − α0(

T

2
))

= (H ′(c0) −H ′(β0(
T

2
)))(β0(

T

2
) − α0(

T

2
)) ≥ 0.

Thus, γ1β0(0) − γ2β0(T ) ≥ β0(
T
2
) ≥ E(β0(

T
2
);α0, β0). Hence β0(t) is an upper

solution of the BVP (22)-(24). Then, by Theorem 2, there exists a unique solution
α1(t) ∈ S(α0, β0) of the BVP (22)-(24) such that α0(t) ≤ α1(t) ≤ β0(t), t ∈ [0, T ].

Next, consider the problem

x′ = Q̂(t, x, β0), for t ∈ [0, T ], t 6= τk, (25)

x(τk + 0) = Ĉk(x(τk), β0(τk)), (26)

γ1x(0) − γ2x(T ) = e(x(
T

2
); β0). (27)

From (A1), it follows that

β ′
0(t) ≥ f(t, β0) + g(t, β0) = Q̂(t, β0, β0),

β0(τk + 0) ≥ Ik(β0(τk)) = Ĉk(β0(τk), β0(τk)),

γ1β0(0) − γ2β0(T ) ≥ h(β0(
T

2
)) = e(β0(

T

2
); β0),

which implies that β0 is an upper solution (25)-(27).
Using (A1) and (14)-(15) again, we obtain

α′
0(t) ≤ f(t, α0) + g(t, α0)

≤ f(t, β0) + g(t, β0) − (fx(t, α0) + 2M1α0)(β0 − α0) +M1(β
2
0 − α2

0)

− (gx(t, α0) + (1 + ε)M2α
ε
0)(β0 − α0) +M2(β

1+ε
0 − α1+ε

0 )

= f(t, β0) + (fx(t, α0) + 2M1α0)(α0 − β0) −M1(α
2
0 − β2

0)

+ g(t, β0) + (gx(t, α0) + (1 + ε)M2α
ε
0)(α0 − β0) −M2(α

1+ε
0 − β1+ε

0 )

= Q̂(t, α0, β0).

In a similar manner, it can be shown that

α0(τk + 0) ≤ Ĉk(α0(τk), β0(τk)).

γ1α0(0) − γ2α0(T ) ≤ e(α0(
T

2
), β0).

Hence α0 is a lower solution of the BVP (25)-(27). Again, by Theorem 2, there
exists a unique solution β1(t) ∈ S(α0, β0) of the BVP (25)-(27) such that α0(t) ≤
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β1(t) ≤ β0(t), t ∈ [0, T ]. Now, we show that α1(t) ≤ β1(t), for t ∈ [0, T ]. For that,
we will prove that α1(t) and β1(t) are lower and upper solution of the BVP (1)-(3)
respectively. Using the fact that α1 is a solution of (22)-(24) together with (14)-(15),
we obtain

α′
1(t) = Q(t, α1, α0)

= f(t, α0) + [fx(t, α0) + 2M1α0](α1 − α0) −M1(α
2
1 − α2

0)

+ g(t, α0) + [gx(t, α0) + (1 + ε)M2α
ε
0](α1 − α0) −M2(α

1+ε
1 − α1+ε

0 )

≤ f(t, α1) + g(t, α1) − [fx(t, α0) + 2M1α0](α1 − α0) +M1(α
2
1 − α2

0)

− [gx(t, α0) + (1 + ε)M2α
ε
0](α1 − α0) +M2(α

1+ε
1 − α1+ε

0 )

+ [fx(t, α0) + 2M1α0](α1 − α0) −M1(α
2
1 − α2

0)

+ [gx(t, α0) + (1 + ε)M2α
ε
0](α1 − α0) −M2(α

1+ε
1 − α1+ε

0 )

= f(t, α1) + g(t, α1) = F (t, α1(t)), t ∈ [0, T ], t 6= τk.

In view of (19) and the nonincreasing property of J ′
k, we have

α1(τk + 0) = Ik(α0(τk)) +B0
k [α1(τk) − α0(τk)]

≤ Ik(α1(τk)) −G′
k(α0(τk))(α1(τk) − α0(τk)) − Jk(α0(τk)) + Jk(α1(τk))

+ B0
k [α1(τk) − α0(τk)]

= Ik(α1(τk)) + [G′
k(α0(τk)) − J ′

k(η1) − B0
k](α0(τk) − α1(τk))

≤ Ik(α1(τk)) + [G′
k(α0(τk)) − J ′

k(β0(τk)) −G′
k(α0(τk))

+ J ′
k(β0(τk))](α0(τk) − α1(τk))

= Ik(α1(τk)),

where α0 ≤ η1 ≤ α1 ≤ β0. Utilizing the nonincreasing property of H ′ together with
(21) yields

Mα1(0) −Nα1(T )

= h(α0(
T

2
)) +H ′(β0(

T

2
))(α1(

T

2
) − α0(

T

2
)) + ψ(α0(

T

2
)) − ψ(α1(

T

2
))

≤ h(α1(
T

2
)) +H ′(α1(

T

2
))(α0(

T

2
) − α1(

T

2
)) + ψ(α1(

T

2
)) − ψ(α0(

T

2
))

+ H ′(α1(
T

2
))(α1(

T

2
) − α0(

T

2
)) + ψ(α0(

T

2
)) − ψ(α1(

T

2
))

= h(α1(
T

2
)).

Thus, α1(t) is a lower solution of the BVP (1)-(3). Similarly, we can show that β1(t)
is an upper solution of (1)-(3). Thus, by Theorem 1, α1(t) ≤ β1(t) and consequently,
we get

α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), t ∈ [0, T ].

Continuing this process, by induction, one can construct monotone sequences
{αn(t)}∞0 and {βn(t)}∞0 , αn, βn ∈ S(αn−1, βn−1) such that

α0(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ βn(t) ≤ ... ≤ β1(t) ≤ β0(t), t ∈ [0, T ],
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where αn+1(t) is the unique solution of the BVP

x′ = Q(t, x, αn), for t ∈ [0, T ], t 6= τk, (28)

x(τk + 0) = Ck(x(τk), αn(τk)), (29)

γ1x(0) − γ2x(T ) = E(x(
T

2
);αn, βn), (30)

and βn+1(t) is the unique solution of

x′ = Q̂(t, x, βn), for t ∈ [0, T ], t 6= τk, (31)

x(τk + 0) = Ĉk(x(τk), βn(τk)), (32)

γ1x(0) − γ2x(T ) = e(x(
T

2
); βn). (33)

Since the sequences {αn(t)}
∞
0 and {βn(t)}∞0 are uniformly bounded and equi-

continuous on (τk, τk+1], k = 0, 1, ..., p, it follows that they are uniformly convergent
[23] with

lim
n→∞

αn(t) = x(t), lim
n→∞

βn(t) = y(t).

Hence we conclude that

α0(t) ≤ x(t) ≤ y(t) ≤ β0(t).

Taking the limit n→ ∞, we find that

Q(t, αn+1, αn) → f(t, x(t)) + g(t, x(t)), Ck(αn+1(τk), αn(τk)) → Ik(x(tk)),

E(αn+1(
T

2
);αn, βn) → h(x(

T

2
)).

Now applying Theorem 3 to the BVP (28)-(30) together with Lebesgue dominated
convergence theorem, it follows that x(t) is the solution of the BVP (1)-(3) in
S(α0, β0). Similarly, applying Theorem 3 to the BVP (31)-(32), it can be shown
that y(t) is the solution of the BVP (1)-(3) in S(α0, β0). Therefore, by the unique-
ness of the solution, x(t) = y(t).
Now, we prove that the convergence of each of the two sequences is quadratic. For
that, we set an+1(t) = x(t) − αn+1(t), bn+1(t) = βn+1(t)− x(t), t ∈ [0, T ] and note
that an+1(t) ≥ 0 and bn+1(t) ≥ 0. We will only prove the quadratic convergence of
the sequence {an(t)}∞0 as that of the sequence {bn(t)}∞0 is similar one.
Setting P (t, x) = f(t, x) + g(t, x) +M1x

2 +M2x
1+ε, t ∈ [0, T ], t 6= τk and using the

mean value theorem repeatedly, we obtain

a′n+1(t) = x′(t) − α′
n+1(t)

= f(t, x) + g(t, x) −Q(t, αn+1, αn)

= P (t, x) − P (t, αn) − Px(t, αn)(an(t) − an+1(t)) −M1(x
2 − α2

n+1)
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− M2(x
1+ε − α1+ε

n+1)

= Px(t, c1)an(t) − Px(t, αn)an(t) + Px(t, αn)an+1(t)

− M1(x
2 − α2

n+1) −M2(x
1+ε − α1+ε

n+1)

= [Px(t, c1) − Px(t, αn)]an(t)

+ [Px(t, αn) −M1(x+ αn+1) −M2σ(x, αn+1)]an+1(t)

= [fx(t, c1) + gx(t, c1) + 2M1c1 + (1 + ε)M2c
ε
1

− fx(t, αn) − gx(t, αn) − 2M1αn − (1 + ε)M2α
ε
n]an(t)

+ [Px(t, αn) −M1(x+ αn+1) −M2σ(x, αn+1)]an+1(t)

= [fxx(t, c2)(c1 − αn) + gx(t, c1) − gx(t, αn) + (1 + ε)M2(c
ε
1 − αε

n)

+ 2M1(c1 − αn)]an(t) + [Px(t, αn) −M1(x+ αn+1) −M2σ(x, αn+1)]an+1(t)

≤ Qn(t)an+1(t) + ρn, (34)

where L1 is Lipschitz constant (gx satisfies the Lipschitz condition), αn ≤ c1 ≤ c2 ≤
x ≤ βn and

Qn = Px(t, αn) −M1(x+ αn+1) −M2ω(x, αn+1),

ρn = [fxx(t, c2) + L1 + (1 + ε)M2ω(c1, αn) + 2M1]a
2
n(t),

ω(x, αn+1) = (xε + xε−1αn+1 + xε−2α2
n+1 + ...+ x1αε−1

n+1 + αε
n) > 0.

Similarly it can be shown that

an+1(τk + 0) ≤ Bn
kan+1(τk) + σk, (35)

where σk = [G′′
k(ωk) + 3

2
J ′′

k (χk)]a
2
n(τk) + 1

2
J ′′

k (χk)b
2
n(τk), αn(τk) ≤ ωk ≤ x(τk) and

αn(τk) ≤ χk ≤ βn(τk), k = 1, 2, ..., p.
Applying Theorem 1.4.1 (page 32 [21]) on (34)-(35), it follows that the function
an+1(t) satisfies the estimate

an+1(t) ≤ an+1(0)




∏

0<τk<t

Bn
k



 exp
(∫ t

0
Qn(τ)dτ

)

+
∑

0<τk<t




∏

τk<τj<t

Bn
j exp

(∫ t

τk

Qn(τ)dτ
)

σk

+
∫ t

0

∏

s<τk<t

Bn
k exp

(∫ t

s
Qn(τ)dτ

)
ρn(s)ds, t ≥ t0. (36)

In view of (21), we have

γ1an+1(0) − γ2an+1(T )

= [γ1x(0) − γ2x(T )] − [γ1αn+1(0) − γ2αn+1(T )]

= h(x(
T

2
)) − h(αn(

T

2
)) −H ′(βn(

T

2
))(αn+1(

T

2
) − αn(

T

2
))
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− ψ(αn(
T

2
)) + ψ(αn+1(

T

2
))

≤ h(αn(
T

2
)) +H ′(αn(

T

2
))(x(

T

2
) − αn(

T

2
)) + ψ(αn(

T

2
)) − ψ(x(

T

2
))

− h(αn(
T

2
)) −H ′(βn(

T

2
))(αn+1(

T

2
) − αn(

T

2
))

− ψ(αn(
T

2
)) + ψ(αn+1(

T

2
))

= H ′(αn(
T

2
))an(

T

2
) −H ′(βn(

T

2
))an(

T

2
) +H ′(βn(

T

2
))an+1(

T

2
)

− ψ′(c3)an+1(
T

2
)

≤ −H ′′(c4)(βn(
T

2
) − αn(

T

2
))an(

T

2
) +H ′(βn(

T

2
))an+1(

T

2
)

− ψ′(βn(
T

2
))an+1(

T

2
)

= −H ′′(c4)(bn(
T

2
) + an(

T

2
))an(

T

2
) + h′(βn(

T

2
))an+1(

T

2
)

≤ −H ′′(c4)(
3

2
a2

n(
T

2
) +

1

2
b2n(

T

2
)) + h′(βn(

T

2
))an+1(

T

2
)

where αn+1(
T
2
) ≤ c3 ≤ x(T

2
) ≤ βn(T

2
) and x(T

2
) ≤ c4 ≤ βn(T

2
). Thus, we have

an+1(0) ≤
γ2

γ1
an+1(T )+

1

γ1
[−H ′′(c4)(

3

2
a2

n(
T

2
)+

1

2
b2n(

T

2
))+h′(βn(

T

2
))an+1(

T

2
)]. (37)

Combining (36) and (37) yields

an+1(0) ≤
γ2

γ1
an+1(T ) +

1

γ1
(−H ′′(c4)bn(

T

2
)an(

T

2
) + h′(βn(

T

2
))an+1(

T

2
))

≤
γ2

γ1
[an+1(0)




∏

0<τk<T

Bn
k



 exp

(∫ T

0
Qn(τ)dτ

)

+
∑

0<τk<T




∏

τk<τj<T

Bn
j exp

(∫ T

τk

Qn(τ)dτ

)

σk

+
∫ T

0

∏

s<τk<T

Bn
k exp

(∫ T

s
Qn(τ)dτ

)

ρn(s)ds]

−
1

γ1
H ′′(c4)(

3

2
a2

n(
T

2
) +

1

2
b2n(

T

2
))

+
1

γ1

h′(βn(
T

2
))[an+1(0)




∏

0<τk< T
2

Bn
k



 exp

(∫ T
2

0
Qn(τ)dτ

)

+
∑

0<τk< T
2




∏

τk<τj< T
2

Bn
j exp

(∫ T
2

τk

Qn(τ)dτ

)

σk
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+
∫ T

2

0

∏

s<τk< T
2

Bn
k exp

(∫ T
2

s
Qn(τ)dτ

)

ρn(s)ds].

Solving for an+1(0), we get

an+1(0) ≤ [1 −
γ2

γ1




∏

0<τk<T

Bn
k



 exp

(∫ T

0
Qn(τ)dτ

)

−
1

γ1

h′(βn(
T

2
))




∏

0<τk< T
2

Bn
k



 exp

(∫ T
2

0
Qn(τ)dτ

)

]−1

× {
γ2

γ1
[
∑

0<τk<T




∏

τk<τj<T

Bn
j exp

(∫ T

τk

Qn(τ)dτ

)

σk

+
∫ T

0

∏

s<τk<T

Bn
k exp

(∫ T

s
Qn(τ)dτ

)

ρn(s)ds]

+
1

γ1

h′(βn(
T

2
))[

∑

0<τk< T
2




∏

τk<τj< T
2

Bn
j exp

(∫ T
2

τk

Qn(τ)dτ

)

σk

+
∫ T

2

0

∏

s<τk< T
2

Bn
k exp

(∫ T
2

s
Qn(τ)dτ

)

ρn(s)ds]

−
1

γ1
H ′′(c4)(

3

2
a2

n(
T

2
) +

1

2
b2n(

T

2
))}. (38)

Substituting (38) into (36) yields

an+1(t) ≤




∏

0<τk<t

Bn
k



 exp
(∫ t

0
Qn(τ)dτ

)
Φ−1

× {
γ2

γ1

[
∑

0<τk<T




∏

τk<τj<T

Bn
j exp

(∫ T

τk

Qn(τ)dτ

)

 (λa2
n(τk) +

1

2
δ2b

2
n(τk))

+
∫ T

0

∏

s<τk<T

Bn
k exp

(∫ T

s
Qn(τ)dτ

)

[(δ3 + δ4)a
2
n(s)]ds

+
1

γ1
δ5(

T

2
))[

∑

0<τk< T
2




∏

τk<τj< T
2

Bn
j exp

(∫ T
2

τk

Qn(τ)dτ

)

 (λa2
n(τk) +

1

2
δ2b

2
n(τk))

+
∫ T

2

0

∏

s<τk< T
2

Bn
k exp

(∫ T
2

s
Qn(τ)dτ

)

[(δ3 + δ4)a
2
n(s)]ds

+
1

γ1
δ6(

3

2
a2

n(
T

2
) +

1

2
b2n(

T

2
))}

+
∑

0<τk<t




∏

τk<τj<t

Bn
j exp

(∫ t

τk

Qn(τ)dτ
)

 (λa2
n(τk) +

1

2
δ2b

2
n(τk))
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+
∫ t

0

∏

s<τk<t

Bn
k exp

(∫ t

s
Qn(τ)dτ

)
[(δ3 + δ4)a

2
n(s)]ds

where |G′′
k| ≤ δ1, |J ′′

k | ≤ δ2, |fxx| ≤ δ3, |L1 + (1 + ε)M2ω(c1, αn) + 2M1| ≤ δ4,
|h′| ≤ δ5, |H

′′| ≤ δ6, λ = δ1 + 3
2
δ2 and

Φ = 1−
γ2

γ1

∏

0<τk<T

Bn
k exp

(∫ T

0
Qn(τ)dτ

)

−
1

γ1
h′(βn(

T

2
))

∏

0<τk< T
2

Bn
k exp

(∫ T
2

0
Qn(τ)dτ

)

.

Taking the maximum on [0, T ], it follows that there exist positive constants η1 and
η2 such that

‖an+1(t)‖ ≤ η1‖an‖
2 + η2‖bn‖

2.

On the same pattern, it can be proved that

‖bn+1(t)‖ ≤ ζ1‖bn‖
2 + ζ2‖an‖

2,

where ζ1 and ζ2 are positive constants. This establishes the quadratic convergence
of the sequences.

Example. The impulsive BVP

x′(t) =
1

15
ln((x(t))3 + 1) +

1

300
((x(t)) + t)5 for t ∈ [0, 1], t 6=

1

3
,

x(
1

3
+ 0) = x(

1

3
),

γ1x(0) − γ2x(1) = x(
1

2
), γ2 ≤

1

6
γ1 −

3

4
,

admits the minimal solution α0(t) = 0, t ∈ [0, 1] and the maximal solution β0(t)
given by

β0(t) =

{
t+ 1

3
, if t ∈ [0, 1

3
],

t+ 1, if t ∈ (1
3
, 1].

Clearly α0(t) and β0(t) are not the solutions of the BVP and α0(t) ≤ β0(t), t ∈ [0, 1].

4 Concluding Remarks

This paper addresses a quasilinearization method for a nonlinear impulsive first order
ordinary differential equation dealing with a nonlinear function F (t, x(t)) which is
a sum of two functions of different nature together with a nonlinear three-point
boundary condition in contrast to a problem containing a single function and a linear
boundary condition considered in [23]. The condition on g(t, x(t)) in assumption
(A3) of Theorem 3 is motivated by the well known fact that χ(t) = tp is convex for
p > 1. The following results can be recorded as a special case of this problem:
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(i) If we take g(t, x(t)) = 0, h(x(T
2
)) = c (constant), we obtain the generalized

quasilinearization for first order impulsive differential equations with linear
boundary conditions [23].

(ii) By taking h(x(T
2
)) = u0, γ1 = 1, γ2 = 0, we can record the results of usual

initial value problems with impulse. In reference [28], the authors have devel-
oped an extension of generalized quasilinearization for initial value problems
without impulse. Thus our problem generalizes the results of [28] in the sense
that impulsive effects have been taken into account along with a three-point
nonlinear boundary condition.

(iii) The extension of generalized quasilinearization technique for periodic bound-
ary value problems involving impulsive differential equations follows if we take
γ1 = 1, γ2 = 1 and h(x(T

2
)) = 0.
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