304 research outputs found

    PIPS Is not (just) Polyhedral Software Adding GPU Code Generation in PIPS

    No full text
    6 pagesInternational audienceParallel and heterogeneous computing are growing in audience thanks to the increased performance brought by ubiquitous manycores and GPUs. However, available programming models, like OPENCL or CUDA, are far from being straightforward to use. As a consequence, several automated or semi-automated approaches have been proposed to automatically generate hardware-level codes from high-level sequential sources. Polyhedral models are becoming more popular because of their combination of expressiveness, compactness, and accurate abstraction of the data-parallel behaviour of programs. These models provide automatic or semi-automatic parallelization and code transformation capabilities that target such modern parallel architectures. PIPS is a quarter-century old source-to-source transformation framework that initially targeted parallel machines but then evolved to include other targets. PIPS uses abstract interpretation on an integer polyhedral lattice to represent program code, allowing linear relation analysis on integer variables in an interprocedural way. The same representation is used for the dependence test and the convex array region analysis. The polyhedral model is also more classically used to schedule code from linear constraints. In this paper, we illustrate the features of this compiler infrastructure on an hypothetical input code, demonstrating the combination of polyhedral and non polyhedral transformations. PIPS interprocedural polyhedral analyses are used to generate data transfers and are combined with non-polyhedral transformations to achieve efficient CUDA code generation

    Data and Process Abstraction in PIPS Internal Representation

    No full text
    7 pagesInternational audiencePIPS, a state-of-the-art, source-to-source compilation and optimization platform, has been under development at MINES Paris-Tech since 1988, and its development is still running strong. Initially designed to perform automatic interprocedural parallelization of Fortran 77 programs, PIPS has been extended over the years to compile HPF (High Performance Fortran), C and Fortran 95 programs. Written in C, the PIPS framework has shown to be surprisingly resilient, and its analysis and transformation phases have been reused, adapted and extended to new targets, such as generating code for special purpose hardware accelerators, without requiring significant re-engineering of its core structure. We suggest that one of the key features that explain this adaptability is the PIPS internal representation (IR) which stores an abstract syntax tree. Although fit for source-to-source processing, PIPS IR emphasized from its origins the use of maximum abstraction over target languages' specificities and generic data structure manipulation services via the Newgen Domain Specific Language, which provides key features such as type building, automatic serialization and powerful iterators. The state of software technology has significantly advanced over the last 20 years and many of the pioneering features introduced by Newgen are nowadays present in modern programming frameworks. However, we believe that the methodology used to design PIPS IR, and presented in this paper, remains relevant today and could be put to good use in future compilation platform development projects

    Generating analyzers with PAG

    Get PDF
    To produce high qualitiy code, modern compilers use global optimization algorithms based on it abstract interpretation. These algorithms are rather complex; their implementation is therfore a non-trivial task and error-prone. However, since thez are based on a common theory, they have large similar parts. We conclude that analyzer writing better should be replaced with analyzer generation. We present the tool sf PAG that has a high level functional input language to specify data flow analyses. It offers th specifications of even recursive data structures and is therfore not limited to bit vector problems. sf PAG generates efficient analyzers wich can be easily integrated in existing compilers. The analyzers are interprocedural, they can handle recursive procedures with local variables and higher order functions. sf PAG has successfully been tested by generating several analyzers (e.g. alias analysis, constant propagation, inerval analysis) for an industrial quality ANSI-C and Fortran90 compiler. This technical report consits of two parts; the first introduces the generation system and the second evaluates generated analyzers with respect to their space and time consumption. bf Keywords: data flow analysis, specification and generation of analyzers, lattice specification, abstract syntax specification, interprocedural analysis, compiler construction

    Par4All: From Convex Array Regions to Heterogeneous Computing

    No full text
    2 pagesInternational audienceRecent compilers comprise an incremental way for converting software toward accelerators. For instance, the pgi Accelerator [14] or hmpp [3] require the use of directives. The programmer must select the pieces of source that are to be executed on the accelerator, providing optional directives that act as hints for data allocations and transfers. The compiler generates all code automatically. [...] Unlike these approaches, Par4All [13] is an automatic parallelizing and optimizing compiler for C and Fortran sequential programs funded by the hpc Project startup. The purpose of this source-to-source compiler is to integrate several compilation tools into an easy-to-use yet powerful compiler that automatically transforms existing programs to target various hardware platforms

    Optimal Compilation of HPF Remappings

    No full text
    International audienceApplications with varying array access patterns require to dynamically change array mappings on distributed-memory parallel machines. HPF (High Performance Fortran) provides such remappings, on data that can be replicated, explicitly through therealign andredistribute directives and implicitly at procedure calls and returns. However such features are left out of the HPF subset or of the currently discussed hpf kernel for effeciency reasons. This paper presents a new compilation technique to handle hpf remappings for message-passing parallel architectures. The first phase is global and removes all useless remappings that appear naturally in procedures. The code generated by the second phase takes advantage of replications to shorten the remapping time. It is proved optimal: A minimal number of messages, containing only the required data, is sent over the network. The technique is fully implemented in HPFC, our prototype HPF compiler. Experiments were performed on a Dec Alpha farm

    Parallel machine architecture and compiler design facilities

    Get PDF
    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role

    A combined representation for the maintenance of C programs

    Get PDF
    A programmer wishing to make a change to a piece of code must first gain a full understanding of the behaviours and functionality involved. This process of program comprehension is difficult and time consuming, and often hindered by the absence of useful program documentation. Where documentation is absent, static analysis techniques are often employed to gather programming level information in the form of data and control flow relationships, directly from the source code itself. Software maintenance environments are created by grouping together a number of different static analysis tools such as program sheers, call graph builders and data flow analysis tools, providing a maintainer with a selection of 'views' of the subject code. However, each analysis tool often requires its own intermediate program representation (IPR). For example, an environment comprising five tools may require five different IPRs, giving repetition of information and inefficient use of storage space. A solution to this problem is to develop a single combined representation which contains all the program relationships required to present a maintainer with each required code view. The research presented in this thesis describes the Combined C Graph (CCG), a dependence-based representation for C programs from which a maintainer is able to construct data and control dependence views, interprocedural control flow views, program slices and ripple analyses. The CCG extends earlier dependence-based program representations, introducing language features such as expressions with embedded side effects and control flows, value returning functions, pointer variables, pointer parameters, array variables and structure variables. Algorithms for the construction of the CCG are described and the feasibility of the CCG demonstrated by means of a C/Prolog based prototype implementation

    Application of formal methods to the development of a software maintenance tool

    Get PDF
    Partial evaluation is a technique traditionally used in compilation. We have adapted this technique to the undestanding of scientific application programs during their maintenance and we have implemented a tool. This tool analyzes Fortran 90 programs and performs an interprocedural pointer analysis. This paper presents how we have specified this analysis with different formalisms (inference rules with global definitions and set and relational operators). Then we present the tool implementing these specifications. It has been implemented in a generic programming environment and a graphical inetrface has been developped to visualize the information computed during the partial evaluation

    A Compiler-based Framework For Automatic Extraction Of Program Skeletons For Exascale Hardware/software Co-design

    Get PDF
    The design of high-performance computing architectures requires performance analysis of largescale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this paper is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed for the purposes of the skeleton. In this work, we develop a semi-automatic approach for extracting program skeletons based on compiler program analysis. We demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator. Extracting such a program skeleton from a large-scale parallel program requires a substantial amount of manual effort and often introduces human errors. We outline a semi-automatic approach for extracting program skeletons from large-scale parallel applications that reduces cost and eliminates errors inherent in manual approaches. Our skeleton generation approach is based on the use of the extensible and open-source ROSE compiler infrastructure that allows us to perform flow and dependency analysis on larger programs in order to determine what code can be removed from the program to generate a skeleton
    • …
    corecore