12 research outputs found

    Genetic Background of Patients from a University Medical Center in Manhattan: Implications for Personalized Medicine

    Get PDF
    Background: The rapid progress currently being made in genomic science has created interest in potential clinical applications; however, formal translational research has been limited thus far. Studies of population genetics have demonstrated substantial variation in allele frequencies and haplotype structure at loci of medical relevance and the genetic background of patient cohorts may often be complex. Methods and Findings: To describe the heterogeneity in an unselected clinical sample we used the Affymetrix 6.0 gene array chip to genotype self-identified European Americans (N = 326), African Americans (N = 324) and Hispanics (N = 327) from the medical practice of Mount Sinai Medical Center in Manhattan, NY. Additional data from US minority groups and Brazil were used for external comparison. Substantial variation in ancestral origin was observed for both African Americans and Hispanics; data from the latter group overlapped with both Mexican Americans and Brazilians in the external data sets. A pooled analysis of the African Americans and Hispanics from NY demonstrated a broad continuum of ancestral origin making classification by race/ethnicity uninformative. Selected loci harboring variants associated with medical traits and drug response confirmed substantial within-and between-group heterogeneity. Conclusion: As a consequence of these complementary levels of heterogeneity group labels offered no guidance at the individual level. These findings demonstrate the complexity involved in clinical translation of the results from genome-wide association studies and suggest that in the genomic era conventional racial/ethnic labels are of little value.National Heart Lung and Blood Institute (NHLBI/NIH)[RO1 HL53353]Andrea and Charles Bronfman Philantropie

    Evaluating aggregate effects of rare and common variants in the 1000 Genomes Project exon sequencing data using latent variable structural equation modeling

    Get PDF
    Methods that can evaluate aggregate effects of rare and common variants are limited. Therefore, we applied a two-stage approach to evaluate aggregate gene effects in the 1000 Genomes Project data, which contain 24,487 single-nucleotide polymorphisms (SNPs) in 697 unrelated individuals from 7 populations. In stage 1, we identified potentially interesting genes (PIGs) as those having at least one SNP meeting Bonferroni correction using univariate, multiple regression models. In stage 2, we evaluate aggregate PIG effects on trait, Q1, by modeling each gene as a latent construct, which is defined by multiple common and rare variants, using the multivariate statistical framework of structural equation modeling (SEM). In stage 1, we found that PIGs varied markedly between a randomly selected replicate (replicate 137) and 100 other replicates, with the exception of FLT1. In stage 1, collapsing rare variants decreased false positives but increased false negatives. In stage 2, we developed a good-fitting SEM model that included all nine genes simulated to affect Q1 (FLT1, KDR, ARNT, ELAV4, FLT4, HIF1A, HIF3A, VEGFA, VEGFC) and found that FLT1 had the largest effect on Q1 (βstd = 0.33 ± 0.05). Using replicate 137 estimates as population values, we found that the mean relative bias in the parameters (loadings, paths, residuals) and their standard errors across 100 replicates was on average, less than 5%. Our latent variable SEM approach provides a viable framework for modeling aggregate effects of rare and common variants in multiple genes, but more elegant methods are needed in stage 1 to minimize type I and type II error

    Enhanced methods for local ancestry assignment in sequenced admixed individuals.

    Get PDF
    Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed, most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs

    Mapping of disease-associated variants in admixed populations

    Get PDF
    Recent developments in high-throughput genotyping and whole-genome sequencing will enhance the identification of disease loci in admixed populations. We discuss how a more refined estimation of ancestry benefits both admixture mapping and association mapping, making disease loci identification in admixed populations more powerful

    Ancestral Components of Admixed Genomes in a Mexican Cohort

    Get PDF
    For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise region, but current approaches for studying admixed individuals generally yield coarse information in which genome ancestry proportions are identified according to continent of origin. Here we introduce a new analytic strategy for this problem that allows fine-grained characterization of admixed individuals with respect to both geographic and genomic coordinates. Ancestry segments from different continents, identified with a probabilistic model, are used to construct and study “virtual genomes” of admixed individuals. We apply this approach to a cohort of 492 parent–offspring trios from Mexico City. The relative contributions from the three continental-level ancestral populations—Africa, Europe, and America—vary substantially between individuals, and the distribution of haplotype block length suggests an admixing time of 10–15 generations. The European and Indigenous American virtual genomes of each Mexican individual can be traced to precise regions within each continent, and they reveal a gradient of Amerindian ancestry between indigenous people of southwestern Mexico and Mayans of the Yucatan Peninsula. This contrasts sharply with the African roots of African Americans, which have been characterized by a uniform mixing of multiple West African populations. We also use the virtual European and Indigenous American genomes to search for the signatures of selection in the ancestral populations, and we identify previously known targets of selection in other populations, as well as new candidate loci. The ability to infer precise ancestral components of admixed genomes will facilitate studies of disease-related phenotypes and will allow new insight into the adaptive and demographic history of indigenous people

    Genome‐wide survey in African Americans demonstrates potential epistasis of fitness in the human genome

    Full text link
    The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two‐locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P‐value = 4.01 × 10−8) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135958/1/gepi22026.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135958/2/gepi22026_am.pd

    Comparison of measures of marker informativeness for ancestry and admixture mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Admixture mapping is a powerful gene mapping approach for an admixed population formed from ancestral populations with different allele frequencies. The power of this method relies on the ability of ancestry informative markers (AIMs) to infer ancestry along the chromosomes of admixed individuals. In this study, more than one million SNPs from HapMap databases and simulated data have been interrogated in admixed populations using various measures of ancestry informativeness: Fisher Information Content (FIC), Shannon Information Content (SIC), F statistics (F<sub>ST</sub>), Informativeness for Assignment Measure (I<sub>n</sub>), and the Absolute Allele Frequency Differences (delta, δ). The objectives are to compare these measures of informativeness to select SNP markers for ancestry inference, and to determine the accuracy of AIM panels selected by each measure in estimating the contributions of the ancestors to the admixed population.</p> <p>Results</p> <p>F<sub>ST </sub>and I<sub>n </sub>had the highest Spearman correlation and the best agreement as measured by Kappa statistics based on deciles. Although the different measures of marker informativeness performed comparably well, analyses based on the top 1 to 10% ranked informative markers of simulated data showed that I<sub>n </sub>was better in estimating ancestry for an admixed population.</p> <p>Conclusions</p> <p>Although millions of SNPs have been identified, only a small subset needs to be genotyped in order to accurately predict ancestry with a minimal error rate in a cost-effective manner. In this article, we compared various methods for selecting ancestry informative SNPs using simulations as well as SNP genotype data from samples of admixed populations and showed that the I<sub>n </sub>measure estimates ancestry proportion (in an admixed population) with lower bias and mean square error.</p

    Interrogating local population structure for fine mapping in genome-wide association studies

    No full text
    Motivation: Adjustment for population structure is necessary to avoid bias in genetic association studies of susceptibility variants for complex diseases. Population structure may differ from one genomic region to another due to the variability of individual ancestry associated with migration, random genetic drift or natural selection. Current association methods for correcting population stratification usually involve adjustment of global ancestry between study subjects

    The Ethical Implications of Emerging Genetic Predictors of Poor Organ Transplant Outcomes

    Get PDF
    Emerging research is beginning to identify genetic risk factors which may predict an increased likelihood of rejection following transplantation. The identification of these predictors prompt us to consider how we should incorporate this information into the process of transplant candidate evaluation and organ allocation, as well as the ethical implications of such incorporation. In order to ground this analysis, this thesis begins with an examination of how we consider other predictors of poor transplant outcomes currently, as interpreted in concordance with the US transplant system’s dual goals of efficacious and just organ allocation. It then proceeds with a brief summary of the current research on genetic predictors of poor transplant outcome, followed by a specific examination of the mechanisms by which these genes are investigated. This allows an examination of the challenges of appropriately applying the data gained through common methods of genetic research. Next, it examines the complex ethical and social conflicts which may arise from a decision to incorporate genetic predictors within the current US transplantation system. It then concludes with a proposal for a mechanism for including genetic risk profiles into the transplant evaluation process on a national level that will seek to mitigate these conflicts and support both a just allocation system and ongoing research into this area of medicine

    Imputation-based Genetic Association Analysis of Complex Traits in Admixed Populations

    Get PDF
    Genetic association studies in admixed populations have drawn increasing attention from the genetic community, as performing association analysis in diverse populations allows us to gain deeper understanding of the genetic architecture of human diseases and traits. However, population stratification due to admixture poses special challenges. To address the challenges, I conducted the following studies from the perspectives of enhancing genotype imputation quality and providing proper treatment of local ancestry in the association analysis. First, I provided a new resource of marker imputability information with commonly used reference panels to guide the choice of reference and genotyping platforms. To be specific, I systematically evaluated marker imputation quality using sequencing-based reference panels from the 1000 Genomes Project and released the information through a user-friendly and publicly available data portal. This is the first resource providing variant imputability information specific to each continental group and to each genotyping platform. Second, I established a paradigm for better imputation in African Americans using study-specific sequencing based reference panels. I built an internal reference panel consisting of variants derived from the NHLBI Exome Sequencing Project for African American subjects, which significantly increased effective sample size comparing with that from the 1000 Genomes Project. No loss of imputation quality was observed using a panel built from phenotypic extremes. In addition, I recommended using haplotypes from Exome Sequencing Project alone or concatenation of the two panels over quality score-based post-imputation selection or IMPUTE2’s two-panel combination. Finally, I proposed a robust and powerful two-step testing procedure for association analysis in admixed populations. Through extensive numeric simulations, I demonstrated that our testing procedure robustly captures and pinpoints associations due to allele effect, ancestry effect or the existence of effect heterogeneity between the two ancestral populations. In particular, our testing procedure is more powerful in identifying the presence of effect heterogeneity than traditional cross-product interaction model. I further illustrated its usefulness by applying the two-step testing procedure to test for the association between genetic variants and hemoglobin trait in African American participates from CARe. Taken together, the above studies guide genotype imputation practice and substantially improve the power of imputation-based genetic association studies in admixed populations, leading to more accurate discovery of disease-associated variants and ultimately better therapeutic strategies in admixed populations.Doctor of Philosoph
    corecore