7,462 research outputs found

    Intersecting families of discrete structures are typically trivial

    Full text link
    The study of intersecting structures is central to extremal combinatorics. A family of permutations FSn\mathcal{F} \subset S_n is \emph{tt-intersecting} if any two permutations in F\mathcal{F} agree on some tt indices, and is \emph{trivial} if all permutations in F\mathcal{F} agree on the same tt indices. A kk-uniform hypergraph is \emph{tt-intersecting} if any two of its edges have tt vertices in common, and \emph{trivial} if all its edges share the same tt vertices. The fundamental problem is to determine how large an intersecting family can be. Ellis, Friedgut and Pilpel proved that for nn sufficiently large with respect to tt, the largest tt-intersecting families in SnS_n are the trivial ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest tt-intersecting kk-uniform hypergraphs are also trivial when nn is large. We determine the \emph{typical} structure of tt-intersecting families, extending these results to show that almost all intersecting families are trivial. We also obtain sparse analogues of these extremal results, showing that they hold in random settings. Our proofs use the Bollob\'as set-pairs inequality to bound the number of maximal intersecting families, which can then be combined with known stability theorems. We also obtain similar results for vector spaces.Comment: 19 pages. Update 1: better citation of the Gauy--H\`an--Oliveira result. Update 2: corrected statement of the unpublished Hamm--Kahn result, and slightly modified notation in Theorem 1.6 Update 3: new title, updated citations, and some minor correction

    Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability

    Get PDF
    We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for the random kk-uniform hypergraph Hk(n,p)\mathcal{H}^k(n,p). For 2k(n)n/22 \leq k(n) \leq n/2, let N=(nk)N=\binom{n}k and D=(nkk)D=\binom{n-k}k. We show that with probability tending to 1 as nn\to\infty, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size (1+o(1))pknN(1+o(1))p\frac kn N, for any pnkln2 ⁣(nk)D1p\gg \frac nk\ln^2\!\left(\frac nk\right)D^{-1}. This lower bound on pp is asymptotically best possible for k=Θ(n)k=\Theta(n). For this range of kk and pp, we are able to show stability as well. A different behavior occurs when k=o(n)k = o(n). In this case, the lower bound on pp is almost optimal. Further, for the small interval D1p(n/k)1εD1D^{-1}\ll p \leq (n/k)^{1-\varepsilon}D^{-1}, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size Θ(ln(pD)ND1)\Theta(\ln (pD)N D^{-1}), provided that knlnnk \gg \sqrt{n \ln n}. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in Hk(n,p)\mathcal{H}^k(n,p), for essentially all values of pp and kk

    Toward Realistic Intersecting D-Brane Models

    Full text link
    We provide a pedagogical introduction to a recently studied class of phenomenologically interesting string models, known as Intersecting D-Brane Models. The gauge fields of the Standard-Model are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersections can give rise to chiral fermions. We address the basic issues and also provide an overview of the recent activity in this field. This article is intended to serve non-experts with explanations of the fundamental aspects, and also to provide some orientation for both experts and non-experts in this active field of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte

    New supersymmetric vacua on solvmanifolds

    Get PDF
    We obtain new supersymmetric flux vacua of type II supergravities on four-dimensional Minkowski times six-dimensional solvmanifolds. The orientifold O4, O5, O6, O7, or O8-planes and D-branes are localized. All vacua are in addition not T-dual to a vacuum on the torus. The corresponding solvmanifolds are proven to be Calabi-Yau, with explicit metrics. Other Ricci flat solvmanifolds are shown to be only K\"ahler.Comment: v2: few additions and minor modifications, published versio

    D6-brane Splitting on Type IIA Orientifolds

    Full text link
    We study the open-string moduli of supersymmetric D6-branes, addressing both the string and field theory aspects of D6-brane splitting on Type IIA orientifolds induced by open-string moduli Higgsing (i.e., their obtaining VEVs). Specifically, we focus on the Z_2 x Z_2 orientifolds and address the symmetry breaking pattern for D6-branes parallel with the orientifold 6-planes as well as those positioned at angles. We demonstrate that the string theory results, i.e., D6-brane splitting and relocating in internal space, are in one to one correspondence with the field theory results associated with the Higgsing of moduli in the antisymmetric representation of Sp(2N) gauge symmetry (for branes parallel with orientifold planes) or adjoint representation of U(N) (for branes at general angles). In particular, the moduli Higgsing in the open-string sector results in the change of the gauge structure of D6-branes and thus changes the chiral spectrum and family number as well. As a by-product, we provide the new examples of the supersymmetric Standard-like models with the electroweak sector arising from Sp(2N)_L x Sp(2N)_R gauge symmetry; and one four-family example is free of chiral Standard Model exotics.Comment: 44 pages, 7 figures; The anomaly-free models in Subsections 4.2 and 4.3 presented, references added, typos fixe

    Models of Particle Physics from Type IIB String Theory and F-theory: A Review

    Full text link
    We review particle physics model building in type IIB string theory and F-theory. This is a region in the landscape where in principle many of the key ingredients required for a realistic model of particle physics can be combined successfully. We begin by reviewing moduli stabilisation within this framework and its implications for supersymmetry breaking. We then review model building tools and developments in the weakly coupled type IIB limit, for both local D3-branes at singularities and global models of intersecting D7-branes. Much of recent model building work has been in the strongly coupled regime of F-theory due to the presence of exceptional symmetries which allow for the construction of phenomenologically appealing Grand Unified Theories. We review both local and global F-theory model building starting from the fundamental concepts and tools regarding how the gauge group, matter sector and operators arise, and ranging to detailed phenomenological properties explored in the literature.Comment: 79 pages, Invited review article for the International Journal of Modern Physics

    Chiral D-brane Models with Frozen Open String Moduli

    Full text link
    Most intersecting D-brane vacua in the literature contain additional massless adjoint fields in their low energy spectrum. The existence of these additional fields make it difficult to obtain negative beta functions and, eventually, asymptotic freedom. We address this important issue for N=1 intersecting D-brane models, rephrasing the problems in terms of (open string) moduli stabilization. In particular, we consider a Z2 x Z2 orientifold construction where D6-branes wrap rigid 3-cycles and such extra adjoint fields do not arise. We derive the model building rules and consistency conditions for intersecting branes in this background, and provide N=1 chiral vacua free of adjoint fields. More precisely, we construct a Pati-Salam-like model whose SU(4) gauge group is asymptotically free. We also comment on the application of these results for obtaining gaugino condensation in chiral D-brane models. Finally, we embed our constructions in the framework of flux compactification, and construct new classes of N=1 and N=0 chiral flux vacua.Comment: 55 pages, 4 figures. Bibtex forma
    corecore