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ABSTRACT 

Qing Duan: Imputation-Based Genetic Association Analysis of Complex Traits in Admixed 
Populations 

(Under the direction of Yun Li) 
 

Genetic association studies in admixed populations have drawn increasing attention from 

the genetic community, as performing association analysis in diverse populations allows us to 

gain deeper understanding of the genetic architecture of human diseases and traits. However, 

population stratification due to admixture poses special challenges. To address the challenges, I 

conducted the following studies from the perspectives of enhancing genotype imputation quality 

and providing proper treatment of local ancestry in the association analysis. 

First, I provided a new resource of marker imputability information with commonly used 

reference panels to guide the choice of reference and genotyping platforms. To be specific, I 

systematically evaluated marker imputation quality using sequencing-based reference panels 

from the 1000 Genomes Project and released the information through a user-friendly and 

publicly available data portal. This is the first resource providing variant imputability 

information specific to each continental group and to each genotyping platform. 

Second, I established a paradigm for better imputation in African Americans using study-

specific sequencing based reference panels. I built an internal reference panel consisting of 

variants derived from the NHLBI Exome Sequencing Project for African American subjects, 

which significantly increased effective sample size comparing with that from the 1000 Genomes 

Project. No loss of imputation quality was observed using a panel built from phenotypic 
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extremes. In addition, I recommended using haplotypes from Exome Sequencing Project alone or 

concatenation of the two panels over quality score-based post-imputation selection or 

IMPUTE2’s two-panel combination. 

Finally, I proposed a robust and powerful two-step testing procedure for association 

analysis in admixed populations. Through extensive numeric simulations, I demonstrated that 

our testing procedure robustly captures and pinpoints associations due to allele effect, ancestry 

effect or the existence of effect heterogeneity between the two ancestral populations. In 

particular, our testing procedure is more powerful in identifying the presence of effect 

heterogeneity than traditional cross-product interaction model. I further illustrated its usefulness 

by applying the two-step testing procedure to test for the association between genetic variants 

and hemoglobin trait in African American participates from CARe. 

Taken together, the above studies guide genotype imputation practice and substantially 

improve the power of imputation-based genetic association studies in admixed populations, 

leading to more accurate discovery of disease-associated variants and ultimately better 

therapeutic strategies in admixed populations.
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CHAPTER 1: MOTIVATION AND SIGNIFICANCE 

In this document, I will discuss computational resources and statistical approaches for 

facilitating genetic association studies with complex human traits in admixed populations. This 

section provides an overview of the motivation and significance of this study. 

Genome-wide association studies (GWAS) have been successful in improving our 

understanding of the genetic basis of numerous heritable diseases and quantitative traits 

(Visscher et al., 2012). They have been useful in identifying genes associated with complex traits 

in various relevant biological pathways (Visscher et al., 2012). Although GWAS have initially 

been performed with individuals of European ancestry, the field has expanded to non-European 

populations (Rosenberg et al., 2010). Performing genetic association analysis in diverse 

populations allows us to gain deeper understanding of the genetic architecture of human diseases 

and traits, through assessing the generalizability of risk variants (G. K. Chen et al., 2010; 

Ioannidis et al., 2004), narrowing down the location of the functional variants over the risk 

region (International HapMap, 2005) or identifying novel disease loci which are absent or in low 

frequency in European population (Rosenberg et al., 2010).  

In the US, genetic association studies in admixed populations have been receiving 

increasing attention, whereas it is challenged by the complex local ancestry structure resulted 

from admixture process, where gene flow occurs between two or more distinct populations 

(ancestral populations). Consequently, admixed chromosomes can be viewed as mosaic segments 

(local ancestry) originating from each of the ancestral populations (Shriner, 2013). Due to the
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presence of local ancestry, many methods developed in homogeneous populations needs to be 

modified before they could be applied to admixed populations. To address the challenges, I 

perform three studies from the aspects of enhancing genotype imputation quality with a focus on 

rare variants and applying proper treatment of local ancestry information in association analysis. 

Chapter 2 provides a literature review of genotype imputation and association analysis in 

admixed populations. To be specific, for genotype imputation, I will review several commonly 

used genotype imputation methods, how the methods are tuned to accommodate the unique LD 

structure in admixed populations and the practical guidelines for performing genotype 

imputation in genetic association studies with a focus on improving rare variants imputation 

quality; for association analysis in admixed populations, I will review methods used for local 

ancestry inference and statistical methods that are adopted in performing association studies in 

admixed populations. 

Chapter 3 discusses a new resource of marker imputability information based on the 

commonly used reference panels from the 1000 Genomes Project. Marker imputability 

information is highly desirable to guide study design, to prioritize imputable markers and to 

serve as a post-imputation quality control. However, there is no direct access to this information 

without performing genotype imputation. I fill in this gap by providing marker imputation 

accuracy information of four major continental groups through a user-friendly publicly available 

data portal. This is the first study to provide genome-wide high resolution profiling of variants 

imputability. This imputability information will be very useful to association studies in diverse 

populations including admixed populations. 

Chapter 4 shows as a proof-of-principle that imputation quality in low frequency variants 

of African American samples can be substantially enhanced by using sequencing-based study-
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specific reference panels. Also I provide guidelines regarding the optimal manner to maximize 

information from internal and external reference. Increasing number of medical studies includes 

deep sequencing of a fraction of the participants as part of the study design. Imputation using 

these internally built reference panel can potentially achieve better performance, particularly at 

low frequency variants, than using a publicly available panel, e.g., from 1000G, due to better 

match of ancestry, larger effective sample size and disease status (Fridley et al., 2010). However, 

limited studies have been performed to investigate the usefulness of study-specific reference 

panels in imputation, as compared with that from the public domain and none has been 

performed in African American sample. The study in Chapter 4 serves as a proof-of-principle to 

show the feasibility and gain of using the internal reference. Additionally, this is the first study 

that addresses the potential influence on imputation performance by using a reference panel with 

sample ascertainment bias, which is common in re-sequencing-based studies. Moreover, this is 

the first study that explores the optimal usage of the combined information from internal and 

external reference. 

Chapter 5 proposes a testing procedure to model and test allele and ancestry effect jointly 

taking into account of effect heterogeneity in association analysis with African American 

sample. Historically, genetic linkage studies and admixture mapping have been treated as distinct 

methods and are performed separately in samples from admixed populations. It has been shown 

that the two methods contain independent information (Seldin et al., 2011). Thus, jointly 

modeling allele and local ancestry effect would potentially increase statistical power (Pasaniuc et 

al., 2011). In Chapter 5, I propose a robust and powerful two-step testing procedure for 

association analysis in admixed populations to robustly capture and to identify associations due 

to allele effect, ancestry effect and, particularly, the existence of effect heterogeneity between the 



 

 4 

two ancestral populations. It is noteworthy that, by taking advantage of the inferred joint 

distribution of allele and ancestry, this method is more powerful than the traditional interaction 

model when effect heterogeneity presents.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Genome-wide association studies in non-European populations 

Many genetic variants associated with human diseases and traits have been successfully 

identified and replicated in Europeans (Locke et al., 2015; Loth et al., 2014). Nonetheless, 

European population only consists of a proportion of human genetic variation, which may have 

different properties, such as allele frequencies, from those in other populations (Coram et al., 

2013; Dhandapany et al., 2009; Myles et al., 2008). It is insufficient to study a single population 

to achieve the goal of fully uncovering the genetic architecture of complex human diseases and 

traits. Consequently, genome-wide association studies have been expanding into diverse 

populations such as Asian, African American and Hispanic populations (Franceschini et al., 

2013; Kooner et al., 2011; Norris et al., 2009). 

In non-European populations, the characteristics of genetic variation, maybe different 

from that in Europeans, provide a unique opportunity for gene mapping and refining our 

understanding of genetic variations. First, a genetic variant may be fixed for different alleles 

among diverse populations. For example, DARC null allele for white blood cells is close to 

fixation in sub-Saharan Africa, whereas the other wild-type allele is fixed in non-African 

populations (Lautenberger et al., 2000; Tournamille et al., 1995). Similar examples include 

SLC24A5 for skin pigmentation (Lamason et al., 2005) and APOL1 for kidney disease 

(Genovese et al., 2010). The identification of such genetic variants would have been difficult if 

not impossible without association studies in African American populations. Second, even when
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the same risk allele presents across populations, the risk allele frequency may vary. Risk alleles 

in certain populations with higher allele frequency may be easier to be identified in association 

analysis (McCarthy & Hirschhorn, 2008; Teo et al., 2009). Third, the strength of linkage 

disequilibrium (LD) and the distance over which it extends may differ in different populations. It 

is observed that the extent of LD in a Nigerian population is markedly far less compared with 

that in a north-European population (D. E. Reich et al., 2001). The short-range LD in some 

populations may offer opportunity for fine mapping (Gabriel et al., 2002). Fourth, heterogeneity 

in allelic effects may present in distantly related populations. Causal variants may differ in the 

marginal allelic effect across populations as a result of differential environmental exposure 

(Morris, 2011). Thus some risk variants are more easily detected by using samples from certain 

relevant populations (Rosenberg et al., 2010). Finally, diverse populations facilitate the study of 

rare variant associations. Because of the substantially unexplained proportion of heritability as 

well as the drop in the whole-genome sequencing cost, many association studies have been 

focusing on rare variants. As the results of recent mutational events, rare variants are more likely 

to be geographically restricted (The 1000 Genomes Project et al., 2012). Therefore, different 

populations may have distinct pool of rare variants, which emphasizes the necessity of studying 

rare variant associations in diverse populations. 

Despite of the advantage of genetic analysis in non-European populations, challenges 

have been the lack of well-designed genotyping platforms and the availability of appropriate 

reference panels for genotype imputation (Jallow et al., 2009). Initial tagSNP selection and 

genotyping chip design are based on HapMap CEU panel from the International HapMap Project 

focusing on European populations (International HapMap et al., 2007; Sudmant et al., 2015), 

which may result in ascertainment bias. In addition, the tagSNPs used to be selected based on LD 
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in CEU to maximize the number of markers “covered” by a tagSNP (in adequate LD with the 

tagSNP measured by r2) (Carlson et al., 2004). The coverage of genomic region can be reduced 

when the same tagSNP is applied in non-European populations due to the LD structure 

differences. Nevertheless, more recent high-throughput genotyping chips are denser and less 

biased towards European ancestral populations. Additionally, recent chips have been designed 

with worldwide populations in mind. For example, Affymetrix Axiom Genome-Wide 

Population-Optimized Human Array is customized for Caucasian, Asian and West African 

populations. Recently, Illumina collaborating with PAGE, CAAPA, and T2D-Genes Consortia 

has developed a multi-ethnic genotyping array, which adopts a novel tagSNP selection algorithm 

to optimize imputation accuracy across diverse populations (Gignoux, 2015). Moreover, the 

1000 Genomes Project, a large-scale international collaboration, has substantially accelerated 

sequencing-based genetic association studies. The 1000 Genome Project aims to produce an 

extensive public catalog of human genetic variation by conducting whole genome sequencing of 

over 2500 individuals from 26 continental groups (The 1000 Genomes Project et al., 2010; The 

1000 Genomes Project et al., 2012; The 1000 Genomes Project et al., 2015). Sequencing 

uncovers genetic variants in diverse populations with little ascertainment bias issue. The 

comprehensive reference panels provided by the 1000 Genome Project increase the chance of 

matched LD patterns between the study sample and reference haplotypes, thereby, permitting 

better imputation in diverse populations from Africa, Asia, America and Europe.  

In the United States, marked difference in disease prevalence has been reported between 

European Americans and admixed populations such as African Americans, including CRP (D. 

Reich et al., 2007), prostate cancer (Freedman et al., 2006), hypertension (Zhu et al., 2005), type 

II diabetes (Elbein et al., 2009) and obesity (Cheng et al., 2009). As genetic factors may in part 
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account for the differences, these observations motivate the search for genetic loci, which 

contribute to the disease disparity in admixed populations. 

Different from ancestrally homogeneous populations, such as Europeans, Africans or 

Asians, admixed populations have ancestry from more than one populations due to admixture 

process (Shriner, 2013). The chromosomes of admixed populations can be viewed as mosaic 

segments with different parental origins, leading to variable “global ancestry”, the individual 

ancestry proportion, as well as different “local ancestry”, the ancestral origin at a particular locus, 

across the genome (Bryc et al., 2010; Silva-Zolezzi et al., 2009; S. Wang et al., 2008). 

Therefore, the LD patterns in admixed populations are complicated with a fine scale of 

ancestral LD and a coarse scale of admixture LD. It imposes challenges for genotype imputation, 

as there are no large and closely matched reference panels from the 1000 Genomes Projects (The 

1000 Genomes Project et al., 2015). To meet the challenges, imputation methods have been 

modified to accommodate admixed populations and practical guidelines have been proposed, 

which will be reviewed in section 2.2. 

Due to the genetic composition of multiple ancestries, population stratification is an 

intrinsic issue in admixed populations. The underlying population structure may give rise to 

spurious associations or false negative signals (Rosenberg & Nordborg, 2006). Consequently, 

computational tools and statistical methods have been developed aiming to resolve this issue in 

admixed populations, which will be reviewed in section 2.3. 

2.2 Genotype imputation in admixed populations 

Genotype imputation is an approach to predict genotypes for markers that are not 

experimentally genotyped in a study sample. With genotype imputation, one would obtain the 

genotype of a dense set of markers cost-effectively by imputing reference haplotypes into a study 
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sample that is moderately genotyped at a subset of the reference markers (Y. Li et al., 2010; 

Marchini & Howie, 2010). Genotype imputation has become a standard practice in GWAS, 

which markedly enhances statistical power (Spencer et al., 2009), facilitates fine mapping (Scott 

et al., 2007) and enables meta-analysis (de Bakker et al., 2008). Genotype imputation assumes 

that  “unrelated” individuals could share identical by descent chromosome segment (IBD), i.e., 

identical short stretches of nucleotide sequences inherited from distant common ancestors. 

Conceptually, genotype imputation works by identifying the IBD segment for a study sample 

from the pool of reference haplotypes, based on the genotyped markers overlapping between 

reference and study sample. Then the genotype of the untyped markers in the study sample can 

be obtained by copying the corresponding marker genotype from the shared reference haplotype.  

Currently, in genetic community, MaCH-Admix (E. Y. Liu et al., 2013), MaCH/minimac 

(B. Howie et al., 2012; Y. Li et al., 2010) and IMPUTE2 (B. N. Howie et al., 2009) are the 

widely used imputation software. These methods are highly accurate with adequate 

computational efficiency and have facilitated genotype imputation in many large-scale genome-

wide genetic studies.  

MaCH (Y. Li et al., 2010) is based on Hidden Markov model (HMM), which has been 

developed as a sampling scheme for modeling LD and identifying recombination hotspot by 

treating a sampled haplotype as an “imperfect mosaic” of a set of reference haplotypes (Daly et 

al., 2001; N. Li & Stephens, 2003). Each mosaic segment can be viewed as a hidden state in 

HMM. The goal is to infer the posterior probability, 𝑃(𝑆|𝐺,𝐻), of the sequence of hidden states 

(𝑆) under each observed genotype conditioning on the target individual’s genotype vector (𝐺) 

and the pool of reference haplotypes (𝐻). The posterior probabilities can be calculated through 

multiple Markov iterations where 𝑃 𝑆 𝐺,𝐻 ∝ 𝑃(𝐺, 𝑆|𝐻). The model can be written as 
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𝑃 𝐺, 𝑆 𝐻 = 𝑃(𝑆!|𝐻) 𝑃(𝑆!|𝑆!!!,𝐻)
!

!!!

𝑃(𝐺!|𝑆! ,𝐻)
!

!!!

 

Where 𝑃(𝑆!|𝐻) is the prior probability of the initial mosaic state which is treated to be 

equal in all configurations. The term 𝑃(𝑆!|𝑆!!!,𝐻) is the transition probability which models 

how the mosaic state changes along the haplotype. The switching of state between marker j and 

j-1 depends on the historical recombination events which is modeled as a function of the 

crossover parameter 𝜃!: 

𝑃 𝑆! 𝑆!!!,𝐻 =
𝜃!!/𝐻!                                                                                                           𝑖𝑓  𝑥! ≠ 𝑥!!!  𝑎𝑛𝑑  𝑦! ≠ 𝑦!!!
1− 𝜃! 𝜃!/𝐻 + 𝜃!!/𝐻!                                                 𝑖𝑓  𝑥! ≠ 𝑥!!!  𝑜𝑟  𝑦! ≠ 𝑦!!!      
1− 𝜃 ! + 2 1− 𝜃! 𝜃!/𝐻 + 𝜃!!/𝐻! 𝑖𝑓  𝑥! = 𝑥!!!  𝑎𝑛𝑑  𝑦! = 𝑦!!!

 

The term 𝑃(𝐺!|𝑆! ,𝐻) is the emission probability which allows the observed genotype at 

marker j differs from the genotype of the underlying state which reflects the effect from mutation, 

gene conversion or genotyping error. It is modeled as a function of the error parameter 𝜖! (As 

shown below). Both 𝜃! and 𝜖! are inferred from data and updated in each iteration. 

𝑃(𝐺!|𝑆! ,𝐻) 
G 

0 1 2 

S 

0 1 − 𝜖!
!
 2𝜖!(1 − 𝜖!) 𝜖!! 

1 𝜖!(1 − 𝜖!) 1 − 𝜖!
! + 𝜖!! 𝜖!(1 − 𝜖!) 

2 𝜖!! 2𝜖!(1 − 𝜖!) 1 − 𝜖!
!
 

 

IMPUTE1 (Marchini et al., 2007) is another imputation method also based on HMM, 

which differs from MaCH in terms of its implementation. For example, the transition probability 

in IMPUTE1 is modeled as a function of 𝜌! = 4𝑁!𝑟! where 𝑟! is the recombination rate, pre-
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calculated from the HapMap or the 1000 Genome project reference panel and 𝑁! is the pre-set 

effective population size. In addition, the mutation rate used in calculating emission probability 

is assumed to be constant which is from population genetics theory. The pre-calibrated 

parameters can help reduce computation cost if using standard reference panels from the 

HapMap project and the 1000 Genome Project. However, with the increase of medical 

sequencing projects, more and more study-specific reference panels are available, where the 

model parameters may differ from the pre-calibrated ones. In these scenarios, MaCH, using the 

data-dependent parameters, may be advantageous. 

IMPUTE2 is an improved version of IMPUTE1. In IMPUTE2, imputation accuracy is 

improved through two separate phasing and imputation steps. Because computational burden 

increases quadratically with the increase of reference size, IMPUTE2, similar to MaCH’s 

implementation, selects a subset of haplotypes so that computation cost increase linearly with a 

fixed number of selected haplotypes. The subset of reference haplotypes is selected based on 

their “closeness” to the haplotype of the target individual according to their Hamming distance. 

This is implemented in both phasing (B. N. Howie et al., 2009) and imputation (B. Howie et al., 

2011) step. In addition, a data configuration was implemented to use multiple reference panels 

simultaneously. 

As an updated version of MaCH, MaCH-Admix (E. Y. Liu et al., 2013) has most of the 

advanced improvement made in IMPUTE2. Importantly, it is tailored towards imputation in 

admixed population. As mentioned earlier, admixture LD imposes challenges to genotype 

imputation. Thus it is critical to incorporate the underlying ancestry information for each marker 

to ensure good imputation quality. MaCH-Admix achieves this by selecting a set of effective 

reference panel corresponding to the local ancestry composition – the piecewise IBS-matching 
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strategy. Rather than identifying the effective reference haplotypes through calculating whole-

chromosome Hamming distance, the piecewise IBS-matching method divides the chromosome 

or target region into chunks and then the selection of effective reference haplotypes is conducted 

within each chunk for each individual, so that it allows the set of effective reference haplotypes 

differs across genomic regions and across individuals. It is shown that the piecewise IBS method 

is highly robust and stable and is particularly advantageous for uncommon variants imputation. 

With the implementation of piecewise IBS method in MaCH-Admix, one can impute study 

sample from admixed populations with high accuracy by using a cosmopolitan reference panel 

consisting of haplotypes from diverse continental groups. Another approach implemented in 

MaCH-Admix for handling admixed population imputation is ancestry-weighted approach. This 

method uses weighted combination panel, which is produced by duplicating reference haplotypes 

based on certain weights. Usually the weights are given according to the ancestry composition. 

For example, in African Americans, 2:8 CEU: YIR weighting scheme is preferred because on 

average the African American populations are composed of 20% European ancestry and 80% 

African ancestry. Besides taking the weights based on reported ancestry proportions, MaCH-

Admix can estimate the ancestry proportions for target individuals internally, allowing more 

precise and flexible weighting scheme that can be the same for all or subgroup of individuals or 

specific for each target individuals.  

Besides the computational approaches used in genotype imputation, many other factors 

can affect imputation accuracy. For example, minor allele frequency – rarer variants are harder to 

impute, which agrees with the previous observation that rare variants are more difficult to tag as 

compared with common variants; choice of genotyping chips – chips with denser set of markers, 

on average, have higher imputation accuracy, which is usually the highest when imputing into 
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Europeans, followed by Asians and Africans; choice of reference panel – reference panel that 

better represents the genetic diversity of the study sample results in better imputation quality; 

reference size – a larger pool of reference haplotypes increases the chance that a good match of 

haplotype between reference panel and target individual can be found. 

Improving genotype imputation accuracy is critical, as better imputation accuracy leads 

to enhanced statistical power in the downstream genetic association analysis. 

2.3 Association studies in admixed populations 

Admixed populations are a growing proportion of the US population and suffer from 

disproportionately higher rates of cardiovascular diseases (Mensah et al., 2005) and certain type 

of cancer, such as prostate cancer (Bunker et al., 2002). Extending genetic association studies 

into admixed populations will provide a more complete understanding of the genetic bases of 

complex traits in human by identifying the shared and distinct genetic components compared 

with other population groups, which will in turn reduce medical disparity and benefit all people 

from the development of precision medicine. 

2.3.1 Local ancestry inference 

Unlike populations with a single ancestry origin, individuals from admixed populations 

vary in their proportion of parental ancestry. For example, the average proportion of African 

ancestry is about 80% in African Americans (Stefflova et al., 2011). The exact percentage in 

individual African American may vary between 0 and 1. This variation is due to the difference in 

ancestry proportion at each specific locus, which is known as local ancestry. Both global and 

local ancestry are unobserved, and yet they may be inferred from genotype data. Once local 

ancestry estimates are obtained, global ancestry can be calculated.  

To address this issue, many local ancestry inference methods have been developed. One 
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of the earliest methods is STRUCTURE (Falush et al., 2003; Pritchard et al., 2000), which uses a 

Bayesian framework and applies Markov Chain Monte Carlo (MCMC) to sample from the 

posterior distribution. This early method has complex model and suffers from high 

computational cost, which is less practical for the analysis involving dense genome-wide 

genotyping data.  

Later methods divide into two main classes – HMM-based and window-based approaches. 

The HMM-based methods take advantage of dense genotyping data, leveraging information from 

neighboring markers and explicitly modeling background LD. In these methods, hidden state 

corresponds to ancestral haplotype segments and the transition between states corresponds to 

recombination that happened within and between ancestral populations. The earlier method in 

this class, SABER (Tang et al., 2006), uses an extension of HMM, Markov–hidden Markov 

model, to model background LD, whereas this LD model cannot fully capture the complex 

nature of the LD pattern in the genome thus can lead to biased estimates (Price et al., 2009). 

More accurate LD models were developed and implemented in HAPMIX (Price et al., 2009) and 

HAPAA (Sundquist et al., 2008), where reference haplotypes are used to account for background 

LD. The choice of reference haplotypes is critical for inference accuracy, which serves as the 

proxies for the true haplotypes of the ancestral populations. HapMap CEU and YRI panel have 

been shown to be good reference haplotypes for inferring local ancestry in African American 

populations (Price et al., 2009). HAPMIX can only handle ancestry inference in populations with 

two-way admixture. The limitation of HMM-based methods is its high computational cost due to 

the large number of parameters involves in modeling LD.  

The other class adopts window-based method, which divides the whole genome into 

overlapping or non-overlapping windows and performs inference within each window. These 



 

 15 

methods are shown to be highly accuracy and much faster than HMM-based methods, even 

though they do not explicitly model LD and uses only unlinked markers. These methods usually 

find their application in populations with multi-way admixture, typically three-way admixture. 

The major methods include LAMP (Sankararaman et al., 2008), its extension WINPOP 

(Pasaniuc et al., 2009) and recently LAMP-LD (Baran et al., 2012). LAMP (Sankararaman et al., 

2008) assumes no recombination within each window, and performs a clustering algorithm to 

estimate the local ancestry for each SNP. In the end, a most likely ancestry of the SNP is taken 

by a majority vote over all windows that cover the SNP. LAMP is highly accurate when applied 

to populations with distant ancestral populations, whereas performs poorly in admixed 

populations whose ancestral populations are closely related. As an extension of LAMP, 

WINPOP (Pasaniuc et al., 2009), enhances the inference accuracy in closely related ancestral 

populations by improving the modeling of recombination events by allowing less than one 

admixture event per window and allowing adaptive window size depending on the local ancestral 

structure. To leverage haplotype structure for local ancestry inference without sacrificing 

computation speed, LAMP-LD (Baran et al., 2012) uses combination of window-based method 

and HMM where HMM-based inference is applied within each window. It reduces the estimation 

bias in haplotype-based methods resulting limited reference size. Pasaniuc et al. (Pasaniuc et al., 

2013) performs the first empirical assessment of local ancestry inference accuracy in Latinos, by 

measuring the rate of local ancestry assignments that cause Mendelian inconsistencies in local 

ancestry (MILANC) in trios. They demonstrate the superior performance of WINPOP and 

LAMP-LD as compared with two other methods.  

Although methods within the two main classes are the commonly used ones in 

application requiring local ancestry information, many other methods have been developed to 
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handle local ancestry inference, such as PCAdmix (Brisbin et al., 2012), a PC-based method; 

SeqMix (Hu et al., 2013), which tackles local ancestry inference in exome-sequencing samples 

and RFMix (Maples et al., 2013), a random forest based method. 

2.3.3 Association tests in admixed populations 

Subpopulation structure in a study sample may confound phenotype-SNP associations 

leading to spurious results, primarily at markers with differential allele frequencies among 

subpopulations (Price et al., 2010). This issue of population stratification is well addressed in 

recent years. As a common practice, genomic control (Devlin & Roeder, 1999) is used to 

quantify the extent of inflation cased by population stratification or other confounders (such as 

cryptic relatedness) and principal components analysis (Price et al., 2006) is used to correct for 

stratification if necessary.  

In admixed populations, the population stratification issue is intrinsic. Although 

controlling for global ancestry can reduce false positives, it cannot necessarily eliminate the 

confounding effect from local ancestry (Qin et al., 2010).  

As an alternative, taking advantage of the correlation between phenotype and local 

ancestry, admixture mapping is developed to test for associated loci in admixed populations. The 

idea is that the genetic factors leading to disease disparity between the parental populations 

would have differential allele frequencies. By testing for the association between the ancestry of 

the chromosome segment and phenotype in admixed sample, the region harboring the causal 

variant may be identified (Winkler et al., 2010). Admixture mapping can be traced to 

Chakraborty and Weiss (Chakraborty & Weiss, 1988), who theoretically demonstrate that the 

admixture LD in admixed sample can be used to detect the linkage relationship between two loci. 

Admixture mapping is particularly effective when the difference of disease risk in the parental 
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populations is large, as long as it is accounted for by genetic factors rather than entirely by 

environmental factors (Smith et al., 2004). One key advantage of genome-wide admixture 

mapping over genome-wide genetic linkage study is that it requires the use of much less markers 

(Smith et al., 2004), which reduces multiple testing burden. Moreover this is particularly 

advantageous when genotyping is expensive. Due to recent admixture, the extend of admixture 

LD could be several megabases. Therefore, a few thousand ancestry informative markers (AIM; 

markers with large differential allele frequencies between parental populations) would be 

sufficient. Since the availability of the first dense map of AIM between Europeans and Africans 

(Smith et al., 2004), admixture mapping has been successfully applied in gene discovery in 

African Americans for diseases that differ in prevalence in parental populations, such as 

hypertension (Zhu et al., 2005), prostate cancer (Freedman et al., 2006), type II diabetes (Ng, 

2015) and Proliferative Diabetic Retinopathy (Tandon et al., 2015). On the other hand, however, 

the long stretch of admixture LD limits the resolution of admixture mapping, which is higher 

than that of family based linkage analysis but is lower than that of ancestry LD based genetic 

association analysis (Shriner, 2013). 

As genotyping cost dropped drastically, more and more dense genotype data from cohorts 

of admixed populations are available, such as that from the Women’s Health Initiative (WHI), 

the Atherosclerosis Risk in Communities Study (ARIC), the Jackson Heart Study (JHS), the 

Coronary Artery Risk Development in Young Adults Study (CARDIA), the Multi-Ethnic Study 

of Atherosclerosis (MESA) and the Hispanic Community Health Study / Study of Latinos 

(HCHS/SOL). The dense genotype data provide an opportunity to apply GWAS in admixed 

populations. Given the challenges from population stratification, statistical methods have been 

developed to control false positives due to local population structure. Qin et al. showed that PCs 
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calculated in local genomic regions (local PCs) strongly correlated with local ancestry. It is more 

effective in eliminating spurious findings by incorporating local PCs in genetic association 

studies (Qin et al., 2010). Rather than controlling for local PCs, Wang et al. directly controls for 

local ancestry estimate and shows its effectiveness in controlling type I error (X. Wang et al., 

2011). Furthermore, genotype and ancestry have been shown to contain independent information, 

thus genetic association test and admixture mapping may complement each other (Tang et al., 

2010). Taking advantage of both tests, Reiner et al. (Reiner et al., 2012) conducted SNP and 

admixture mapping separately using the same set of markers, where they used admixture 

mapping results to explain the peaks observed in GWAS scan and vice versa (Reiner et al., 

2012). Along the same line, Tang et al. developed a test to jointly test ancestry and SNP effect in 

a family study design (Tang et al., 2010). Later, a joint test (MIXSCORE) under case/control 

design is proposed (Pasaniuc et al., 2011) as well as a Bayesian method (BMIX) (Shriner et al., 

2011). Due to the difference in the strength or direction of shared LD between the tested SNP 

and causal variant in the parental populations, association effect may have different size or 

directions. Liu et al. proposed to capture effect heterogeneity among the ancestral populations by 

including interaction term between local ancestry and genotype (J. Liu et al., 2013).
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CHAPTER 3: A COMPREHENSIVE SNP AND INDEL IMPUTABILITY DATABASE1 

3.1 Introduction 

Genotype imputation has proven to be a powerful tool in genome-wide association 

studies (GWAS) by facilitating fine mapping and the merging of datasets from different 

genotyping platforms (Y. Li et al., 2009; Marchini & Howie, 2010). It is a way to predict 

genotypes computationally based on linkage disequilibrium patterns instead of obtaining 

genotypes by laboratory-based procedure (Browning & Yu, 2009; B. Howie et al., 2011; Y. Li et 

al., 2010). As it has been shown to directly affect downstream analysis, imputation accuracy 

needs to be taken into consideration when designing and performing GWAS (Zheng et al., 2011). 

For instance, at the study design stage, a question of interest would be which commercially 

available genotyping platform can provide the optimal imputation quality genome-wide or in 

certain genomic region(s) of interest. Such a question can be answered by assessing the 

imputation accuracy of relevant variants. However, there has been no resource available to 

provide variant imputability information without actually performing imputation. 

A commonly used evaluation method is to mask a subset of markers, impute their 

dosages and compare those dosages with the true (masked) genotypes for those markers (Y. Li et 

al., 2010). This method, however, can only be used after genotypes have already been obtained

                                                

1 This chapter previously appeared as an article in Bioinformatics. The original citation is as follows: 
Duan, Q., et al., A comprehensive SNP and indel imputability database, Bioinformatics, 2013, 29(4):528-
531. 
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and therefore cannot help guide study design decisions. In addition, the evaluation procedure can 

be computationally costly because of the requirement of conducting imputation, particularly with 

the emergence of reference panels built through re-sequencing efforts (Sampson et al., 2012) To 

facilitate genetic studies in the era of genomic re-sequencing, we have built a database 

containing imputation accuracy information for SNPs and indels identified from the 1000 

Genomes Project (The 1000 Genomes Project et al., 2010), a sequencing-based reference 

resource, which has demonstrated its potential for enhancing the power of genetic association 

studies in the post-GWAS era (Day-Williams et al., 2011; Holm et al., 2011; Huang et al., 2012). 

The assessment of marker imputability was carried out through a leave-one-out imputation 

procedure: a single individual serves as the imputation target, and imputation is performed using 

haplotypes from all the other individuals as reference. Imputation accuracy was quantified within 

each of the four major continental groups surveyed by the 1000 Genomes Project. We anticipate 

this database containing imputation accuracy information searchable by continental group and by 

GWAS genotyping platform will be a useful resource for geneticists in this sequencing era. 

3.2 Data setup and retrieval 

3.2.1 Database 

The database contains imputation quality information (as measured by dosage r2, the 

squared Pearson correlation coefficient between the imputed dosage—ranging continuously from 

0 to 2—and the observed/masked genotypes—taking values 0, 1 or 2 copies of a given allele) for 

every non-singleton SNP and indel discovered by and passing default quality filters in the 1000 

Genomes Project (The 1000 Genomes Project et al., 2010). The dosage r2 of each variant reflects 

its potential imputation accuracy when conducting imputation using haplotypes from the 1000 

Genomes Project as reference. Imputability information is available for multiple genotyping 
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platforms, and separately for each of the four major continental groups [Europeans (EUR), 

Africans (AFR), Asians (ASN) and Americans (AMR)]. Details regarding sub-population 

constituents of the continental groups can be found at ftp://ftp-trace. 

ncbi.nih.gov/1000genomes/ftp/release/20110521/. 

3.2.2 Methods 

The dosage r2 of each variant was obtained using a leave-one-out imputation procedure 

with MaCH-Admix (E. Y. Liu et al., 2013) [high Pearson correlation (0.85–0.94) with those 

obtained using minimac (B. Howie et al., 2012) and IMPUTE2 (B. Howie et al., 2011), and 

lower correlation (0.71–0.85) with those from BEAGLE (Browning & Yu, 2009), data not 

shown] on samples from the latest release of the 1000 Genomes Project (version 3 March 2012 

release, 2184 haplotypes). We mimicked typical GWAS imputation practice by masking 

genotypes at markers absent from the selected genotyping platform and treating them as untyped. 

These untyped markers were imputed in one individual at a time using the haplotypes of all the 

remaining individuals as reference (2182 haplotypes). The imputation accuracy of each marker, 

measured by dosage r2, was calculated separately in each of four continental groups currently 

available in the 1000 Genomes Project. The genotyping platforms we have evaluated include 

Affymetrix 5.0, Affymetrix 6.0, Affymetrix Axiom, Illumina Human1M, Illumina Omni 5 M and 

Illumina Omni ZhongHua. The results of the assessment are searchable through a publicly 

available database.  

3.2.3 Usage 

Our database can take as input either a list of marker names or the start and end position 

of a genomic region on a specified chromosome. Users can choose to view information 

corresponding to one or more specific genotyping platforms. Given the marker or region input 
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and the choice of genotyping platform, our database returns imputability information for variants 

of interest ordered by their genomic location according to NCBI Build 37. Users have the option 

to display or to download the imputability information for each continental group or the 

maximum dosage r2 across the four continental groups (max-r2). Moreover, users can filter 

results by max-r2. Markers with no rsID follow chromosome:physical-coordinate nomenclature 

(Figure 3.1A). In addition, for an SNP–indel pair with the same genomic location, the SNP is 

always listed before the indel (Figure 3.1B). 

3.2.4 Examples  

The first example shows the utility of our database at the study design stage. Specifically, 

suppose an investigator wants to decide between two genotyping platforms, Affymetrix 6.0 and 

Affymetrix Axiom, based on imputation accuracy within a 1-kb region on chromosome 9p21 

(22,095,555 to 22,096,555 bp) harboring the SNP rs10757274 known to be associated with risk 

of coronary heart disease and multiple related phenotypes (Cunnington et al., 2010; McPherson 

et al., 2007). Our database interface, the example query, as well as the results of the query are 

shown in Figure 3.2. Given the regional input (start and end position 22,095,555 and 22,096,555 

on chromosome 9), our data- base returns a list of markers within the region (only the top three 

are shown). For each marker, the database shows its marker name, genomic location and dosage 

r2 for the two selected genotyping platforms across four continental groups. To ease comparison, 

users can choose to display max-r2 instead of r2 values for each population separately and/or 

filter by setting non-zero max-r2 threshold. Based on what is shown in Figure 3.2, we would 

recommend the Axiom over the 6.0 panel, unless the samples under study are Americans (e.g. 

Hispanic or African Americans) and the SNP of primary interest is rs139492236. Note that this is 

a toy example mainly meant to introduce the interface of our database where we show only the 
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top three SNPs. For more realistic settings where the region of interest typically includes many 

more markers, we recommend prioritization of markers in the region (e.g. according to 

functional annotation and/or evidence from existing association or functional studies, if 

available), followed by the examination and comparison of the max-r2 distribution through 

‘Download Results’ or ‘Genome-wide Graphical Comparison’. Such comparison of imputation 

accuracy across platforms will facilitate decision making regarding the choice of genotyping 

assays. 

Once the investigator has decided on the genotyping platform, a typical question is 

whether specific markers or markers in specific regions of interest can be imputed well (e.g. 

novel variants or associated regions identified in other cohorts). When computational resources 

are limited or when an investigator is interested in a considerable number of markers/regions, 

imputability information can help prioritize markers/regions that have the potential to be well-

imputed as well as avoid wasting resources on markers/regions that have little potential for high-

quality imputation. As shown in Figure 3.2, our database contains four dosage r2 values (one for 

each continental group) for each marker, given a genotyping platform. As false-negatives 

(markers that can be well-imputed but with bad predicted imputation accuracy such that one 

would not perform actual imputation) are typically more costly than false-positives (the 

consequence would be wasted computational resources on markers/regions that are truly not 

imputable), we recommend using the maximum dosage r2 across the four continental groups 

(max-r2) to guide decisions, particularly for samples involving admixed individuals. Figure 3.3 

shows the receiver-operating characteristic curve for data from the Cebu Longitudinal Health and 

Nutrition Survey (CLHNS) when max-r2 is used for thresholding. In this cohort of Filipinos 

(Adair et al., 2011; Marvelle et al., 2007), we have 81 individuals who have both Affymetrix 5.0 
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(Lange et al., 2010) and Metabochip (Croteau-Chonka et al., 2012) genotypes. We imputed the 

Metabochip SNPs from the Affymetrix 5.0 data, using haplotypes from the 1000 Genomes 

Project as reference. We computed the imputation accuracy in this sample (CLHNS-specific 

dosage r2) by comparing the imputed dosages with the genotypes obtained through genotyping 

using Metabochip. The y-axis shows the proportion of poorly imputed SNPs (CLHNS-specific 

dosage r2 < 0.2) removed and the x-axis shows the proportion of well-imputed SNPs (CLHNS-

specific dosage r2 > 0.8) sacrificed for SNPs in different minor allele frequency (MAF) 

categories (defined within CLHNS). Using a max-r2 threshold of 0.7, which removes ~15 million 

of the ~31 million markers in the latest release from the 1000 Genomes Project, we found that 

the database filters out 77%, 58%, 51% and 42% of the poorly imputed SNPs (again, SNPs with 

CLHNS-specific dosage r2 < 0.2) at the cost of 0.3%, 0.8%, 1.5% and 4.6% well-imputed 

markers (SNPs with CLHNS-specific dosage r2 > 0.8) in the MAF categories of >5%, 3–5%, 1–3% 

and 0.5–1%, respectively. Using a different threshold of 0.5 (0.9), which removes ~12 (~20) 

million of the ~31 million markers, we can filter out 54%, 32%, 29% and 26% (92%, 80%, 75% 

and 66%) of the poorly imputed SNPs at the cost of 0.1%, 0.3%, 0.2% and 2.1% (4.8%, 6.1%, 

7.5% and 17.2%) well-imputed SNPs. We also confirmed in samples of Caucasians and samples 

of African Americans (data not shown) that a max-r2 in the range of 0.5–0.8 serves as a 

reasonable thresh- old in terms of a trade-off between sensitivity and specificity. The actual 

threshold an investigator selects can be tailored according to MAF and available computational 

resources (including both CPU times and disk space). We and others have previously observed 

lower imputation quality for rarer variants (International HapMap et al., 2010; L. Li et al., 2011; 

Liu et al., 2012). Our database now shows that imputation quality of rarer variants is also more 

challenging for prediction estimation: the total area under the receiver-operating characteristic 
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curve is 0.97, 0.91, 0.88 and 0.79, respectively, for markers with MAF>5%, 3–5%, 1–3% and 

0.5–1%. 

3.3 Conclusion 

In summary, we have built a publicly available database for marker imputability to aid 

genetic association studies in the re-sequencing era (Fridley et al., 2010; Y. Li et al., 2011; 

Sampson et al., 2012). Reference panels built from re-sequencing studies bring us the benefits of 

improved imputation accuracy and the potential to impute low-frequency variants. These benefits 

come, however, at the cost of heavy computational burden for imputation if we impute every 

marker discovered by sequencing, which is 430 million in the latest release from the 1000 

Genomes Project. It is therefore desirable to have direct access to marker imputability 

information without actually conducting genotype imputation. Our marker imputability database 

provides direct access to imputation accuracy information for SNPs and indels identified from 

the 1000 Genomes Project across four major continental groups using multiple genotyping 

platforms. We anticipate that this database will serve as a useful resource for researchers in this 

re-sequencing era in terms of design and analysis of genetic association studies. In addition, 

although the database is developed mainly for guidance before actual imputation, it can be used 

for post-imputation quality assurance by comparing estimated r2 values in the imputed study 

sample with those in our database in an SNP-specific manner. Using a cohort of Filipinos, we 

estimate that we can, with up to 48.6% reduced computation efforts (by imputing only the top 

51.4% markers according to imputation quality estimated from individuals in the 1000 Genomes 

Project), filter out 42–77% of poorly imputed markers at the cost of 0.3–4.6% well-imputed 

markers. Finally, two caveats should be kept in mind by database users. First, we record results 

from the MaCH-Admix software. Although more than moderate level of correlation is observed 
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with results from other imputation software, caution needs to be taken when generalizing to other 

imputation methods, particularly those that are not based on the Li and Stephens model (N. Li & 

Stephens, 2003). Second, loss of some typed markers due to quality control in real studies could 

lead to reduced imputation quality of specific markers, which cannot be modeled generically and 

are thus not reflected by our database. We will update the database when new data releases of the 

1000 Genomes Project or new genotyping platforms become available. 
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Figure 3.1. An example SNP/indel imputability record from the database. A. SNPs and 
indels with no rsID are named by chromosome number followed by genomic location in base-
pairs (e.g., chr20:4910201). B. When a SNP and an indel have the same genomic location, the 
SNP is listed first and the indel second (e.g., at position 4895999, SNP rs77916149 is listed first 
followed by indel chr20:4895999). 
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Figure 3.2. The SNP and indel imputability database interface. 

 

 
  

from 0 to 2—and the observed/masked genotypes—taking values
0, 1 or 2 copies of a given allele) for every non-singleton SNP and
indel discovered by and passing default quality filters in the 1000
Genomes Project (The 1000 Genomes Project Consortium,
2010). The dosage r2 of each variant reflects its potential imput-
ation accuracy when conducting imputation using haplotypes
from the 1000 Genomes Project as reference. Imputability infor-
mation is available for multiple genotyping platforms, and
separately for each of the four major continental groups
[Europeans (EUR), Africans (AFR), Asians (ASN) and
Americans (AMR)]. Details regarding sub-population constitu-
ents of the continental groups can be found at ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/release/20110521/.
Methods: The dosage r2 of each variant was obtained using a

leave-one-out imputation procedure with MaCH-Admix (Liu
et al., 2012b; http://www.unc.edu/!yunmli/MaCH-Admix/)
[high Pearson correlation (0.85–0.94) with those obtained using
minimac (Howie et al., 2012) and IMPUTE2 (Howie et al.,
2011), and lower correlation (0.71–0.85) with those from
BEAGLE (Browning and Yu, 2009), data not shown] on samples
from the latest release of the 1000 Genomes Project (version 3
March 2012 release, 2184 haplotypes). We mimicked typical
GWAS imputation practice by masking genotypes at markers
absent from the selected genotyping platform and treating
them as untyped. These untyped markers were imputed in one
individual at a time using the haplotypes of all the remaining
individuals as reference (2182 haplotypes). The imputation
accuracy of each marker, measured by dosage r2, was calculated
separately in each of four continental groups currently available
in the 1000 Genomes Project. The genotyping platforms we have
evaluated include Affymetrix 5.0, Affymetrix 6.0, Affymetrix
Axiom, Illumina Human1M, Illumina Omni 5M and Illumina
Omni ZhongHua. The results of the assessment are searchable
through a publicly available database.
Usage: Our database can take as input either a list of marker

names or the start and end position of a genomic region on a
specified chromosome. Users can choose to view information
corresponding to one or more specific genotyping platforms.
Given the marker or region input and the choice of genotyping
platform, our database returns imputability information for vari-
ants of interest ordered by their genomic location according to
NCBI Build 37. Users have the option to display or to download
the imputability information for each continental group or the
maximum dosage r2 across the four continental groups (max-r2).
Moreover, users can filter results by max-r2. Markers with no
rsID follow chromosome:physical-coordinate nomenclature
(Supplementary Fig. S1A). In addition, for an SNP–indel pair
with the same genomic location, the SNP is always listed before
the indel (Supplementary Fig. S1B).
Examples: The first example shows the utility of our database

at the study design stage. Specifically, suppose an investigator
wants to decide between two genotyping platforms, Affymetrix
6.0 and Affymetrix Axiom, based on imputation accuracy within
a 1-kb region on chromosome 9p21 (22,095,555 to 22,096,555 bp)
harboring the SNP rs10757274 known to be associated with risk
of coronary heart disease and multiple related phenotypes
(Cunnington et al., 2010; McPherson et al., 2007). Our database
interface, the example query, as well as the results of the query
are shown in Figure 1. Given the regional input (start and end

position 22 095 555 and 22 096555 on chromosome 9), our data-
base returns a list of markers within the region (only the top
three are shown). For each marker, the database shows its
marker name, genomic location and dosage r2 for the two se-
lected genotyping platforms across four continental groups. To
ease comparison, users can choose to display max-r2 instead of r2

values for each population separately and/or filter by setting
non-zero max-r2 threshold. Based on what is shown in Figure
1, we would recommend the Axiom over the 6.0 panel, unless the
samples under study are Americans (e.g. Hispanic or African
Americans) and the SNP of primary interest is rs139492236.
Note that this is a toy example mainly meant to introduce the
interface of our database where we show only the top three
SNPs. For more realistic settings where the region of interest
typically includes many more markers, we recommend prioritiza-
tion of markers in the region (e.g. according to functional anno-
tation and/or evidence from existing association or functional
studies, if available), followed by the examination and compari-
son of the max-r2 distribution through ‘Download Results’ or
‘Genome-wide Graphical Comparison’. Such comparison of
imputation accuracy across platforms will facilitate decision
making regarding the choice of genotyping assays.
Once the investigator has decided on the genotyping platform,

a typical question is whether specific markers or markers in
specific regions of interest can be imputed well (e.g. novel vari-
ants or associated regions identified in other cohorts). When
computational resources are limited or when an investigator is
interested in a considerable number of markers/regions, imput-
ability information can help prioritize markers/regions that
have the potential to be well-imputed as well as avoid wasting
resources on markers/regions that have little potential for
high-quality imputation. As shown in Figure 1, our database
contains four dosage r2 values (one for each continental group)
for each marker, given a genotyping platform. As false-negatives
(markers that can be well-imputed but with bad predicted
imputation accuracy such that one would not perform actual
imputation) are typically more costly than false-positives
(the consequence would be wasted computational resources on
markers/regions that are truly not imputable), we recommend
using the maximum dosage r2 across the four continental
groups (max-r2) to guide decisions, particularly for samples
involving admixed individuals. Figure 2 shows the

Fig. 1. The SNP and indel imputability database interface
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Figure 3.3. Receiver operating characteristic (ROC) curve in the Cebu Longitudinal Health 
and Nutrition Survey. Sensitivity_Specificity (cutoffs by 1000G max.dosageR2)
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CHAPTER 4: IMPUTATION OF CODING VARIANTS IN AFRICAN AMERICANS2 

4.1 Introduction 

Increasingly large reference panels available in the public domain [e.g. those from the 

1000 Genomes Project (The 1000 Genomes Project et al., 2010; The 1000 Genomes Project et 

al., 2012) and UK10K project (Futema et al., 2012) together with improved statistical methods 

(B. Howie et al., 2012; E. Y. Liu et al., 2013) have enhanced imputation quality, especially for 

rare variants with minor allele frequency (MAF) < 5%. These improvements have resulted in 

both discovery and refined mapping of association with complex traits (Auer et al., 2012; Holm 

et al., 2011; Huang et al., 2012). However, few studies have examined the use of large study-

specific reference panels, particularly the use of exome sequencing-derived panels in admixed 

populations. Here, we present a new resource for imputation in African Americans, built from 

1692 African Americans sequenced by the Exome Sequencing Project (ESP) (Tennessen et al., 

2012). We assessed the use of the ESP data as an imputation reference panel and compared the 

results with those obtained using the 1000 Genomes Project Phase1 data (1000G; version 3, 

March 2012 release) (The 1000 Genomes Project et al., 2012). Additionally, we evaluated the 

potential consequences of using a reference panel built from samples selected on the basis of 

phenotypic extremes or disease status instead of a population-based random sample. Lastly, we

                                                

2 This chapter previously appeared as an article in Bioinformatics. The original citation is as follows: 
Duan, Q., et al., Imputation of coding variants in African Americans: better performance using data from 
the exome sequencing project, Bioinformatics, 2013, 29(21):2744-2749. 
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compared multiple approaches to combine the ESP and 1000G panels for the imputation of rare 

coding variants. 

4.2 Methods 

4.2.1 Exome Sequencing Project 

The complete ESP dataset (Fu et al., 2013) consists of whole exome data for 6823 

individuals. Samples were sequenced at the University of Washington (SeattleGO) and the Broad 

Institute (BroadGO). Among the 6823 individuals, 1692 participants were African Americans 

with genome-wide association data available for analysis. The 1692 African Americans ESP 

samples include 845 from the Women’s Health Initiative (WHI) study (The Women’s Health 

Initiative Study, 1998) as part of the WHI Sequencing Project (WHISP), and a total of 847 

including Atherosclerosis Risk in Communities (ARIC) (Muntaner et al., 1998) (N=282), 

Jackson Heart Study (JHS) (Taylor et al., 2005) (N=366), Multi-Ethnic Study of Atherosclerosis 

(MESA) (Bild et al., 2002) (N=146) and Coronary Artery Risk Development in Young Adults 

(CARDIA) (Friedman et al., 1988) (N=53) as part of HeartGO. Most WHISP and HeartGO 

participants were selected on the basis of primary phenotypes for ESP, which included extremes 

of body mass index, blood pressure, low-density lipoprotein (LDL), cholesterol, early onset 

myocardial infarction (MI) cases and controls, ischemic stroke with either early onset or positive 

family history. Approximately 15% of samples were selected because of having non-missing 

data for a selected set of core phenotypes, but were not ascertained based on trait values. 

4.2.2 Exome Sequencing 

Exome sequencing was performed at the University of Washington (SeattleGO) and the 

Broad Institute (BroadGO). Initial quality control (QC) on all samples involved sample 
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quantification (PicoGreen), confirmation of high-molecular weight DNA, fingerprint genotyping 

and sex determination. Samples were failed if total mass, concentration, integrity of DNA or 

quality of preliminary genotyping data was too low or sex typing was discordant. Following QC, 

2mg of extracted genomic DNA was subjected to shotgun library preparation and exome capture 

as previously described (Tennessen et al., 2012). 

4.2.2.1 Genotype Calling  

For read mapping and variant analysis, samples were aligned to a human reference (hg19) 

using Burrows–Wheeler Aligner (H. Li & Durbin, 2009). Variant detection and genotyping were 

performed on both exomes and flanking 50bp of intronic sequence. 

Typical mean coverage of the target was 60–80x. Variant data for each sample were 

formatted (variant call format) as ‘raw’ calls for all samples. Filters considered the total read 

depth, the number of individuals with coverage at the site, the fraction of variant reads in each 

heterozygote, the ratio of forward and reverse strand reads carrying reference and variant alleles 

and the average position of variant alleles along a read. Variant calling was performed across all 

6515 samples at the University of Michigan (UMich). Only single nucleotide polymorphisms 

(SNPs) that passed the UMich support vector machine quality filter were retained for analysis. 

Details were previously described (Fu et al., 2013). 

4.2.2.2 Reference Panel Construction  

A reference panel of 2163 individuals (including the 1692 African Americans used in this 

study and 471 European Americans) was constructed. All of the 2163 individuals have both 

Genome-wide association study (GWAS; Affymetrix 6.0) genotypes and whole exome 

sequencing data. When combining the two sources of data, a total of 375 024 bi-allelic 

autosomal SNPs with minor allele count ≥ 4 (in the 2163 reference panel subjects) did not 
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overlap with the 702 205 GWAS SNPs. There were 10130 SNPs that overlapped between ESP 

and the 702 205 GWAS markers. SNPs with concordance 595% were removed (65 SNPs). For 

overlapping SNPs that passed this concordance filter, GWAS genotype was retained for 

consistency with the target individuals. A total of 1 077 164 autosomal SNPs were included in 

the reference panel. These 1 077 164 markers were phased across all 2163 samples using 

BEAGLE v3.3.1 (Browning & Yu, 2009). 

4.2.2.3 ESP ‘Extreme’ and ‘Normal’ Panel Construction  

The 1692 ESP African Americans were selected based on the following phenotypic traits: 

(i) LDL (N = 254: 131 with high LDL and 123 with low LDL), (ii) blood pressure (N = 247: 132 

with high blood pressure and 115 with low blood pressure), (iii) body mass index (BMI, N = 

609: 429 with high BMI and 180 with normal to low BMI), (iv) early onset MI (EOMI, N = 324: 

39 EOMI cases and 285 EOMI controls), (v) stroke (N = 40, all cases) and (vi) random samples 

(N = 218). We constructed one ESP ‘Extreme’ panel and one ESP ‘Normal’ panel each with 853 

individuals. The ESP ‘Extreme’ panel included (i) 254 individuals with high/low LDL (131 with 

high LDL and 123 with low LDL), (ii) 247 individuals with high/low blood pressure (132 with 

high blood pressure and 115 with low blood pressure), (iii) 40 stroke cases, (iv) 39 EOMI cases 

and (v) 273 individuals with high BMI. The ESP ‘Normal’ panel consists of 80% individuals 

with ‘non-extreme’ phenotypes and 20% with extreme phenotypes so as to better represent a 

population sample. Individuals with ‘non-extreme’ phenotypes (N = 683) are from random 

sample, EOMI controls and low BMI group. Individuals with extreme phenotypes (N = 170) are 

from high (N = 85) and low LDL (N = 85) group. 

4.2.2.4 The 1000 Genomes Project (1000G)  
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The 1000 Genomes Phase1 data were downloaded from 

http://www.sph.umich.edu/csg/yli/ mach/download/1000G.2012-03-14.html. Details regarding 

the generation of the data can be found in the Phase 1 article (The 1000 Genomes Project et al., 

2012). 

4.2.3 Target African Americans 

4.2.3.1 GWAS Data  

All of the 1661 target African Americans in this study were genotyped using the 

Affymetrix 6.0 genotyping platform as part of the WHI SNP Health Association Resource study. 

Before phasing and imputation, we removed Affymetrix 6.0 SNPs with genotype call rates 

<90%, or Hardy–Weinberg exact test (Wigginton et al., 2005) P<106 or MAF < 1%. QC details 

were described previously (Auer et al., 2012; Reiner et al., 2011). 

4.2.3.2 Metabochip data  

All of the 1661 target African Americans in this study were also genotyped using the 

Metabochip (Voight et al., 2012) in an attempt to generalize genetic effects across racial groups 

by the WHI Population Architecture using Genomics and Epidemiology (PAGE) study. Standard 

QC was performed, including removal of markers with genotype call rate < 95% or Hardy–

Weinberg P<106, as well as exclusion of individuals who showed excess heterozygosity, were 

part of an apparent first-degree relative pair, or were ancestry outliers as determined by Eigensoft 

(Price et al., 2006). Details can be found in the PAGE Metabochip article (Buyske et al., 2012). 

Genotypes at the Metabochip SNPs were not used for imputation but rather used for 

assessment of imputation quality. In total 5035 markers, which were on Metabochip, in 1000G 

and in ESP, but not on Affymetrix 6.0, were used for imputation quality assessment. 

4.2.3.3 Overlap with ESP African Americans  
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African Americans present in ESP were not included as target. In other words, 

individuals in the reference ESP and the target were mutually exclusive. In addition, we removed 

any target with PLINK (Purcell et al., 2007) estimated identity-by-descent (IBD) ≥ 0.2 with any 

reference individual such that our final target set did not contain any apparent first-degree 

relative with the reference ESP. 

4.2.3.4 Imputation using IMPUTE2  

In the main text, unless otherwise specified, we present results using minimac for 

imputation. Figure 4.7 and Table 4.8 showed that our recommendation of ESP alone or 

concatenation of ESP with 1000G (ESP_U_1000G) over 1000G still held when IMPUTE2 was 

used for imputation. We note that in the main text, our recommendation against IMPUTE2’s two 

panel mode (option 3: ESPþ1000G) was confounded by software/method choice: ESP alone or 

ESP_U_1000G using minimac performed better than IMPUTE2’s ESP + 1000G, but when using 

IMPUTE2 for all, ESP alone or ESP_U_1000G performed similarly as ESP + 1000G. 

4.3 Results 

4.3.1 Comparison of imputation quality 

We first performed imputation, using either ESP or 1000G as reference, into 1661 

African Americans in the WHI study (the ‘target’ sample) who were genotyped by both the 

Affymetrix 6.0 (Auer et al., 2012) and the Illumina Metabochip array (Buyske et al., 2012; Liu 

et al., 2012). We used MaCH (Y. Li et al., 2010), a hidden Markov model that leverages linkage 

disequilibrium information among samples of unrelated individuals, to pre-phase the 1661 WHI 

African Americans at the Affymetrix 6.0 markers. The ESP reference panel was built from 1692 

African Americans with genotypes from both the Affymetrix 6.0 platform and whole exome 

sequencing. These genotypes were merged and phased using BEAGLE (Browning & Yu, 2009). 
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Imputation into the 1661 target WHI African Americans was performed with minimac (B. Howie 

et al., 2012) (similar results were obtained with IMPUTE2; see Methods) using their Affymetrix 

6.0 genotypes only; genotypes from the Metabochip genotyping were saved for evaluation. 

Following the literature (Browning & Yu, 2009; Y. Li et al., 2010), we used dosage r2 [squared 

Pearson correlation between imputed dosages (ranging continuously from 0 to 2) and 

experimental genotypes (coded as 0, 1 or 2)], which directly determines effective sample size for 

subsequent association analysis (Pritchard & Przeworski, 2001), to gauge imputation quality. We 

also use Rsq, the estimated dosage r2 generated by minimac, as the post-imputation QC metric. 

We observed 8.3–11.4% increases in average dosage r2 for variants with MAF<1% using the 

ESP reference panel compared with the 1000G reference panel (paired Wilcoxon P<1.3×10-4  - 

4.1×10-16 ). Such increases were observed without applying any post-imputation QC, that is, 

when every imputed variant was retained. Similarly increased dosage r2 was observed across a 

broad range of post-imputation QC stringency (removing 0–90% of variants; Figure 4.1 and 

Table 4.1). As imputation is routinely performed in 10 000–100 000 individuals (Auer et al., 

2012; Cho et al., 2012; Dastani et al., 2012; Holm et al., 2011; Teslovich et al., 2010), such an 

increase would correspond to increasing the sample size for association testing by 1000–10 000 

samples. 

Because the ESP panel is larger and consists entirely of African Americans, we 

conducted more comparisons by assessing the performance of 10 random subsets from ESP of 

the same size as 1000G (both for the full 1000G panel [Number of haplotypes (H) = 1092 × 2; 

reference panels termed ESP.1092 and 1000G.1092] and the most relevant panel [AFR + EUR, 

H = 625 × 2; reference panels termed ESP.625 and 1000G.625]). The difference in effective 

sample size derived from the ESP and 1000G reference panels, although smaller, remains 
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(Figure 4.2 and Table 4.2). For example, when comparing ESP.1092 with 1000G.1092 and 

retaining all imputed variants in the analysis (no post-imputation QC), we observed an average 

dosage r2 increase of 11.3, 4.6 and 6.1% for variants with MAF < 0.2%, 0.2–0.5% and 0.5–1%, 

respectively. The corresponding dosage r2 increases for a comparison of ESP.625 with 

1000G.625 were 13.9%, 1.0 and 3.1%, respectively. The superior performance of ESP over 

1000G was likely driven by two primary factors. First, genotypes for rare variants from ESP 

were derived from high coverage sequencing, whereas those from 1000G were in part from low 

coverage sequencing (1000G data we used here are the integrated panel constructed from low 

coverage whole genome sequencing, deep exome sequencing and SNP array genotyping). 

Second, ESP African Americans (~50% also from WHI, detailed in Materials and Methods) 

were better matched to the ‘target’ WHI African Americans for ancestry than were the samples 

in the 1000G panel, which were pooled from several populations of European, African and 

African American ancestry. 

As expected, better quality imputation using the ESP panel produces a larger number of 

well-imputed rare coding variants than using the 1000G panel (Rsq>0.6 for MAF<0.5%; detailed 

in Table 4.3). For example, the number of well-imputed variants was 2.28, 2.83, and 1.54 times 

greater than that from 1000G for MAF<0.2, 0.2–0.5 and 0.5–1%, respectively (Table 4.3). The 

boost in imputation quality as well as in the number of well-imputed markers is expected to 

enhance power for testing association with phenotypic traits. For example, out of the eight novel 

blood trait associated variants reported in Auer et al. (Auer et al., 2012), two are not in 1000G 

but ESP only (Table 4.4). 
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4.3.2 Impact of imputation reference panel 

Many subjects sequenced in ESP were selected on the basis of phenotypic extremes or 

disease status (detailed in Materials and Methods), an approach that has been shown to increase 

power for association testing of the specific phenotype (Barnett et al., 2013; Guey et al., 2011; 

Kryukov et al., 2009). To our knowledge, the consequences of such a design for developing an 

imputation reference panel have not been previously evaluated. To this end, we constructed two 

ESP-derived reference panels: ‘ESP.extreme’ and ‘ESP.normal’ each of size H=853×2. The 

former included 254 African Americans from LDL cholesterol extremes, 247 from blood 

pressure extremes, 40 stroke cases, 39 early onset MI (EOMI) cases and 273 with extremely high 

BMI. The latter included 85 samples with high LDL, 85 with low LDL and 683 from the 

‘middle’ of the phenotype distributions. We observed no loss of imputation quality using the 

‘Extreme’ panel. (Figure 4.3 and Table 4.5). 

4.3.3 Alternative options to use or combine reference panels 

Although our results suggested that the ESP panel led to substantially improved 

imputation accuracy of rare coding variants compared with the 1000G panel, the combination of 

the two panels could potentially result in even better performance than either one individually. 

We considered the following four options. The default option, Option 0, was to select a single 

panel a priori based on reference panel size, marker density and ancestry match. In this case, 

Option 0 would be the ESP reference panel alone, as it contains more haplotypes (3384 over 

2184 in 1000G), greater marker density in exons and a better ancestry match with the target 

African Americans. Option 1 was to first impute using each panel separately, and then for each 

marker to select the one with higher Rsq. Option 2 was to impute using a concatenated panel of 
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the two (ESP_U_1000G). Option 3 was to impute using IMPUTE2, which allows two separate 

reference panels (ESP + 1000G). 

The best option among the four was the concatenation of the two panels (Option 2) with 

ESP alone (Option 0), a close second best. For example, the average dosage r2 increased by 

1.8%, 2.3% and 1.5%, respectively, for markers with MAF<0.2, 0.2–0.5 and 0.5–1% using 

Option 2 over Option 0 (Figure 4.3 and Table 4.6). We observed no noticeable gains using 

Option 1 compared with Option 0 with differences in dosage r2 in the range of 0.02–1.5% 

(Figure 4.5 and Table 4.7). Therefore, we would not recommend using Option 1, the Rsq-based 

selection, because higher Rsq does not guarantee better imputation quality. In fact a low quality 

reference panel could lead to poorly estimated Rsq values. Finally, IMPUTE2’s ability to 

combine two reference panels (Option 3), led to decreased imputation quality compared with 

Option 0. For example, dosage r2 decreased by an average of 7.3, 4.3 and 3.9% for markers with 

MAF<0.2, 0.2–0.5 and 0.5–1% (Figure 4.6 and Table 4.8). Although less accurate, the 

convenience provided by IMPUTE2’s approach warrants closer consideration. Decreases in 

quality could be due to software implementation because we used minimac for options 0–2 and 

IMPUTE2 for option 3. But importantly, our recommendation of concatenation of the two or 

ESP alone over 1000G alone or post-imputation Rsq-based selection holds when IMPUTE2 was 

used for all four options (see ‘Imputation using IMPUTE2’ in Materials and Methods, Figure 4.7 

and Table 4.9). 

4.4 Discussion 

We note that ESP is heavily enriched for extremes from several phenotypes rather than a 

single phenotype. Thus, it is unclear whether these results generalize to a design where 

sequenced subjects are selected based on extremes for a single phenotype. We did not attempt to 
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select one phenotype for evaluation, as doing so would reduce our reference size to below 300, 

which we view as of little value for the imputation of rare variants. We expect such ‘Extreme’ 

panels to make little difference for imputation overall and may affect imputation in the specific 

trait associated regions when the causal variant(s) exert large effect(s). 

Although we recommend the concatenation of ESP and 1000G, we observed only modest 

gains in imputation quality by combining the two. Previous studies suggest that these gains may 

depend in part on the ethnic make-up of the study subjects (Browning & Yu, 2009) and whether 

1000G data add substantial haplotype diversity. These gains should be weighed against the 

logistical challenges of combining data from multiple sources to avoid batch effects (e.g. 

mismatched strands, inconsistent marker naming schemes or systematic differences in genotype 

calling, QC or phasing). 

In summary, we found that the ESP African American reference panel outperformed the 

1000G reference panel for the imputation of rare coding variants in African Americans, both in 

terms of imputation quality, the number of imputable markers and consequently power for trait 

association testing. The finding was robust to adjustment of reference size and matching on 

ethnicity. We did not observe loss of imputation quality because of the ESP design for enriched 

sequencing of subjects selected for phenotypic extremes. Regarding the optimal way to combine 

the two panels, our evaluations suggested that ESP alone or concatenation of the ESP and 1000G 

reference panels was superior to either post-imputation selection based on Rsq or IMPUTE2’s 

implementation of two separate reference panels. We focused here on imputation of coding 

variants from ESP. However, we believe that the conclusions drawn here apply to rare variants 

across the genome as recently reported by several whole-genome sequencing-based studies 

(Fuchsberger et al., 2012; Sanna, 2012) in individuals of European ancestry. These studies and 
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our present work strongly suggest that population matched samples, even in diverse populations 

such as African Americans, can clearly outperform 1000G imputation performance. Therefore, 

we recommend investigators routinely consider sequencing for the design (Kang et al., 2013) 

and analysis of the study samples.  
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Figure 4.1. Comparison of dosage r2 between ESP-based and 1000G-based imputation. The 
x-axis is the proportion of SNPs that were removed based on elevated Rsq threshold (QC). The 
y-axis is the mean dosage r2 (squared Pearson correlation between imputed dosages and 
experimental genotypes). 
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Figure 4.2. Comparison of dosage r2 between ESP and 1000G full/relevant panel 
imputation. The x-axis is the proportion of SNPs that were removed based on elevated Rsq 
threshold (QC). The y-axis is the mean dosage r2 (squared Pearson correlation between imputed 
dosages and experimental genotypes). 
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Figure 4.3. Comparison of dosage r2 between ESP.extreme and ESP.normal imputation. 
The x-axis is the proportion of SNPs that were removed based on elevated Rsq threshold (QC). 
The y-axis is the mean dosage r2 (squared Pearson correlation between imputed dosages and 
experimental genotypes) 
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Figure 4.4. Comparison of dosage r2 between using option 2 and option 0. 
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Figure S2 Comparison of dosage r2 between using option 2 and option 0. 

Option 2 (ESP_U_1000G) vs Option 0 (ESP)
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Figure 4.5. Comparison of dosage r2 between using option 1 and option 0. 
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Figure S3 Comparison of dosage r2 between using option 1 and option 0. 

Option 1 (Higher Rsq) vs Option 0 (ESP)
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Figure 4.6. Comparison of dosage r2 between Option 0 (ESP) and Option 3 (ESP+1000G) 
imputation. The x-axis is the proportion of SNPs that were removed based on elevated Rsq 
threshold (QC). The y-axis is the mean dosage r2 (squared Pearson correlation between imputed 
dosages and experimental genotypes) 
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Figure 4.7. Comparison of dosage r2 between IMPUTE2 results as well as minimac results. 
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Figure S5 Comparison of dosage r2 between IMPUTE2 results as well as minimac results. 

Validation by IMPUTE2 based imputation
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Table 4.1. Comparison of dosage r2 between ESP imputation and 1000G imputationa. 
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Table S1 Comparison of dosage r2 between ESP imputation and 1000G imputationa. 
 1000G as 

reference ESP as reference Difference 
(ESP – 1000G) Two-sided test 

MAF Mean SE Mean SE Mean SE Paired t-test Paired Wilcoxon 
signed-rank test 

0-0.2% 0.404 3.49E-03 0.518 3.43E-03 0.114 2.92E-03 1.62E-04 9.20E-05 
0.2-0.5% 0.525 1.33E-03 0.608 1.34E-03 0.083 9.59E-04 9.18E-09 2.70E-08 
0.5-1% 0.644 8.41E-04 0.728 7.74E-04 0.083 6.92E-04 6.85E-12 3.68E-16 
1-3% 0.750 2.59E-04 0.808 2.35E-04 0.058 1.92E-04 2.90E-24 1.31E-46 
3-5% 0.809 3.39E-04 0.855 2.88E-04 0.047 2.31E-04 5.51E-17 2.42E-37 
5-50% 0.887 4.58E-05 0.895 4.30E-05 0.008 2.88E-05 1.72E-06 4.48E-52 

aAll variants were included, irrespective of imputation quality Rsq.
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Table 4.2. Comparison of dosage r2 between ESP and 1000G full / relevant panels 
imputationa. 
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Table S2 Comparison of dosage r2 between ESP and 1000G full / relevant panels imputationa. 
 Mean dosage r2 Two–sided test Mean dosage r2 Two–sided 

test 

MAF ESP 
(1092) 

1000G 
(1092) 

Difference 
(ESP-

1000G) 

Paired Wilcoxon 
signed-rank test 

ESP 
(625) 

1000G 
(625) 

Difference 
(ESP-

1000G) 

Paired 
Wilcoxon 
signed-

rank test 
0-0.2% 0.528 0.404 0.113 5.78E-05 0.504 0.400 0.139 1.50E-03 
0.2-0.5% 0.577 0.525 0.046 4.15E-03 0.532 0.505 0.010 8.85E-01 
0.5-1% 0.705 0.644 0.061 4.28E-09 0.669 0.637 0.031 2.62E-03 
1-3% 0.794 0.750 0.044 7.81E-34 0.776 0.751 0.025 1.04E-14 
3-5% 0.846 0.809 0.037 8.78E-32 0.830 0.810 0.020 8.02E-19 
5-50% 0.889 0.887 0.003 4.69E-34 0.881 0.887 -0.007 6.52E-06 

aAll variants were included, irrespective of imputation quality Rsq
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Table 4.3. Number and percentage of well-imputed exonic variants. 

 

 
  

As expected, better quality imputation using the ESP panel
produces a larger number of well-imputed rare coding variants
than using the 1000G panel (Rsq40.6 for MAF50.5%; detailed
in Table 1). For example, the number of well-imputed variants
was 2.28, 2.83, and 1.54 times greater than that from 1000G for
MAF 50.2, 0.2–0.5 and 0.5–1%, respectively (Table 1). The
boost in imputation quality as well as in the number of well-
imputed markers is expected to enhance power for testing asso-
ciation with phenotypic traits. For example, out of the eight
novel blood trait associated variants reported in Auer et al.
(Auer et al., 2012), two are not in 1000G but ESP only
(Supplementary Table S3).

3.2 Impact of imputation reference panel constructed from
subjects selected based on extreme phenotypes

Many subjects sequenced in ESP were selected on the basis of
phenotypic extremes or disease status (detailed in Materials and
Methods), an approach that has been shown to increase power
for association testing of the specific phenotype (Barnett et al.,
2013; Guey et al., 2011; Kryukov et al., 2009). To our know-
ledge, the consequences of such a design for developing an
imputation reference panel have not been previously evaluated.
To this end, we constructed two ESP-derived reference panels:
‘ESP.extreme’ and ‘ESP.normal’ each of size H¼ 853" 2. The
former included 254 African Americans from LDL cholesterol
extremes, 247 from blood pressure extremes, 40 stroke cases, 39
early onset MI (EOMI) cases and 273 with extremely high BMI.
The latter included 85 samples with high LDL, 85 with low LDL
and 683 from the ‘middle’ of the phenotype distributions. We
observed no loss of imputation quality using the ‘Extreme’ panel.
(Fig. 3 and Supplementary Table S4).

3.3 Alternative options to use or combine ESP and 1000G
reference panels

Although our results suggested that the ESP panel led to sub-
stantially improved imputation accuracy of rare coding variants

compared with the 1000G panel, the combination of the two
panels could potentially result in even better performance than
either one individually. We considered the following four op-
tions. The default option, Option 0, was to select a single panel
a priori based on reference panel size, marker density and ances-
try match. In this case, Option 0 would be the ESP reference
panel alone, as it contains more haplotypes (3384 over 2184 in
1000G), greater marker density in exons and a better ancestry
match with the target African Americans. Option 1 was to first
impute using each panel separately, and then for each marker to
select the one with higher Rsq. Option 2 was to impute using a
concatenated panel of the two (ESP_U_1000G). Option 3 was to
impute using IMPUTE2, which allows two separate reference
panels (ESPþ 1000G).
The best option among the four was the concatenation of

the two panels (Option 2) with ESP alone (Option 0), a close
second best. For example, the average dosage r2 increased by
1.8%, 2.3% and 1.5%, respectively, for markers with MAF
50.2, 0.2–0.5 and 0.5–1% using Option 2 over Option 0
(Supplementary Fig. S2 and Supplementary Table S5). We
observed no noticeable gains using Option 1 compared with

Fig. 3. Comparison of dosage r2 between ESP.extreme and ESP.normal
imputation. The x-axis is the proportion of SNPs that were removed
based on elevated Rsq threshold (QC). The y-axis is the mean dosage
r2 (squared Pearson correlation between imputed dosages and experimen-
tal genotypes)

Fig. 2. Comparison of dosage r2 between ESP and 1000G full/relevant
panel imputation. The x-axis is the proportion of SNPs that were
removed based on elevated Rsq threshold (QC). The y-axis is the mean
dosage r2 (squared Pearson correlation between imputed dosages and
experimental genotypes)

Table 1. Number and percentage of well-imputed exonic variants

MAF Number (%) of well-imputeda markers ESP:1000G
ratio (Number
of well-imputed)ESP 1000G

0–0.2% 17606 (31.8) 7713 (3.0) 2.28
0.2–0.5% 26255 (70.0) 9283 (26.9) 2.83
0.5–1% 21377 (92.1) 13882 (62.9) 1.54
1–3% 29784 (96.7) 26466 (90.7) 1.13
3–5% 11490 (96.9) 11043 (96.0) 1.04
5–50% 40500 (98.0) 39849 (96.3) 1.02

aWell-imputed is defined such that the average Rsq of the QCþmarkers within
each MAF category is40.8.
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Table 4.4. Imputability of blood trait associated variants reported in Auer et al. 
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Table S3 Imputability of blood trait associated variants reported in Auer et al. 
 
�   �  �  �  Rsq 
rs ID chr position (b37) Trait Function Early ESP* ESP 1000G 

rs334 11 5,248,232 hematocrit missense 0.754 0.819 NA 
rs9924561 16 314,780 hemoglobin intron 0.535 0.869 0.919 
rs13335497 16 310,005 hemoglobin synonymous 0.595 0.899 0.949 
rs11863726 16 230,578 hemoglobin synonymous 0.518 0.633 0.653 
rs35837297 2 136,594,439 WBC missense 0.982 0.993 0.993 
rs35940156 2 136,575,300 WBC missense 0.981 0.994 0.990 
rs17292650 1 43,803,807 platelet missense 0.927 0.956 0.935 
rs513349 6 33,541,719 platelet intron 0.988 0.984 NA 

*As reported in Auer et al, these Rsq’s were from imputation using an earlier version of ESP containing 761 African 
Americans.  
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Table 4.5. Comparison of dosage r2 between ESP.extreme and ESP.normal imputation. 
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Table S4 Comparison of dosage r2 between ESP.extreme and ESP.normal imputationa. 

 ESP.normal 
as reference 

ESP.extreme 
as reference 

Difference 
(ESP.normal – 
ESP.extreme) 

Two-sided test 

MAF Mean SE Mean SE Mean SE Paired t-test Paired Wilcoxon 
signed-rank test 

0-0.2% 0.458 3.97E-03 0.466 4.30E-03 0.041 3.26E-03 1.51E-01 4.23E-02 
0.2-0.5% 0.557 1.44E-03 0.561 1.43E-03 -0.001 8.63E-04 9.35E-01 7.89E-01 
0.5-1% 0.691 8.54E-04 0.692 8.30E-04 0.001 3.95E-04 8.63E-01 9.53E-01 
1-3% 0.792 2.49E-04 0.785 2.54E-04 -0.006 7.84E-05 6.18E-03 1.62E-02 
3-5% 0.844 3.02E-04 0.840 3.12E-04 -0.004 6.53E-05 1.85E-02 8.44E-02 
5-50% 0.890 4.48E-05 0.886 4.55E-05 -0.004 6.47E-06 2.25E-26 5.71E-30 

aAll variants were included, irrespective of imputation quality Rsq.
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Table 4.6. Comparison of dosage r2 between option 2 and option 0a. 
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Table S5 Comparison of dosage r2 between option 2 and option 0a. 
 Option 0 Option 2 Difference 

(Option 2-Option 0) Two-sided test 

MAF Mean SE Mean SE Mean SE Paired t-test Paired Wilcoxon 
signed-rank test 

0-0.2% 0.518 3.43E-03 0.536 3.39E-03 0.018 1.94E-03 3.50E-01 1.54E-01 
0.2-0.5% 0.608 1.34E-03 0.630 1.27E-03 0.023 4.40E-04 4.57E-04 3.54E-02 
0.5-1% 0.728 7.74E-04 0.743 7.05E-04 0.015 2.01E-04 8.88E-06 8.26E-05 
1-3% 0.808 2.35E-04 0.818 2.15E-04 0.010 6.04E-05 7.75E-09 3.44E-07 
3-5% 0.855 2.88E-04 0.861 2.74E-04 0.005 5.84E-05 7.38E-05 4.45E-05 
5-50% 0.895 4.30E-05 0.899 4.11E-05 0.004 5.77E-06 8.46E-41 5.70E-80 

aAll variants were included, irrespective of imputation quality Rsq.
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Table 4.7. Comparison of dosage r2 between option 1 and option 0a. 
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Table S6 Comparison of dosage r2 between option 1 and option 0a. 
 Option 0 Option 1 Difference 

(Option 1-Option 0) Two-sided test 

MAF Mean SE Mean SE Mean SE Paired t-test Paired Wilcoxon 
signed-rank test 

0-0.2% 0.518 3.43E-03 0.526 3.47E-03 0.008 1.26E-03 5.01E-01 4.57E-01 
0.2-0.5% 0.608 1.34E-03 0.608 1.30E-03 0.0002 4.33E-04 9.78E-01 7.87E-01 
0.5-1% 0.728 7.74E-04 0.739 7.35E-04 0.011 3.71E-04 6.97E-02 2.75E-01 
1-3% 0.808 2.35E-04 0.819 2.21E-04 0.011 1.14E-04 7.56E-04 4.30E-02 
3-5% 0.855 2.88E-04 0.864 2.76E-04 0.009 1.61E-04 1.77E-02 5.76E-01 
5-50% 0.895 4.30E-05 0.909 3.90E-05 0.015 2.32E-05 2.34E-30 4.94E-39 

aAll variants were included, irrespective of imputation quality Rsq.
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Table 4.8. Comparison of dosage r2 between option 3 and option 0a. 
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Table S7 Comparison of dosage r2 between option 3 and option 0a. 
 Option 0 Option 3 Difference 

(Option 3-Option 0) Two-sided test 

MAF Mean SE Mean SE Mean SE Paired t-test Paired Wilcoxon 
signed-rank test 

0-0.2% 0.518 3.43E-03 0.444 3.60E-03 -0.073 2.12E-03 7.70E-04 1.87E-04 
0.2-0.5% 0.608 1.34E-03 0.562 1.38E-03 -0.043 6.24E-04 3.60E-06 2.92E-06 
0.5-1% 0.728 7.74E-04 0.689 7.83E-04 -0.039 3.04E-04 4.09E-13 8.74E-16 
1-3% 0.808 2.35E-04 0.781 2.50E-04 -0.027 1.02E-04 4.16E-19 7.89E-48 
3-5% 0.855 2.88E-04 0.829 3.27E-04 -0.028 9.61E-05 1.17E-30 3.27E-47 
5-50% 0.895 4.30E-05 0.879 4.83E-05 -0.016 1.14E-05 4.23E-127 3.59E-208 

aAll variants were included, irrespective of imputation quality Rsq.
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Table 4.9. Comparison of dosage r2 between IMPUTE2 resultsa. 
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Table S8 Comparison of dosage r2 between IMPUTE2 resultsa. 

MAF 

Option 0 
(ESP 

IMPUTE2) 
Mean 

Option 2 
(ESP_U_1000
G IMPUTE2) 

Mean 

Option3 
(ESP+1000G 

IMPUTE2) 
Mean 

Option 2 – Option 0 Option 3 – Option 0 

Difference 

Two-sided 
paired 

Wilcoxon 
signed-rank 

test 

Difference 

Two-sided 
paired 

Wilcoxon 
signed-rank 

test 
0-0.2% 0.421 0.443 0.444 0.0215 3.99E-01 0.023 4.21E-01 
0.2-0.5% 0.560 0.565 0.562 0.0046 9.63E-01 0.005 9.27E-01 
0.5-1% 0.684 0.689 0.689 0.0057 6.48E-01 0.005 6.83E-01 
1-3% 0.779 0.782 0.781 0.0034 1.27E-01 0.003 1.56E-01 
3-5% 0.830 0.831 0.829 0.0013 1.08E-01 -0.0005 5.85E-02 
5-50% 0.876 0.879 0.879 0.0026 3.89E-06 0.003 1.16E-06 

aAll variants were included, irrespective of imputation quality Rsq. 
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CHAPTER 5: ROBUST AND POWERFUL TWO-STEP TESTING PROCEDURE FOR 

ASSOCIATION ANALYSIS IN ADMIXED POPULATIONS 

5.1 Introduction 

Genome-wide association studies (GWAS) have been successful in improving our 

understanding of the genetic basis of numerous heritable diseases and quantitative traits 

(Visscher et al., 2012). Although GWAS have initially been performed with individuals of 

European ancestry, the field has expanded to non-European populations (Rosenberg et al., 2010). 

Performing genetic association analysis in diverse populations allows us to gain deeper 

understanding of the genetic architecture of human diseases and traits, through assessing the 

generalizability of risk variants (R. Chen et al., 2012; Ioannidis et al., 2004), narrowing down the 

location of the functional variants over the risk region (Helgason et al., 2007; International 

HapMap, 2005) and identifying novel disease loci which are absent or in low frequency in 

European population (Rosenberg et al., 2010). In the US, genetically admixed populations have 

been receiving increasing attention. Whereas, insufficient genetic association studies have been 

carried out. 

Association studies in admixed populations impose challenges due to the unique LD 

patterns resulted from admixture process, where gene flow occurs between two or more distinct 

populations (ancestral populations). Consequently, admixed chromosomes can be viewed as 

mosaic segments (local ancestry) originating from each of the ancestral populations (Shriner, 

2013). Therefore, admixed population exhibits two forms of LD – LD due to genetic linkage
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(ancestry LD) and that due to admixture process (admixture LD) (Chakraborty & Weiss, 1988). 

The unique LD patterns enable admixture mapping, a method taking advantage of the extended 

admixture LD to scan for the association between chromosome segments of certain ancestry and 

traits, with the assumption that the functional variants leading to increased risk have higher 

frequencies in chromosomal segments inherited from the ancestral population with higher 

disease risk (Chakraborty & Weiss, 1988; Shriner, 2013). Admixture mapping is particularly 

effective in detecting genetic loci with differential risk in the parental populations and requires 

the use of only a small panel of ancestry informative makers (AIMs). In spite of the advantages, 

the coarse scale of the admixture LD results in low resolution for gene mapping (Winkler et al., 

2010). 

With dense set of genotyped markers, GWAS provides high-resolution gene mapping. 

GWAS in admixed populations, however, exhibits special challenges from the presence of both 

ancestry LD and admixture LD, which may cause population stratification, thereby leading to 

spurious associations or false negatives (Kittles et al., 2002; J. Liu et al., 2013; Mao et al., 2013; 

Qin et al., 2010; X. Wang et al., 2011; Zhang & Stram, 2014). To meet the challenges, it is 

important to have proper treatment of local ancestry when conducting GWAS in admixed 

populations.  

As a result, advanced local ancestry inference methods have been developed to infer local 

ancestry of markers from high throughput genotyping data in admixed samples (Baran et al., 

2012; Patterson et al., 2004; Price et al., 2009). With the estimated local ancestry for each 

marker and the derived global ancestry, association studies have been performed by adjusting for 

local ancestry as a covariate (Levin et al., 2014), by conducting SNP and admixture mapping 
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separately using the same set of markers (Z. Chen et al., 2013; Reiner et al., 2012) or by 

selecting a subset of African ancestry individuals for subsequent analysis (J. Li et al., 2013). 

Theoretically, genetic and ancestry effect contain independent information, thus 

combining the two types of information may lead to increased statistical power. Tang et al. 

demonstrated this in a joint testing procedure by integrating the two types of information in a 

family-based study (Tang et al., 2010). Later, Pasaniuc et al. developed a joint test 

(MIXSCORE) in case-control GWAS setting (Pasaniuc et al., 2011). This method has been 

applied to a fine-mapping study in African Americans (Levin et al., 2014). Both methods show 

the usefulness of combining SNP and ancestry information assuming consistent SNP effect in the 

ancestral populations. However, effect heterogeneity may present when GWAS is conducted 

across diverse populations due to differential LD between ancestral populations (J. Liu et al., 

2013). For example, with a sample size of >80% power to detect significant association with 

equal effect size in a Caucasian cohort, association analysis in African Americans fails to 

replicate the validated associations identified in Caucasians (Frazier-Wood et al., 2013). Thus, to 

guard against missing important signals, Liu et al. included SNP by local ancestry interaction in 

a logistic regression model and showed increased power when substantial differential LD 

between ancestral populations exists (J. Liu et al., 2013).  

In this study, we propose a robust and powerful two-step testing procedure for association 

studies in African Americans. In the first step of the testing procedure, we jointly test allele 

effect, ancestry effect and the existence of effect heterogeneity in a regression model. The joint 

test guards against missing important associations from any of the sources, as the true underlying 

genetic architecture at each locus is unknown. The significant signals are carried on to the second 

step where we narrow down the source of association through a one-time model selection 
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process. We model the interaction between allele and ancestry by taking advantage of the joint 

distribution of allele and ancestry. It not only captures the effect heterogeneity among ancestral 

populations, but is more powerful than simply modeling the interaction using a cross-product 

term, particularly when local ancestry is estimated. In the present study, we assess the power and 

type I error of the proposed testing procedure and existing ones by conducting extensive 

simulations mimicking a broad spectrum of real life scenarios ranging from one extreme of effect 

solely due to allele effect, to the other extreme of solely ancestry effect and anywhere in 

between, as well as differential allelic effect across local ancestry groups. In addition to using 

true simulated local ancestry, we demonstrate the robustness of our results with estimated local 

ancestry in simulated data. Finally, we applied the two-step testing procedure to a genome-wide 

association analysis with hemoglobin using African American data from CARe, where we 

further illustrated the usefulness of our proposed testing procedure through verifying previous 

findings. 

5.2 Methods 

5.2.1 Simulation of admixed samples and reference haplotypes 

We simulated samples of admixed African and European ancestry and African and 

European reference haplotypes using COSI (Schaffner et al., 2005), a genotypic data simulator 

based on coalescent population genetic model. It is well calibrated to closely resemble empirical 

data in allele frequency, linkage disequilibrium and population differentiation (Schaffner et al., 

2005). We first generated 3000 African haplotypes and 3000 European haplotypes, 50kb each, to 

serve as the parental ancestry populations. Then 1000 haplotypes from each of the parental 

populations was randomly selected and kept as reference haplotypes. The remaining 2000 

African and 2000 European haplotypes were randomly combined to generate 1000 African 
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American samples. None of the parental ancestry haplotypes were reused. We constructed 

admixed samples based on the empirical estimate of 0.2125 switch points per 50kb region 

(Wegmann et al., 2011). To be specific, we first generated 425 African American chromosome 

segment containing one switch point by joining one randomly selected African chromosome 

segment and one randomly selected European chromosome segment. The switch point 

assignment was weighted by the recombination rate from the crossover map generated by COSI. 

We used a binomial distribution with probability 0.5 to decide which ancestral population went 

first. Next, from the pool of unused chromosome segments, we randomly selected 1408 African 

and 167 European ones, together with the 425 African American chromosome segments, to 

generate a collection of 2000 African American chromosome segments. The rates of switch point 

occurrence and proportion African ancestry were consistent with the findings presented in (Parra 

et al., 1998; Wegmann et al., 2011). Afterwards, we randomly paired the 2000 haploid African 

American chromosome segments to yield 1000 diploids. 1000 replicates of this process were 

performed. 

5.2.2 Simulation of quantitative traits 

For each locus, we simulated quantitative traits for the 1000 African American samples 

based on a null model or a causal model. Our null model consists of two independent covariates, 

E1 and E2. Let QT! = 0.5E!" + 0.5E!" + ϵ!, where E!~Bernoulli(0.5)and E!~Normal(0,1). 

Error term has a standard normal distribution and is independent across individuals. 

As summarized in Table 5.1, we simulated four scenarios for the causal model. In 

Scenario 1, only ancestry effect (𝛾) presents, which varies from 0.1 to 1 and the allele effect (𝛽) 

equals 0. In Scenario 2, both ancestry and allele effect exist while allele effect is driven by 

ancestry effect by a factor of 𝑘. The value of 𝑘 depends on the minor allele frequency difference 
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(𝛿). Scenario 3 has only allele effect (𝛽), which varies from 0.1 to 1 and 𝛾 equals 0. Both 

ancestral populations have the same effect direction. In Scenario 4, 𝛾 equals 0 and 𝛽 varies from 

0.1 to 1. The effect direction is opposite in African and European ancestral populations. 

Power was evaluated based on 10000 experiments. To be specific, in each of the 1000 

regions, 10 markers were randomly selected with replacement for each allele frequency 

difference category. Then causal models were applied to generate quantitative traits under 

alternative hypothesis. Type I error was assessed based on 100000 experiments. Specifically, in 

each of the 1000 regions, 100 markers were randomly selected with replacement for each allele 

frequency difference category. Then the null model is used to generate the quantitative traits 

under null. 

5.2.3 Inference of local ancestry using HAPMIX 

We used HAPMIX to predict local ancestry with reference from the 1000 Genomes 

Project (Phase I, March 2013 release). HAPMIX provides highly accurate local ancestry 

estimates in two-way admixed sample by leveraging LD within populations based on Hidden 

Markov Model (Price et al., 2009). We used the default parameters and “Diploid” mode. Instead 

of outputting, by default, the expected probability of 0, 1 or 2 copies of European ancestry at 

each SNP, we obtained the inferred joint distribution of local ancestry and genotype by setting 

“output_details” to “prob” (see Figure 5.1 for an example). The probabilities from the joint 

distribution allow us to calculate the expected copies of reference alleles (i.e., genotype, ranging 

from 0 to 2), expected copies of African ancestry alleles (i.e., local ancestry, ranging from 0 to 2) 

and expected copies of African ancestry reference alleles (ranging from 0 to 2). Since the 16 

probabilities of each marker may not sum up to 1, we did a conditional adjustment for each 

probability to make sure the summation is up to 1. Accuracy of HAPMIX local ancestry 
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estimation was evaluated by calculating the Pearson correlation between the estimated and true 

values. 

5.2.4 Association tests 

We evaluated the performance of the first step of our proposed testing procedure (T4) and 

three other existing methods (T1-3) by comparing power and type I error in the four simulated 

scenarios. In scenario 4 where effect heterogeneity presents, we compared our interaction model 

(T4) with the traditional one (T5) including the cross-product term. 

• T1: 𝐸 𝑌 = 𝛼! + 𝛼!!𝐸! + 𝛼!!𝐸! + 𝛼!𝐺 + 𝛽𝑋!"!, where 𝐸! and 𝐸! are two 

simulated covariates, 𝐺 is the estimated global African ancestry (half of the 

average African alleles per person) and 𝑋!"# is the number of reference alleles at 

each locus and we test for 𝛽 = 0. T1 is the test that commonly used in GWAS to 

examine whether there is an allele effect on the phenotype, assuming an additive 

genetic model.  

• T2: 𝐸 𝑌 = 𝛼! + 𝛼!!𝐸! + 𝛼!!𝐸! + 𝛼!𝐺 + 𝛾𝑋
!"#, where 𝑋!"# is the number of 

African ancestry alleles at each locus and we tests for 𝛾 = 0. T2 is the statistical 

test that is used in admixture mapping to scan for the ancestry effect of variants 

with frequency disparity between African and European populations. 

• T3: 𝐸 𝑌 = 𝛼! + 𝛼!!𝐸! + 𝛼!!𝐸! + 𝛼!𝐺 + 𝛽𝑋!"# + 𝛾𝑋
!"# and we test for 

𝛽 = 𝛾 = 0. T3 jointly tests for allele and ancestry effect, which leverages the 

dense set of genotyped markers while does not sacrifice power due to multiple 

testing correction when testing for the two effects separately.  
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• T4: 𝐸 𝑌 = 𝛼! + 𝛼!!𝐸! + 𝛼!!𝐸! + 𝛼!𝐺 + 𝛽𝑋!"# + 𝛾𝑋
!"# + 𝜂𝑋!"#

!"#, where 𝑋!"#
!"# 

is the number of African ancestral reference allele at each locus. T4 is an 

extension of T3 by incorporating the interaction between genotype and ancestry. 

Taken advantage of the allele and ancestry joint distribution provided by 

HAPMIX, we parameterize the interaction as the allele-specific ancestry estimate 

to propose a two-step testing procedure. In the first step, we tests for 𝛽 = 𝛾 =

𝜂 = 0. Since the true underlying disease locus and LD between the tested marker 

and causal locus are unknown, testing all three terms simultaneously (T4) is 

especially powerful with little issue of false negatives.  

• T5: 𝐸 𝑌 = 𝛼! + 𝛼!!𝐸! + 𝛼!!𝐸! + 𝛼!𝐺 + 𝛽𝑋!"# + 𝛾𝑋
!"# + 𝜂𝑋!"# ∗ 𝑋!"#, 

which captures the present of effect heterogeneity using traditional cross-product 

interaction term. 

We evaluated the power of our proposed test (T4) and other tests using both true and 

estimated local ancestry. Power was calculated by counting the number of times in the 10000 

experiments when P-value is less than the GWAS significance threshold of 5×10!! for model 

T1, T3, T4 and T5 or less than the significance threshold of 7×10!! for admixture mapping 

model T2 (Reiner et al., 2012). 

Next, we evaluated the power of the second step of the proposed testing procedure, that 

is, the proportion of times the source of association can be correctly identified. To do so, we 

traced the source of association through a one-time model selection by comparing the absolute 

value of the test statistics associated with β, γ and η among the significant loci from the first 

step. 
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5.2.5 CARe data set 

The Candidate-gene Association Resource (CARe) consortium has been previously 

described (Musunuru et al., 2010). We applied our proposed testing procedure to study 

associations in 5711 African American participants from two CARe cohorts, Atherosclerosis 

Risk in Communities (ARIC) and Coronary Artery Risk Development in young Adults 

(CARDIA). These cohorts have been previously described (Bild et al., 2002; Friedman et al., 

1988). All samples were genotyped using Affymetrix Genome-Wide Human SNP Array 6.0 

Chip at the Broad Institute of MIT and Harvard. Markers with genotype call rates < 90%, or 

Hardy-Weinberg exact test P-value < 1×10!!, or MAF < 1% were removed. 

5.2.6 WHI-SHARe data set 

We replicated our findings in a cohort of 8087 African American participants from 

Women’s Health Initiative SNP Health Association Resource (WHI-SHARe) study. All samples 

were genotyped using the Affymetrix 6.0 genotyping platform. Prior to local ancestry inference, 

we removed Affymetrix 6.0 SNPs with genotype call rates < 90%, or Hardy-Weinberg exact test 

P-value < 1E-06, or MAF < 1%. Quality control details were described previously (Reiner et al., 

2012; Reiner et al., 2011). 

5.3 Results 

5.3.1 Power evaluation with simulated data using true local ancestry 

An advantage of performing association analysis in admixed populations is that it allows 

the identification of risk variants leading to disease disparity, which have substantial allele 

frequency difference, even monomorphic with different alleles, between two parental 

populations. For example, DARC null allele for white blood cells (Lautenberger et al., 2000), 
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SLC24A5 for skin pigmentation (Lamason et al., 2005) and APOL1 for kidney disease 

(Genovese et al., 2010). Such association may be missed if genetic analysis is only conducted in 

one homogeneous population. 

Bearing this in mind, we stimulated Scenario 1, where association is found only in one 

parental population. To be specific, we assumed that the causal allele presents solely in African 

ancestral populations with a fixed allele frequency of 1, leading to raised mean trait value, and 

the non-risk allele is monomorphic in European descendent populations. We also assumed that 

the tested SNP, which is not causal, locates in close vicinity of the causal variant (with strong 

admixture LD) but in complete ancestry linkage equilibrium with it, so that the SNP-trait 

association is driven by the local ancestry of the tested SNP which can hardly be captured by 

testing for SNP effects alone. As expected, T2, T3 and T4, which designed to test for the 

ancestry effect, are well powered to detect this association at modest effect size, regardless of the 

allele frequency differences (Figure 5.2). T2 shows advantage in this setting mainly due to lower 

multiple testing burden. As to control an overall type I error rate of 5%, the significance 

threshold of admixture mapping is set at 7×10!! rather than a typical GWAS significant 

threshold of 5×10!!, which is used by all the other tests. In this scenario, statistical power is not 

affected much by allele frequency difference, as the association is driven by local ancestry rather 

than genotype. 

Based upon Scenario 1, we simulated a more realistic case (Scenario 2) by allowing allele 

effect. Similar to the previous scenario, the causal allele presents only in African ancestral 

populations with a nearly fixed allele frequency of 1, contributing to the elevated mean trait 

value. Again, the tested SNP, non-causal, is in strong admixture LD with the causal variant. In 

Scenario 2, we assumed that the tested SNP is in low to moderate ancestry LD with the causal 
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allele. The strength of the ancestry LD is reflected by the allele frequency difference of the tested 

SNP in African and European populations. To be specific, similar allele frequency in the two 

parental populations indicates low LD between the causal and the tested SNP, a case similar to 

that in Scenario 1. As the frequency difference increases, the ancestry LD between the causal and 

the tested SNP becomes stronger, where we would observe both ancestry and allele effect. Thus, 

whether or not the allele effect can be captured depends on the allele frequency difference. As 

shown in Figure 5.3, when allele frequency difference is small (0-0.03), the observed pattern is 

similar to that in Scenario 1. The power of T2 does not change with the increase of allele 

frequency difference, as it only tests for ancestry effect. T3 and T4, which tests for both SNP and 

ancestry effect, have the greatest power gain with the growing allele frequency difference and 

become more powerful than T2 for moderate effect size when allele frequency difference is 

greater than 0.2. T3 and T4 have comparable power in this scenario. 

Often times, the risk variants identified in European population are transferable to other 

ethnicities with consistent effect direction and magnitude (Loth et al., 2014; Teslovich et al., 

2010). Therefore, in Scenario 3, we simulated a case where African and European ancestral 

populations share the same risk allele with similar effect size and direction. It happens when the 

LD between the causal and the tested SNP share the same direction in the parental populations. 

Difference in mean trait values in the two populations is caused by the difference in allele 

frequency. Figure 5.4 shows the power comparison in Scenario 3 for effect size ranging from 0.1 

to 1 stratified by allele frequency difference. T1, T3 and T4 have comparable performance with 

the increase of effect size. The 1-df test (T1) is slightly more powerful than the 2- and 3-df test 

(T3 and T4). As expected, T2 has dramatic power loss, as it fails to capture the SNP effect. For a 

fixed effect size, power tends to increase with the growing differential allele frequencies. 
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On the contrary, effect heterogeneity has been reported across populations, which 

motivated us to simulate Scenario 4 (Frazier-Wood et al., 2013). In this scenario, association can 

be found in both ancestral populations while the LD between the causal and the tested SNP in the 

two ancestral populations is in the opposite direction, leading to effect heterogeneity in the two 

populations. Although this may only happen to a small fraction of loci, it is worth being taken 

into account to ensure full understanding of the underlying genetic structure in worldwide 

populations. We compared the power across a broad spectrum of effect sizes and allele 

frequency differences (Figure 5.5). In this scenario, T4 outperforms all three other tests. With a 

moderate effect size (𝛽 = 0.5), T4 achieves a power gain of 168%, 589% and 150% for markers 

with frequency difference between 0.05 and 0.1. 

Once a significant signal is found by T4, it is necessary to identify which component 

contributes to the association. Thus, as the second step of the proposed testing procedure, we 

aims to narrowing down the primary source of association by performing a single model 

selection by comparing the absolute values of the test statistics of the allele, ancestry and 

ancestry-specific allele effect. To examine the power of this second step, we calculated the 

fraction of times that an effect is correctly identified in each of the four scenarios, given the 

tested SNP passes the significance threshold in the first step. Table 5.2 shows the average 

proportion of times that the source of association is correctly identified across small (β = 0.3) to 

large (β = 1) effect size. It is noteworthy that when effect heterogeneity exists (Scenario 4), this 

step is powerful to identify the ancestry-specific risk allele achieving a power of over 90% with 

mean 93.3%. In addition, it is efficient (> 95%) to identify ancestry effect as the only source of 

association (Scenario 1) and ancestry with allele effect (Scenario 2). The power to detect allele 

effect as the only source of association (Scenario 3) is slightly lower but above 80%.  
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Importantly, modeling interaction term by taking advantage of the joint distribution of 

ancestry and allele (T4) achieves higher power than using traditional interaction model (T5). In 

T4, effect heterogeneity between two parental populations is captured by the number of African 

ancestry reference alleles, rather than the cross-product of number of reference alleles and 

African ancestry alleles. Thus T4 contains more precise information leading to enhanced power 

in testing interactions. Table 5.3 displays the ratio of the power of T4 to that of T5 in Scenario 4. 

T4 has higher power than T5 across different beta values and allele frequency differences, 

particularly when beta is small. This observation holds in both Step 1 and Step 2.  

5.3.2 Type I error  

We used 100000 experiments to evaluate the type I error at the nominal significance level 

α = 0.05, 0.01, 0.001 in the null model (β = γ = η = 0). Results are summarized in Table 5.4. 

Across allele frequency difference categories, all tests appropriately control the type I errors. 

5.3.3 Power in simulated data with estimated local ancestry 

In the above four scenarios, particularly Scenario 4, we show using simulated data and 

true local ancestry that our testing procedure incorporating allele specific ancestry is powerful. In 

real data analysis, however, the local ancestry and allele specific ancestry are unknown. Thus the 

usefulness of the proposed test largely depends on the accuracy of the estimated ancestry. For 

this reason, next we examine whether the observed patterns remain if we use inferred ancestry 

and how much power loss would there be. 

We first evaluated the accuracy of the estimated local ancestry and allele specific 

ancestry by calculating the Pearson correlation coefficient between the true and inferred ones. As 

shown in Table 5.5, the median correlation for the estimated genotype, African allele and 

African reference allele is above 0.8. Note that the inferred African reference allele is highly 



 

 71 

accurate. For markers with MAF less than 0.05 in African population, we notice decrease in the 

accuracy of allele specific ancestry estimates but the median correlation is still above 0.8. 

Having confirmed that local ancestry can be inferred with adequate accuracy at both 

marker and allele level, we performed power analysis using inferred local ancestry with the same 

simulated data set. Then we compared the results with what obtained earlier using true ancestry. 

Overall, the pattern remains using inferred local ancestry in Scenario 1 through 4. Figure 5.6 

shows the evaluation performed in Scenario 4. As expected, although using inferred ancestry 

incurs slightly power loss, the pattern observed earlier remains.  

We also examine the fraction of times a source of association is correctly identified using 

inferred local ancestry and allele specific ancestry in the second step of our proposed testing 

procedure. Similar results are obtained as those using true ancestry.  

When comparing with T5, T4 achieves higher power using estimated local ancestry 

(Table 5.6). Note that the better performance of T4 is more evident when using estimated local 

ancestry than true local ancestry. This may be due to the more accurate estimation of African 

reference allele than African ancestry as shown in Table 5.5. 

5.3.4 Application to real phenotypes  

We applied the proposed 2-step testing procedure genome-wide to test for the association 

between one of the hematological traits, hemoglobin, and genetic variants in African American 

samples from CARe project. Many genetic loci has been reported to be associated with 

hemoglobin in Europeans (van der Harst et al., 2012), East Asians (Kamatani et al., 2010) and 

African Americans (Auer et al., 2012; Auer et al., 2014; Z. Chen et al., 2013; Lo et al., 2011). 

In this analysis, we first perform a genome-wide 3-df joint test (T4) adjusting for age, 

proportion of global African ancestry, cohort and smoking status. Then in the second step, we 
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conduct a single model selection by comparing the test statistics of allele, ancestry and ancestry 

specific allele effect. We consider a suggestive P-value threshold of 1×10!!. Our analysis 

strategy was validated by the replication of previously reported hemoglobin associated loci. As 

shown in Table 5.7, SNP rs9940149 and rs7199221 on chromosome 16 show a strong allele 

effect, indicating similar effect in African and European ancestral populations. It is worth noting 

that rs1211375 on chromosome 16 shows a strong ancestry-specific allele effect, suggesting 

effect heterogeneity at this locus in African and European ancestral populations. This differential 

effect is replicated in WHI-SHARe data set (P-value = 5.78×10!!, allele effect = 0.54, ancestry 

effect = 0.50 and African ancestry allele effect = -1.04). 

5.4 Discussion 

Association studies in admixed populations bring opportunities to gain deeper 

understanding of genetic architecture of complex diseases and traits, whereas require special 

treatment of the local ancestry due to differential origin of the chromosomal segments. In this 

study, we propose a robust and powerful two-step testing procedure for association analysis in 

African Americans. We demonstrate its usefulness in extensive numerical simulations and real 

data analysis. 

The underlying genetic structures are unknown and can be complex in admixed 

populations. Therefore, we simulated data covering 4 scenarios that reflect the complexity of the 

real admixed data set, which includes only ancestry effect (Scenario 1), both ancestry and allele 

effect (Scenario 2), only allele effect but homogeneous in the two parental populations (Scenario 

3) and only allele effect but heterogeneous (Scenario 4). We also provided justifications of the 

relationship between the tested SNP and causal variant. As shown in the results, without prior 

knowledge of the form of association, T4, which tests for allele, ancestry and their interaction 
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simultaneously, achieves competitive performance in all scenarios and is superior when effect 

heterogeneity exists. As expected, power of the tests depends on the underlying genetic structure. 

Generally, power is slightly greater when the test matches the simulated underlying model, 

although the power loss for mis-specifying the model is small. When ancestry effect is the only 

source of association, T2 is more powerful than other tests which may be due to 1) its matching 

with the simulated model, 2) the lower significant threshold (7×10!!). When homogeneous 

allele effect is the only source of association, T1 has the best performance due to its matching 

with the simulated model and T4 has slightly power loss.  

The second step in the 2-step testing procedure can help tease apart the source of 

association. From our results, we show that it is highly powerful at the presence of a strong 

ancestry by allele interaction. The advantage of our parameterization of the interaction term as 

the number of African reference alleles is that it is more powerful to detect the presence of effect 

heterogeneity than the traditional cross-product interaction term. The enhanced power comes 

from more precise capture of the local ancestry information down to the allele level. This 

advantage is more evident when local ancestry is estimated, as the estimation accuracy of the 

number of African reference alleles is higher than that of the number of African alleles, which is 

used in the cross-product term.  

We use a GWAS significance threshold of 5×10!! for all tests involving allele effect 

(T1, T3 and T4) and 7×10!! for T2, the test used in admixture mapping. The rational of using a 

substantially lower critical value for genome-wide significance of admixture mapping is based 

on previous theoretical analysis and simulation results that a threshold of 7×10!! provides a 

genome-wide type I error of 0.05, because of the extensive correlation in local ancestry in 

admixed populations (Tang et al., 2006). However, it is still unclear whether we should adjust 
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the GWAS significance threshold accordingly for other tests because of the reduced number of 

independent tests in admixed populations. 

The local ancestry and allele-specific ancestry are estimated using HAPMIX and our 

assessment shows the estimation is highly accurate. However, the accuracy comes with the cost 

of high computation demand. To cope with the computational burden, we restricted our reference 

to the overlapping markers between the reference and genotyped markers, allowing only 

imputation for sporadic missingness among the genotypes. As a result, our analysis is limited to 

typed markers. To obtain a finer resolution, one may apply a suggestive P-value, e.g., 1×10!!, 

to obtain the candidate region and follow it up by fine mapping. Through restricting to a small 

region, it is more computationally feasible to infer the local ancestry for both typed and imputed 

markers. We learned from our practice that it is necessary to raise the mutation rate parameter by 

a factor of 10 when using sequencing based reference haplotypes from the 1000 Genome project, 

as is recommended in the HAPMIX tutorial. After using a higher mutation rate, we obtain 

similar local ancestry estimation as is reported previously (Reiner et al., 2012). A caveat of using 

the joint distribution generated by HAPMIX is that all samples need to be included to ensure the 

same reference allele for each individual when allele-specific ancestry is obtained. We paralleled 

the process by modifying HAPMIX into three separate steps including 1) generate reference 

related and genotype related files; 2) infer local ancestry for each sample and 3) clean up the 

temporary files keeping only the output files. The first step needs to include all samples to ensure 

the same reference allele is used, which is the most memory-consuming step. The second step 

can be run in parallel individually, which dramatically speeds up the inference process if one has 

thousands of samples.  
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We demonstrated the usefulness of our two-step testing procedure through testing for the 

association with hemoglobin using data from CARe. In the first step, we replicated previous 

findings and in the second step, we are able to pinpoint the primary source of association. When 

a SNP passing GWAS significance in the first step, it is advisable to check the MAF of the tested 

SNP in each of the reference populations (e.g., AFR and EUR in the 1000 Genomes project). We 

noticed that a marker with MAF zero in one reference population may be identified to be 

significant with a strong interaction term, which is actually an artifact due to local ancestry 

estimation error. 
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Figure 5.1. HapMix output (per marker per subject) as joint probability of genotype and 
local ancestry. “A” and “E” represent allele ancestry of AFR and EUR, respectively. “1” and “0” 
represent minor and major alleles, respectively. Copies of minor alleles are calculated by 
summing up the number of minor alleles of African and European ancestry. Copies of African 
ancestry alleles are calculated by summing up the number of minor and major alleles of African 
ancestry. 
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C3b) Methods 
Study subjects 
The JHS is a prospective population-based study aiming to identify the causes for the 
disproportionally high risk of common complex diseases among African Americans including 
cardiovascular disease, type-2 diabetes, obesity, chronic kidney disease and stroke (58). Over 5000 
African American subjects were recruited in the Jackson, Mississippi metropolitan area. The study 
design has been described previously (80). In the current study, 2,347 subjects with iron-related 
phenotype data and genotype data from both Affymetrix 6.0 and ExomeChip will be used for analysis.  
Iron-related phenotypes 
The phenotypes to be used in the study have been described previously (81). Briefly, all phenotypes 
were measured from fasting blood samples using Ferrozine colorimetric assay (serum iron and TIBC) 
and immunoturbidimetric assay (ferritin) from Roche. All values were standardized and calibrated. 
(serum iron/TIBC)*100% was used to calculate SAT. 
Genotyping and imputation 
Affymetrix 6.0 and ExomeChip genotyping and quality control were performed as described 
previously (81). After merging genotype data from Affymetrix 6.0 and ExomeChip, a total of 2,449 
samples and 1,065,343 SNPs remained and will be used for further analysis. 
Genotype imputation has been carried out using two-step imputation including pre-phasing using 
Mach (33) and haplotype-to-haplotype imputation using minimac (16). We used reference haplotypes 
from the phase I 1000G (version 3; March 2011 release) to impute into the genotype data from 
Affymetirx 6.0.  
Local ancestry inference  
We will use HAPMIX (22) to infer local ancestry at each locus across the genome for each African 
American subject in the sample. We will use AFR and EUR haplotypes from 1000G as reference 
panel for local ancestry estimation. Untyped 
markers will be imputed by HAPMIX internally. 
Since the most comprehensive recombination 
rate information is from the international 
HapMap project (HapMap), we will perform 
linear extrapolation to obtain genetic 
coordinates of 1000G markers that absent in 
HapMap. To reduce the influence of switching 
errors resulted from external phasing software, 
we will take advantage of the build-in phasing 
step in HAPMIX by adopting the “dipoid mode” 
which takes genotype data as input.  
To take full advantage of the ancestry 
information, we will obtain output in the form of 
inferred joint distribution of local ancestry and 
allele value per locus per individual in the 
analysis, that is, sixteen probabilities for all 
combinations of genotype and ancestry (Figure 5).  
Output from HAPMIX can be incompatible with observed genotypes. For example, at a heterozygous 
site the probabilities from homogenous genotypes can be non-zero in HAPMIX output. To enhance 

Figure 5 HAPMIX output (per marker per subject) as joint 
probability of genotype and local ancestry and its connection 
to notation used in the proposal. “A” and “E” represent allele 
ancestry of AFR and EUR, respectively. “1” and “0” represent 
minor and major alleles, respectively. Copies of African ancestry 
alleles are calculated by summing up the number of minor and 
major alleles of African ancestry. 

A1# A0# E1# E0#

A1# A1A1# A1A0# A1E1# A1E0#

A0# A0A1# A0A0# A0E1# A0E0#

E1# E1A1# E1A0# E1E1# E1E0#

E0# E0A1# E0A0# E0E1# E0E0#

A1# A0# E1# E0#

A1# A1A0$ A1A0$ A1E1$ A1E0$

A0# A0A1$ A0A0$ A0E1$ A0E0$

E1# E1A1$ E1A0$ E1E1$ E1E0$

E0# E0A1$ E0A0$ E0E1$ E0E0$

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

A1# A0# E1# E0#

A1# A1A0$ A1A0$ A1E1$ A1E0$

A0# A0A1$ A0A0$ A0E1$ A0E0$

E1# E1A1$ E1A0$ E1E1$ E1E0$

E0# E0A1$ E0A0$ E0E1$ E0E0$

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

genotype and local ancestry, we will have the number of minor alleles from 

African ancestry, denoted by !!"#!"# (ranges from 0 to 2), and the number of major 

alleles from African ancestry, denoted by !!"#,!!"#  (ranges from 0 to 2), where  

 

!!"# 

 

!!"#!"# 

 

!!"#!"# 

 

 

 Our model for single marker test will be !! = !! + !!!"#$%&$'() + !!!"#,! +

!!!!"#,!!"# + !!!!"#,!!"# + !! with null hypothesis ! = !! = !! = 0. By jointly testing 

local ancestry and genotype, we would capture association from both sources. 

Importantly, our!

Figure S1. HapMix output (per marker per subject) as joint probability of genotype and local ancestry. “A” and 
“E” represent allele ancestry of AFR and EUR, respectively. “1” and “0” represent minor and major alleles, 
respectively. Copies of minor alleles are calculated by summing up the number of minor alleles of African and 
European ancestry. Copies of African ancestry alleles are calculated by summing up the number of minor and 
major alleles of African ancestry. 
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Figure 5.2. Statistical power of the four tests in Scenario 1 where African ancestral alleles 
associated with trait. Power is plotted as a function of effect size stratified by allele frequency 
differences between African and European ancestral populations. 
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Based upon Scenario 1, we simulated a more realistic case (Scenario 2) by allowing allele effect. 

Similar to the previous scenario, the causal allele presents only in African ancestral populations 

with a nearly fixed allele frequency of 1, contributing to the elevated mean trait value. Again, the 

tested SNP, non-causal, is in strong admixture LD with the causal variant. In Scenario 2, we 

assumed that the tested SNP is in low to moderate ancestry LD with the causal allele. The 

strength of the ancestry LD is reflected by the allele frequency difference of the tested SNP in 

African and European populations. To be specific, similar allele frequency in the two parental 

populations indicates low LD between the causal and the tested SNP, a case similar to that in 

Scenario 1. As the frequency difference increases, the ancestry LD between the causal and the 

tested SNP becomes stronger, where we would observe both ancestry and allele effect. Thus, 

whether or not the allele effect can be captured depends on the allele frequency difference. As 

shown in Figure 2, when allele frequency difference is small (0-0.03), the observed pattern is 

similar to that in Scenario 1. The power of T2 does not change with the increase of allele 
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Figure 1. Statistical power of the four tests in Scenario 1 where African ancestral alleles associated with trait. 
Power is plotted as a function of effect size stratified by allele frequency differences between African and 
European ancestral populations. 
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Figure 5.3. Statistical power of the four tests in Scenario 2 where risk alleles presents only 
in African ancestral population with weak to moderate ancestry LD with the tested SNP. 
Power is plotted as a function of effect size stratified by allele frequency difference between 
African and European ancestral populations. 
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frequency difference, as it only tests for ancestry effect. T3 and T4, which tests for both SNP and 

ancestry effect, have the greatest power gain with the growing allele frequency difference and 

become more powerful than T2 for moderate effect size when allele frequency difference is 

greater than 0.2. T3 and T4 have comparable power in this scenario. 

 

 

 

Often times, the risk variants identified in European population are transferable to other 

ethnicities with consistent effect direction and magnitude (Loth, et al., 2014; Teslovich, et al., 

2010). Therefore, in Scenario 3, we simulated a case where African and European ancestral 

populations share the same risk allele with similar effect size and direction. It happens when the 

LD between the causal and the tested SNP share the same direction in the parental populations. 

Difference in mean trait values in the two populations is caused by the difference in allele 

frequency. Figure 3 shows the power comparison in Scenario 3 for effect size ranging from 0.1 

to 1 stratified by allele frequency difference. T1, T3 and T4 have comparable performance with 
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Figure 2. Statistical power of the four models in Scenario 2 where risk alleles presents only in African ancestral 
population with weak to moderate ancestry LD with the tested SNP. Power is plotted as a function of effect size 
stratified by allele frequency difference between African and European ancestral populations. 
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Figure 5.4. Statistical power of the four tests in Scenario 3 where risk alleles associate with 
trait both in African and European ancestral population with consistent effect size and 
direction. Power is plotted as a function of effect size stratified by allele frequency differences 
between African and European ancestral population. 
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the increase of effect size. The 1-df test (T1) is slightly more powerful than the 2- and 3-df test 

(T3 and T4). As expected, T2 has dramatic power loss, as it fails to capture the SNP effect. For a 

fixed effect size, power tends to increase with the growing differential allele frequencies. 

 

 

 

On the contrary, effect heterogeneity has been reported across populations, which motivated us 

to simluate Scenario 4 (Frazier-Wood, et al., 2013). In this scenario, association can be found in 

both ancestral populations while the LD between the causal and the tested SNP in the two 

ancestral populations is in the opposite direction, leading to effect heterogeneity in the two 

populations. Although this may only happen to a small fraction of loci, it is worth being taken 

into account to ensure full understanding of the underlying genetic structure in worldwide 

populations. We compared the power across a broad spectrum of effect sizes and allele 

frequency differences (Figure 4). In this scenario, T4 outperforms all three other tests. With a 

● ●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ●● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ●● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ● ●

● ● ● ● ● ● ● ● ● ●● ●

●

●

●

●
●

● ● ●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ●● ●

●

●

●

●
●

● ● ●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

0−0.05 0.05−0.1

0.1−0.2 >0.2

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Beta

Po
we

r

Test
●

●

●

●

T1
T2
T3
T4

geno.homo

Figure 3. Statistical power of the four models in Scenario 3 where risk alleles associate with trait both in African 
and European ancestral population with consistent effect size and direction. Power is plotted as a function of 
effect size stratified by allele frequency differences between African and European ancestral population. 
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Figure 5.5. Statistical power of the four tests in Scenario 4 where risk alleles associate with 
trait both in African and European ancestral populations with inconsistent effect direction. 
Power is plotted as a function of effect size stratified by allele frequency difference between 
African and European ancestral populations. 
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moderate effect size (! = 0.5), T4 achieves a power gain of 168%, 589% and 150% for markers 

with frequency difference between 0.05 and 0.1. 

 

 

 

Once a significant signal is found by T4, it is necessary to identify which component contributes 

to the association. Thus, as the second step of the proposed testing procedure, we aims to 

narrowing down the primary source of association by performing a single model selection by 

comparing the absolute values of the test statistics of the allele, ancestry and ancestry-specific 

allele effect. To examine the power of this second step, we calculated the fraction of times that 

an effect is correctly identified in each of the four scenarios, given the tested SNP passes the 

significance threshold in the first step. Table 2 shows the average proportion of times that the 

source of association is correctly identified across small (! = 0.3) to large (! = 1) effect size. It 

is noteworthy that when effect heterogeneity exists (Scenario 4), this step is powerful to identify 
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Figure 4. Statistical power of the four models in Scenario 4 where risk alleles associate with trait both in African 
and European ancestral populations with inconsistent effect direction. Power is plotted as a function of effect 
size stratified by allele frequency difference between African and European ancestral populations.  
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Figure 5.6. Power comparison among four tests with simulated true and inferred ancestry 
under Scenario 4. 

 
  

! 17!

Having confirmed that local ancestry can be inferred with adequate accuracy at both marker and 

allele level, we performed power analysis using inferred local ancestry with the same simulated 

data set. Then we compared the results with what obtained earlier using true ancestry. Overall, 

the pattern remains using inferred local ancestry in Scenario 1 through 4. Figure 5 shows the 

evaluation performed in Scenario 4. As expected, although using inferred ancestry incurs slightly 

power loss, the pattern observed earlier remains.  

 

 
 

 

We also examine the fraction of times a source of association is correctly identified using 

inferred local ancestry and allele specific ancestry in the second step of our proposed testing 

procedure. Similar results are obtained as those using true ancestry (Table S2 and Table S3).  

 

When comparing with T5, T4 achieves higher power using estimated local ancestry (Table S4). 

Note that the better performance of T4 is more evident when using estimated local ancestry than 
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Figure 5. Power comparison among four tests with simulated true and inferred ancestry under Scenario 4. 
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Table 5.1. Four simulation settings 

 

  

! 6!

As summarized in Table 1, we simulated four scenarios for the causal model. In Scenario 1, only 

ancestry effect (!) presents, which varies from 0.1 to 1 and the allele effect (!) equals 0. In 

Scenario 2, both ancestry and allele effect exist while allele effect is driven by ancestry effect by 

a factor of !. The value of ! depends on the minor allele frequency difference (!). Scenario 3 

has only allele effect (!), which varies from 0.1 to 1 and ! equals 0. Both ancestral populations 

have the same effect direction. In Scenario 4, ! equals 0 and ! varies from 0.1 to 1. The effect 

direction is opposite in African and European ancestral populations.  

 
Table 1. Four simulation settings 

Scenario Ancestry effect (!) Allele effect (!) Effect direction 
(AFR/EUR) Allele frequency difference (!) 

1 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 and 1 0 NA/NA 0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 

0.3-0.4 and >0.4 

2 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 and 1 !×! 1 + / NA 0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 

0.3-0.4 and >0.4 

3 0 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 and 1 + / + 0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 

0.3-0.4 and >0.4 

4 0 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9 and 1 + / - 0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 

0.3-0.4 and >0.4 
1! = 0.1, when 0 < ! < 0.05;!! = 0.2, when 0.05 < ! < 0.1; ! = 0.3, when 0.1 < ! < 0.2;!! = 0.4, when 0.2 < ! < 0.3; 
! = 0.5, when 0.3 < ! < 0.4; and!! = 0.6, when ! > 0.4. 

 

Power was evaluated based on 10000 experiments. To be specific, in each of the 1000 regions, 

10 markers were randomly selected with replacement for each allele frequency difference 

category. Then causal models were applied to generate quantitative traits under alternative 

hypothesis. Type I error was assessed based on 100000 experiments. Specifically, in each of the 

1000 regions, 100 markers were randomly selected with replacement for each allele frequency 

difference category. Then the null model is used to generate the quantitative traits under null. 

 

Inference of local ancestry using HAPMIX 

We used HAPMIX to predict local ancestry with reference from the 1000 Genomes Project 

(Phase I, March 2013 release). HAPMIX provides highly accurate local ancestry estimates in 

two-way admixed sample by leveraging LD within populations based on Hidden Markov Model 

(Price, et al., 2009). We used the default parameters and “Diploid” mode. Instead of outputting, 

by default, the expected probability of 0, 1 or 2 copies of European ancestry at each SNP, we 

obtained the inferred joint distribution of local ancestry and genotype by setting “output_details” 
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Table 5.2. Average proportion of times that the source of association is correctly identified. 

 
  

! 15!

the ancestry-specific risk allele achieving a power of over 90% with mean 93.3%. In addition, it 

is efficient (> 95%) to identify ancestry effect as the only source of association (Scenario 1) and 

ancestry with allele effect (Scenario 2). The power to detect allele effect as the only source of 

association (Scenario 3) is slightly lower but above 80%. Table S1 shows the proportions broken 

down by effect size.  
Table 2. Average proportion of times that the source of association is 

correctly identified. 
 Allele frequency difference 

 0-0.05 0.05-0.1 0.1-0.2 >0.2 
Scenario 1 98.7% 99.6% 99.6% 99.1% 
Scenario 2 99.5% 99.3% 98.1% 90.8% 
Scenario 3 88.1% 87.8% 87.9% 89.3% 
Scenario 4 93.5% 93.0% 93.2% 94.0% 

 

Importantly, modeling interaction term by taking advantage of the joint distribution of ancestry 

and allele (T4) achieves higher power than using traditional interaction model (T5). In T4, effect 

heterogeneity between two parental populations is captured by the number of African ancestry 

reference alleles, rather than the cross-product of number of reference alleles and African 

ancestry alleles. Thus T4 contains more precise information leading to enhanced power in testing 

interactions. Table 3 displays the ratio of the power of T4 to that of T5 in Scenario 4. T4 has 

higher power than T5 across different beta values and allele frequency differences, particularly 

when beta is small. This observation holds in both Step 1 and Step 2.  

Table 3. Ratio of the statistical power of T4 to that of T5 in Scenario 4 
using two-step testing procedure 

STEP 1  
  Allele frequency difference 

Beta 0-0.05 0.05-0.1 0.1-0.2 >0.2 
0.1 NA NA NA 10.29 
0.2 2.53 2.63 2.82 2.46 
0.3 1.75 1.80 1.89 1.69 
0.4 1.31 1.30 1.27 1.19 
0.5 1.19 1.16 1.12 1.11 
0.6 1.14 1.11 1.09 1.09 
0.7 1.11 1.08 1.07 1.07 
0.8 1.08 1.06 1.05 1.06 
0.9 1.07 1.05 1.04 1.04 
1.0 1.06 1.04 1.04 1.04 

STEP 2     
Average 1.20 1.22 1.21 1.18 
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Table 5.3. Ratio of the statistical power of T4 to that of T5 in Scenario 4 using two-step 
testing procedure 

 
  

! 15!

the ancestry-specific risk allele achieving a power of over 90% with mean 93.3%. In addition, it 

is efficient (> 95%) to identify ancestry effect as the only source of association (Scenario 1) and 

ancestry with allele effect (Scenario 2). The power to detect allele effect as the only source of 

association (Scenario 3) is slightly lower but above 80%. Table S1 shows the proportions broken 

down by effect size.  
Table 2. Average proportion of times that the source of association is 

correctly identified. 
 Allele frequency difference 

 0-0.05 0.05-0.1 0.1-0.2 >0.2 
Scenario 1 98.7% 99.6% 99.6% 99.1% 
Scenario 2 99.5% 99.3% 98.1% 90.8% 
Scenario 3 88.1% 87.8% 87.9% 89.3% 
Scenario 4 93.5% 93.0% 93.2% 94.0% 

 

Importantly, modeling interaction term by taking advantage of the joint distribution of ancestry 

and allele (T4) achieves higher power than using traditional interaction model (T5). In T4, effect 

heterogeneity between two parental populations is captured by the number of African ancestry 

reference alleles, rather than the cross-product of number of reference alleles and African 

ancestry alleles. Thus T4 contains more precise information leading to enhanced power in testing 

interactions. Table 3 displays the ratio of the power of T4 to that of T5 in Scenario 4. T4 has 

higher power than T5 across different beta values and allele frequency differences, particularly 

when beta is small. This observation holds in both Step 1 and Step 2.  

Table 3. Ratio of the statistical power of T4 to that of T5 in Scenario 4 
using two-step testing procedure 

STEP 1  
  Allele frequency difference 

Beta 0-0.05 0.05-0.1 0.1-0.2 >0.2 
0.1 NA NA NA 10.29 
0.2 2.53 2.63 2.82 2.46 
0.3 1.75 1.80 1.89 1.69 
0.4 1.31 1.30 1.27 1.19 
0.5 1.19 1.16 1.12 1.11 
0.6 1.14 1.11 1.09 1.09 
0.7 1.11 1.08 1.07 1.07 
0.8 1.08 1.06 1.05 1.06 
0.9 1.07 1.05 1.04 1.04 
1.0 1.06 1.04 1.04 1.04 

STEP 2     
Average 1.20 1.22 1.21 1.18 
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Table 5.4. Ratio of type I error to the nominal significance level of 0.05, 0.01 and 0.001. 

 
  

! 16!

Type I error  

We used 100000 experiments to evaluate the type I error at the nominal significance level ! = 

0.05, 0.01, 0.001 in the null model (! = ! = ! = 0). Results are summarized in Table 4. Across 

allele frequency difference categories, all tests appropriately control the type I errors. 

 

Power in simulated data with estimated local ancestry 

In the above four scenarios, particularly Scenario 4, we show using simulated data and true local 

ancestry that our testing procedure incorporating allele specific ancestry is powerful. In real data 

analysis, however, the local ancestry and allele specific ancestry are unknown. Thus the 

usefulness of the proposed test largely depends on the accuracy of the estimated ancestry. For 

this reason, next we examine whether the observed patterns remain if we use inferred ancestry 

and how much power loss would there be.  

 

We first evaluated the accuracy of the estimated local ancestry and allele specific ancestry by 

calculating the Pearson correlation coefficient between the true and inferred ones. As shown in 

Table 5, the median correlation for the estimated genotype, African allele and African reference 

allele is above 0.8. Note that the inferred African reference allele is highly accurate. For markers 

with MAF less than 0.05 in African population, we notice decrease in the accuracy of allele 

specific ancestry estimates but the median correlation is still above 0.8. 
Table 5. Median Pearson correlation coefficient between true and inferred local ancestry 
Correlation Genotype African allele African ref allele  
All markers 1.00  0.81 0.97 
Markers with overall MAF < 0.05 1.00 0.81 0.94 
Markers with AFR MAF < 0.05 1.00 0.82 0.88 

 

Table 4. Ratio of type I error to the nominal significance level of 0.05, 0.01 and 0.001. 

Allele Frequency 
difference!

0.05 0.01 0.001 
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

0-0.05 1.01 0.99 1.00 1.00 1.04 0.99 1.01 1.00 0.99 1.00 1.01 1.00 
0.05-0.1 1.00 1.00 0.99 1.00 0.96 1.02 1.00 1.01 0.88 0.97 0.99 0.89 
0.1-0.2 0.99 1.00 0.99 1.00 0.99 1.01 1.00 1.02 0.97 0.98 0.83 0.84 
0.2-0.3 0.99 1.00 1.01 1.00 0.99 1.00 1.00 0.97 0.89 0.93 0.88 0.82 
0.3-0.4 1.00 1.00 1.00 1.01 1.03 1.00 1.01 1.01 0.98 0.98 0.86 0.95 
>0.4 1.01 0.99 1.01 1.01 1.01 0.96 0.96 0.98 0.82 0.92 0.85 0.87 
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Table 5.5. Median Pearson correlation coefficient between true and inferred local ancestry 

 
  

! 16!

Type I error  

We used 100000 experiments to evaluate the type I error at the nominal significance level ! = 

0.05, 0.01, 0.001 in the null model (! = ! = ! = 0). Results are summarized in Table 4. Across 

allele frequency difference categories, all tests appropriately control the type I errors. 

 

Power in simulated data with estimated local ancestry 

In the above four scenarios, particularly Scenario 4, we show using simulated data and true local 

ancestry that our testing procedure incorporating allele specific ancestry is powerful. In real data 

analysis, however, the local ancestry and allele specific ancestry are unknown. Thus the 

usefulness of the proposed test largely depends on the accuracy of the estimated ancestry. For 

this reason, next we examine whether the observed patterns remain if we use inferred ancestry 

and how much power loss would there be.  

 

We first evaluated the accuracy of the estimated local ancestry and allele specific ancestry by 

calculating the Pearson correlation coefficient between the true and inferred ones. As shown in 

Table 5, the median correlation for the estimated genotype, African allele and African reference 

allele is above 0.8. Note that the inferred African reference allele is highly accurate. For markers 

with MAF less than 0.05 in African population, we notice decrease in the accuracy of allele 

specific ancestry estimates but the median correlation is still above 0.8. 
Table 5. Median Pearson correlation coefficient between true and inferred local ancestry 
Correlation Genotype African allele African ref allele  
All markers 1.00  0.81 0.97 
Markers with overall MAF < 0.05 1.00 0.81 0.94 
Markers with AFR MAF < 0.05 1.00 0.82 0.88 

 

Table 4. Ratio of type I error to the nominal significance level of 0.05, 0.01 and 0.001. 

Allele Frequency 
difference!

0.05 0.01 0.001 
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

0-0.05 1.01 0.99 1.00 1.00 1.04 0.99 1.01 1.00 0.99 1.00 1.01 1.00 
0.05-0.1 1.00 1.00 0.99 1.00 0.96 1.02 1.00 1.01 0.88 0.97 0.99 0.89 
0.1-0.2 0.99 1.00 0.99 1.00 0.99 1.01 1.00 1.02 0.97 0.98 0.83 0.84 
0.2-0.3 0.99 1.00 1.01 1.00 0.99 1.00 1.00 0.97 0.89 0.93 0.88 0.82 
0.3-0.4 1.00 1.00 1.00 1.01 1.03 1.00 1.01 1.01 0.98 0.98 0.86 0.95 
>0.4 1.01 0.99 1.01 1.01 1.01 0.96 0.96 0.98 0.82 0.92 0.85 0.87 
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Table 5.6. Ratio of the statistical power of T4 to that of T5 in Scenario 4 using two-step 
testing procedure and estimated ancestry 

 
  

Table S4. Ratio of the statistical power of T4 to that of T5 in Scenario 
4 using two-step testing procedure and estimated ancestry 

STEP 1  
  Allele frequency difference 

Beta 0-0.05 0.05-0.1 0.1-0.2 >0.2 
0.1 NA NA NA NA 
0.2 3.00 4.15 3.50 3.50 
0.3 2.09 2.14 2.18 1.94 
0.4 1.38 1.41 1.37 1.27 
0.5 1.19 1.22 1.17 1.13 
0.6 1.15 1.14 1.12 1.10 
0.7 1.12 1.11 1.10 1.07 
0.8 1.09 1.09 1.09 1.07 
0.9 1.07 1.08 1.08 1.06 
1.0 1.06 1.07 1.06 1.05 

STEP 2     
Average 1.16 1.15 1.16 1.15 

 
 
 
 
 
!
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Table 5.7. Replication of published loci that are associated with hemoglobin using two-step 
testing procedure 

 

! 18!

true local ancestry. This may be due to the more accurate estimation of African reference allele 

than African ancestry as shown in Table 5. 

 

Application to real phenotypes  

We applied the proposed 2-step testing procedure genome-wide to test for the association 

between one of the hematological traits, hemoglobin, and genetic variants in African American 

samples from CARe project. Many genetic loci has been reported to be associated with 

hemoglobin in Europeans (van der Harst, et al., 2012), East Asians (Kamatani, et al., 2010) and 

African Americans (Auer, et al., 2012; Auer and Teumer, 2014; Chen, et al., 2013; Lo, et al., 

2011). 

 

In this analysis, we first perform a genome-wide 3-df joint test (T4) adjusting for age, proportion 

of global African ancestry, cohort and smoking status. Then in the second step, we conduct a 

single model selection by comparing the test statistics of allele, ancestry and ancestry specific 

allele effect. We consider a suggestive P-value threshold of 1×10!!. Our analysis strategy was 

validated by the replication of previously reported hemoglobin associated loci. As shown in 

Table 6, SNP rs9940149 and rs7199221 on chromosome 16 show a strong allele effect, 

indicating similar effect in African and European ancestral populations. It is worth noting that 

rs1211375 on chromosome 16 shows a strong ancestry-specific allele effect, suggesting effect 

heterogeneity at this locus in African and European ancestral populations. This differential effect 

is replicated in WHI-SHARe data set (P-value = 5.78×10!!, allele effect = 0.54, ancestry effect 

= 0.50 and African ancestry allele effect = -1.04). 

 

Table 6. Replication of published loci that are associated with hemoglobin using two-step testing procedure 

SNP Chr Posb P-value Allele 
effect 

Ancestry 
effect 

African ancestry 
allele effect N Ref. 

rs9940149 16 300641 7.23×10!! 1.87 0.62 -1.24 5711 (Li, et al., 2013) 
rs7199221 16 3101639 1.74×10!! -3.89 -0.73 2.59 5711 (Lo, et al., 2011) 
rs1211375 16 240280 7.32×10!! 0.86 -0.43 -1.53 5711 (Lo, et al., 2011) 

 

Discussion 
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CHAPTER 6: CONCLUDING REMARKS 

In this document, I present computational resource and statistical approaches that 

facilitate genetic association studies with complex human traits in admixed populations. Three 

studies are performed that enhance genotype imputation quality with a focus on rare variants and 

account for local ancestry information in association analysis. In the first study (Chapter 3), I 

built a database containing the marker imputability information using reference panels from the 

public domain for four continental groups, respectively. This study facilitates genetic association 

studies in diverse populations including admixed populations from the study design stage to the 

post-imputation stage where marker imputation information is desirable. In the second study 

(Chapter 4), I focus particularly on enhancing imputation accuracy in African American samples. 

I show as a proof of principle that imputation accuracy, particular that of rare variants, can be 

enhanced by using an internal reference panel with similar ancestral makeup. I also provide the 

optimal approach to combine internal and external reference panels for better imputation. In the 

third study (Chapter 5), I propose a two-step testing procedure for genetic association studies in 

African Americans. The first step of the testing procedure could capture genetic associations due 

to only an allele effect, only an ancestry effect and anywhere in between. In particularly, it is 

powerful when effect heterogeneity exists between the ancestral populations. Through a second 

step, the source of association, i.e., allele effect, ancestry effect or ancestry-specific allele effect 

can be identified. Taking advantage of the joint distribution of allele and local ancestry, we use a 

novel parameterization of the interaction term, which is found to be more powerful to capture the
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presence of effect heterogeneity than the traditional cross-product interaction term. Further 

studies are needed to extend the testing procedure developed in a two-way admixed population to 

three-way or multi-way admixed populations. In addition, the current study focuses on common 

variants. Rare variants association methods tailored for admixed populations are needed.  

In the U.S., admixed populations have been drawing increasing attention and genetic and 

phenotypic data are growing for African American and Hispanic populations. Advanced 

statistical and computational methods addressing many challenging issues pave the way for 

genetic association studies in admixed populations. In general, the success of GWAS in 

Caucasians has advanced our understanding of disease etiology. In diverse populations, GWAS 

will provide a more complete understanding of the genetic basis of complex traits, thereby, 

potentially reducing health disparities due to the bias towards GWAS in European populations. 

The knowledge gained from GWAS, including the discovery of risk variants and their 

characterization, will eventually allow all people to benefit from the improvement in more 

precise disease prevention, clinical diagnostics and medical treatment. 
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