
HAL Id: inria-00078882
https://hal.inria.fr/inria-00078882

Submitted on 17 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of formal methods to the development of a
software maintenance tool

Sandrine Blazy, Philippe Facon

To cite this version:
Sandrine Blazy, Philippe Facon. Application of formal methods to the development of a software
maintenance tool. ASE’97: The 12th IEEE Conference on Automated Software Engineering., Lowry,
M. and Ledru, Y., Nov 1997, Lake Tahoe, Nevada, USA, pp.162-171. �inria-00078882�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50446413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00078882
https://hal.archives-ouvertes.fr

Abstract

Partial evaluation is an optimization technique
traditionally used in compilation. We have adapted this
technique to the understanding of scientic application
programs during their maintenance and we have
implemented a tool. This tool analyzes Fortran 90
application programs and performs an interprocedural
pointer analysis. This paper presents how we have
specied this analysis with different formalisms (inference
rules with global denitions and set and relational
operators). Then we present the tool implementing these
specications. It has been implemented in a generic
programming environment and a graphical interface has
been developed to visualize the information computed
during the partial evaluation (values of variables, already
analyzed procedures, scope of variables, removed
statements, ...).

Keywords: program understanding, partial evaluation,
formal specication, interprocedural analysis, alias
analysis

1. Introduction

A wide range of software maintenance tools analyze
existing application programs in order to transform them.
Some of these transformations aim at facilitating the
understanding of programs and they may perform rather
complex analyses. This is due either to the programming
language itself (e.g.

COMMON

 in Fortran) or to the analysis
itself (e.g. an interprocedural alias analysis). As software
maintenance tools, these tools must introduce absolutely no
unforeseen changes in programs. To overcome these
problems, we have used formal specications to develop a
software maintenance tool. In our framework, a formal
specication yields:
• A basis for expressing precisely which transformations
are performed. The formal specification can be seen as a re-
ference document between specifiers and end-users. For-
mal concepts are powerful enough to clarify concepts of

Application of Formal Methods to the Development of a Software
Maintenance Tool

Sandrine Blazy, Philippe Facon

CEDRIC IIE, 18 allée Jean Rostand, 91 025 Évry Cedex, France
{blazy, facon}@iie.cnam.fr http://www.iie.cnam.fr/~{blazy, facon}/

programming languages and to model complex transforma-
tions. In our context, end-users were software maintainers
who had a strong background in mathematics. Thus, they
were disposed to understand our formal specifications.
• A mathematical formalism for proving and validating
properties of program transformations.
• A framework for simplifying the implementation of a
tool.

This tool aims at improving the understanding of
scientic application programs. These application
programs are difcult to maintain mainly because they have
been developed a few decades ago by experts in physics
and mathematics, and they have become very complex due
to extensive modications. For a maintenance team
working on a specic application program, one of the most
time consuming steps was to extract by hand in the code the
statements corresponding to their specic context [4].

Our tool is based on partial evaluation, an optimization
technique, also known as program specialization. When
given a program and known values of some input data, a
partial evaluator produces a so-called residual or speciali-
zed program. Running the residual program on the remai-
ning input data will yield the same result as running the
original program on all of its input data [11]. Partial evalua-
tion has been applied to generate compilers from interpre-
ters (by partially evaluating the interpreter for a given
program). In this context, previous work has primarily dealt
with functional [9] and declarative languages [13]. Partial
evaluation has also been applied to improve speedups of
imperative programs ([2]-[3]). We have adapted this techni-
que to program understanding.

Usually, the chief motivation for doing partial evaluation
is speed. The residual program is faster than the initial one
because statements have been unfolded each time they
could be replaced by faster statements ([2]-[3]). Statements
unfolding replaces procedure calls and loops by their
unfolded body. We have not used this partial evaluation
technique because it modies the structure of the code. In
the same way, our partial evaluator does not generate new
variables nor rename variables, as it is done in classical

partial evaluation for optimizing the residual code. The
residual code we generate is easier to understand because
many statements and variables have been removed and no
additional statement or variable has been inserted. The
known values of variables like PI or TAX_RATE are
propagated during partial evaluation but these variables are
likely to be kept in the code (2*PI+1 should be easier to
understand than 7.28). The benet of replacing variables by
values depends also on the kind of user (see [4] for details
about our specialization strategy).

Fig.1 briey illustrates how an initial code is specialized
into a residual code, with respect to constraints on input
variables. [4] explains what these constraints mean. In
Fig.1 the initial code that has been removed is written in
bold. In initial and residual codes, simplied expressions
are underlined. Known values of variables are propagated
in called procedures. Called procedures have been replaced
by their specialized versions and a comment recalls the
name of the called procedure and its initial known values.
Other information are computed and displayed during the
partial evaluation (e.g. nal values of some variables), but
they are not shown in Fig.1 not to overload it. To make
Fig.1 clearer, some Fortran statements are written on a
same line.

At the very beginning, our aim was to specify and
develop a generic prototype tool that could simplify
application programs written in any imperative language.
This tool was implementing a general (but simple)
intraprocedural analysis that was simplifying some
assignments and alternatives [5]. The formal specication
was consisting only of inference rules in natural semantics
operating on abstract syntax trees [12].

These rules were quite easy to understand: they were
made of sequents dening a propagation relation (
means that the execution of the statement I modies the ini-
tial state S

1

 into the nal state S

2

), a simplication relation
(means that given the state S, the statement I

1

simplies into I

2

), and the combination of both for dening
a partial evaluation relation (means
that given the state S

1

, the specialization of the statement I

1

yields a simplied statement I

2

 and a new state S

2

). In natu-
ral semantics, each rule expresses how to deduce sequents
(the denominator of the rule) from other sequents (the
numerator of the rule). Our sequents were simple because
propagated data were only made of a map S from variables
to their values (when a variable has a known value at the
current program point). Since the formal specications
were simple, it was also easy to derive from the specica-
tions an implementation of a prototype tool [5].

We have then added to our prototype a very precise
interprocedural analysis. To specify in our interprocedural
analysis side-effects on global variables and side-effects

S1 I: S2

S I1 I2

S1 I1 I2, S2

accomplished through parameter passing, we need
information about the data that a procedure inherits and
about the side effects of procedures that it invokes. To
account for this effect, we must model the transmission of
values from within a procedure back to the call site that
invoked it. The last analysis we have specied is a pointer
analysis for Fortran 90. The partial evaluation simulates the
run time memory management. Due to the implicit
connections through paths within a pointer structure, the
side-effects of pointer assignments have been modeled by
other information than those for modeling assignments to a
simple variable.

Natural semantics rules are useful to show how relations
are recursively called. This formalism is concise and
comprehensible enough to specify a simple partial
evaluation process. We have extended it to specify an
interprocedural alias analysis. To this end we have used in
our natural semantics rules various set and relational
operators and we have structured data appearing in the
rules. We have modeled the links between these data by
object diagrams. The diagrams show variables used in rules
and other variables that are dened outside the rules not to
overload them.

The aim of this paper is twofold: to show how we have
specied these extensions to our partial evaluator, and to
detail the implementation of the partial evaluator.
Compared to our previous work, our program analyses are
much more rened (by alias analysis) and modular.
Furthermore, we have implemented a graphical interface.
Before specifying natural semantics rules, we have dened
object diagrams for structuring modelled data. We have
also adapted our specications to allow local denitions.
The specications presented here focus on the reuse of
specialized versions and on the pointer analysis. In these
specications, we have not mixed both tasks not to
overload the specications. But of course, our nal
specication and implementation combine both tasks. The
rest of this paper is structured as follows. First, Section 2
recalls some concepts of Fortran 90 and explains our
specialization strategy for reusing specialized procedures.
Then, Section 3 details the specication of the
interprocedural pointer analysis. Section 4 is devoted to the
implementation of our tool.

2. Background

2.1 Fortran 90

Fortran procedures may be subroutines or functions and
parameters are passed by reference. Variables are usually
local entities. However, variables may be grouped in com-
mon blocks (a common block is a contiguous area of
memory) and thus shared across procedures. Common
blocks may also be inherited in a procedure. They have a

SUBROUTINE INIG (X,DX, IDEC, DXL)
COMMON /GEO1/ IM,IMM1,JM, KM, IMATSO
COMMON / GEO2 / INDX_I, INDX_J, INDX_K
COMMON / FILE1 / NFIC11 , NFIC12 , NFIC6
IF (IREX .NE. 0) THEN
 IF (DXL .EQ. 0) THEN WRITE (NFIC12 , 1001) DXL; CALL STOP ('INIGEO')
 ENDIF
 IF (IM.NE.0) THEN READ (NFIC11 , * , ERR = 1102) XMIN
 ELSE XMIN = 0.
 ENDIF
 DO 111 , I = 1 , IM
 X(I) = XMIN + FLOAT(I-1) * DXL
111 CONTINUE
 IMM1 = IM - 1
 DO 112 , I = 1 , IMM1
 DX(I) = DXL
112 CONTINUE
ELSE
 READ (NFIC11,*,ERR=1103) X
 DO 121 , I = 1 , IMM1
 DX(I)= X(I+1) - X(I)
121 CONTINUE
ENDIF
IF (IMATSO .EQ. 0 AND IM .GE. 10) THEN
 CALL VALMEN (MAT , IMM1 , -1)
 IF (IREX .EQ. 0) THEN WHAT = ' K'
 ELSE
 CALL VALMEN (MAT , IM , 3)
 IF (IDESCREG.EQ.0) THEN IREGU = 0
 ELSE IREGU = 1; IDESC = IDESCREG
 ENDIF
 IF (IDESC.EQ.0 .AND. IREGU.EQ.0) THEN WHAT = ' K'; IDEC = 3
 ELSE
 IF (INDX_I .NE. 0) THEN WHAT = ' I'; IDEC = 1
 ELSE IF (INDX_J .NE. 0) THEN WHAT = ' J'; IDEC = 2
 ELSE IF (INDX_K .NE. 0) THEN WHAT = ' K'; IDEC = 3
 ELSE CALL STOP ('INIG')
 ENDIF
 ENDIF
 IF (IDEC.EQ.1) THEN
 IF (IREGU.EQ.0) THEN IMIN = 2; IMAX = IM
 ELSE IMIN = IM; IMAX = IM ENDIF
 ELSE IF (IDEC.EQ.2) THEN
 IF (IREGU.EQ.0) THEN JMIN = 2; JMAX = JM
 ELSE JMIN = JM; JMAX = JM ENDIF
 ELSE IF (IDEC.EQ.3) THEN
 IF (IREGU.EQ.0) THEN KMIN = 2; KMAX = KM
 ELSE KMIN = KM; KMAX = KM ENDIF
 ENDIF
 ENDIF
ENDIF
IF (IWARNI . GE . 9 . OR . IREX . EQ . 1) THEN WRITE (NFIC6 , 6060) X ENDIF
CALL STOP ('INIG')
END

 Constraints on input variables

IREX = 1
IDESCREG = 3
INDX_I = 2
IM = 20
IND_X = 2
DXL = 0.5

Specialized code

SUBROUTINE INIG (X,DX,IDEC, DXL)
COMMON /GEO1/ IM,IMM1, JM, KM, IMATSO
COMMON /GEO2/ INDX_I , INDX_J, INDX_K
COMMON /FILE1/ NFIC11, NFIC12, NFIC6
XMIN = 0.
DO 111 , I = 1 , 20
 X(I) = XMIN + FLOAT(I-1) * 0.5
111 CONTINUE
IMM1 = 19
DO 112 , I = 1 , 19
 DX(I) = 0.5
112 CONTINUE
IF (IMATSO .EQ. 0) THEN
 CALL VALMEN_v1 (MAT , 19 , -1)
C specialized version of ... with ...
 CALL VALMEN_v2 (MAT , 20 , 3)
C specialized version of ... with ...
 IREGU = 1
 IDESC = 3
 WHAT = ' I'
 IDEC = 1
 IMIN = 20
 IMAX = 20
ENDIF
WRITE (NFIC6 , 6060) X
CALL STOP_v1 ('INIG')
C specialized version of STOP with ...
END

Figure 1. An example of program specialization

Initial code

scope in that procedure but they have not been declared in
it. If a common block is neither declared in the currently
executing procedure nor in any of the procedures in the
chain of callers, all of the variables in that common block
are undened. The only exceptions are variables that have
been dened in a

DATA

 statement (this statement allows
initialization of variables) and never changed.

In Fortran 90 a structure consisting of a list of elds,
each of some particular type, is a type. The elds types may
include pointers to structures of the type being dened, of
a type previously dened, or of a type to be dened. A
pointer variable, or simply a pointer may point to either
another data object which has the

TARGET

 attribute, or an
area of dynamically allocated memory, or the

NULL

 value.
In Fortran 90, a pointer should be thought of as a variable
associated dynamically with or aliased to another data
object where the data is actually stored - the target [14].
There is no notation for representing pointed variables
(dereferencing is automatic in Fortran 90).We will then use
a C-notation when needed (e.g. Fig.2 and Fig.3).

Figure 2. An example of Fortran 90 program

Fig.2 shows an example of a Fortran 90 program, where
a new type called

node

 is dened. It will be constructed
from two values representing a name and a pointer to the
next eld in a linked list. Two variables of type pointer to

node

 are also declared. Then, the values 3.4 and 6.2 are
inserted in the list in that order.

Figure 3. Abstract syntax rules and examples of
links with concrete syntax

TYPE node
REAL:: name ! data eld
TYPE(node), POINTER:: next !pointer eld

END TYPE node
TYPE(node), POINTER :: p, q
...
q => p%next ! q points to *(p->next)
p%name = 3.4 ! the value 3.4 is assigned to

the eld ’name’ of p
q%name = 6.2

Abstract syntax
VarName zzzz Lhs
deref: Lhs ! Lhs
field_lhs: Lhs xxxx VarName ! Lhs

Examples
concrete syntax abstract syntax
v VarName (v)
person%address%town eld_lhs (eld_lhs (person,

address), town)
*(p->next) deref (eld_lhs (deref (p),

next)

A variable identier is either a simple identier (e.g.

v

),
or a compound left-hand side (e.g.

person%address%
town

), or a pointer dereference (e.g. *

p

, *(*

p

.

next

)). This is
represented by the abstract syntax of Fig.3. The set of
simple variables identiers is denoted by VarName. The set
of left-hand sides is denoted by Lhs. The example in this
gure shows the connection between some concrete
Fortran 90 variables and the corresponding abstract syntax
notations.

2.2 Interprocedural Partial Evaluation

The specialization proceeds depth-rst in the call-graph
to preserve the order of side-effects. Thus, the specializa-
tion of a call statement rst runs the specializer on the cal-
led procedure SP. This yields a specialized version of SP
and the call statement is replaced by a call to this speciali-
zed version. A procedure is specialized with respect to spe-
cic values of some of its input data. At the end of its
specialization, the known values of variables belong to its
output static data, and a new name is given to the new spe-
cialized version (if any). Fig.4 presents data modeling spe-
cialized versions. It shows that a specialized version of a
procedure consists of a name, input data, output data and
statements. In other words, a version is represented by a
quintuplet (name of original procedure, version name, input
data, output data, statements).

Figure 4. Object diagram modeling specialized
versions

To improve the specialization, specialized versions of
procedures are propagated and reused, as shown in Fig.5.
Thus, given a set of specialized procedures, when a call to
a procedure SP is encountered in the current procedure, if
the set of static data of SP and their values:
• is the

same

 as those of a previous call (as in

!

 of Fig.5),
then the corresponding version is directly reused,
•

strictly includes

 those of a previous call (as in

"

 and

#

),
then the corresponding version is specialized and added to
the already specialized versions. If several versions match,
the following selections are successively made:

• most specialized versions, that is the versions with the
largest set of static data, as in

#

 where SP4 is selected,
• shortest version among most specialized versions (as
in

"

 where SP3 is selected).

A specialized version v of a procedure SP is more spe-
cialized than a version v’ of the same procedure if the input
static data of v’ is included in those of v. For instance, in
Fig.5, SP1 is more specialized than SP2. Thus, we dene:

procedure State

VersionName
outputinputversion

name_v
more_specialized

Statements

stmt

Figure 5. Reuse of specialized versions

Set of already specialized versions of SP

Name Initial static data Final static data Specialized
code

SP1 (x, y, z) x=1 and y=7 x=4 and y=2

SP2 (x, y, z) x=1 x=4 and y=2

SP3 (x, y, z) z=5 y=3 and z=5

SP4 (x, y, z) x=2 and y=7 x=6 and y=2

SP5 (x, y, z) x=2 x=6

CALL SP (a, b, c)

CALL SP (a, b, d)

CALL SP (e, f, g)

(1, i, j)

(1, i, 5)

(2, 7, 9)

Initial code

values of actual parameters at the current program point

!

"

#

#

"

!

most general version

SP4 = most restrictive version

SP3 = shortest version

=

more_specialized

 (v, v’)

"

 input

 (v’)

zzzz

input

 (v), where

"

 means "is defined as". Given input static data In, v is one
of the most specialized versions of SP iff v is maximal
among the specializable versions of SP with respect to In.
This is expressed by the following predicate:

most_specia-
lized

 (v, SP, In)

"

input

 (v)

zzzz

 In

LLLL

(

 v’

eeee

version (

SP

)

.

input

 (v)

cccc

input

 (v’)

zzzz

In). When

input

 (v)

====

In, v is the
only specialized version of SP with respect to In.

The number of versions of a procedure may theoretically
grow exponentially, but our experiments showed that this
seldom happens. However, as the number of specialized
versions is nite (an option of the specializer enables
changing it), if a version must be removed (from the set of
versions), either the most restrictive or the most general one
is removed. With a general strategy, specialized procedures
are more often reused than in the restrictive strategy, but
more statements should also be specialized. In a general
framework and without any further analysis on the call
graph, both strategies are worthwhile, depending on the
application to specialize. Thus, an option of the specializer
enables changing this strategy and keeping preferably the
most general procedures.

3. Formal Specication of the Partial
Evaluation

3.1 Denitions

We dene in this section some notations, especially set
operators, that we use in our specications.

PROCNAME

denotes the set of possible identiers of procedures and

VALUE

 denotes the set of possible values of variables. The

eval

 function either yields the value of an expression (if it
is known) or gives a residual expression. We introduce
useful set operators, similar to those dened in the formal
specication languages B [1] and VDM [10]: mainly
inverse (

-1

), domain (

dom

), range (

ran

),

#

, override (

†

),
restrictions (

tttt

 and

 yyyy

), composition (

;

) and direct product

(

°°°°

). These operators are written in bold in this paper. In the
following denitions

s

 denotes a set,

r

 and

p

 denote binary
relations (sets of pairs),

m

 and

n

 denote maps (specic
binary relations where each element has at most one
image).
•

r

-1

= {

x

!

y

ÆÆÆÆ

y

!

x

 eeee

 r

}
•

m

†

n

=

 {

x

!

y

ÆÆÆÆ

 x

!

y

 eeee

 n

vvvv

 (x

!

y

 eeee

 m

LLLL

 x

 ‰‰‰‰

 dom

 (

n

)) }
•

m

tttt

s

=

 {

x

!

y

ÆÆÆÆ

 y

 eeee

 s

}
• s

yyyy

m

=

 {

x

!

y

ÆÆÆÆ

 x

 ‰‰‰‰

 s

}
•

r

 ;

p

=

 {

x

!

z

ÆÆÆÆ

EEEE

y

 .

x

!

y

eeee

 r

LLLL

y

!

z

 eeee

p

}
•

r

°°°°

p

=

 {

x

!

 (y,z)

ÆÆÆÆ

x

!

y

eeee

 r

LLLL

x

!

z

 eeee

p

}
• Given

s

 a set of pairs of maps

,

we define

Corres

 (

s

) =

#

 {

x

-1

 ;

 y

ÆÆÆÆ

x

 !

 y

eeee

 s}. We use Corres (s) to bind variables
of a common block to their corresponding values. Each pair
of s corresponds to a common block with its list of varia-
bles. Variables of common blocks are shared among proce-
dures (their values are inherited in each called procedure)
but their names may change in each procedure. Thus, for
common blocks, variable names and their values are speci-
fied by two different maps from integers (the position in the
list of declared variables of the common block) to respecti-
vely variable names and values.

3.2 Interprocedural Analysis

As previously [5], we have specied with inference rules
both the constant propagation and the statements simpli-
cation performed by our specializer. But more data are pro-
pagated in the inference rules. Given a Fortran program, we
propagate:
• an environment, that represents what does not vary during
the partial evaluation (mainly formal parameters, declared
data and statements),
• a state modeling relations between variables and values at
the current program point,
• specialized versions,
• inherited common blocks of the current procedure.

Figure 6. Object diagram of data for specifying the interprocedural analysis

procedure

ComInh

Environment
State

Version
inherits

env

values

Formal parameter Statements

comDecl

InitData
comVal

Val
variable

common block

ProcNamecalls
more_specialized

outputinput

version
stmt

name_v

formal
initD stmt

Declared common block

name_p

procedure SP when specialized versions of SP are reused.
In the denitions part of the gure, some denitions are
factorized. They are here to introduce some useful variables
appearing in the rules. Denitions are here "macros" that
are supposed to be applied to the rules containing the
variables. [4] illustrates and details these denitions and
explains the propagation rule through a call statement.

The two rules of Fig.7 correspond to the following
situations that may occur.

[4] gives examples of these data and Fig.6 models the
whole propagated data. This model represents objects and
access functions between them. It extends the model of
Fig.4. In both gures, the object procedure denotes a called
procedure at a given program point. In a procedure, known
values are related either to variables of common blocks
(and accessed through the

comVal

 function) or to other
variables (

Val

 function).

Fig.7 species the simplication of a call statement to a

Figure 7. Simplication of call statements

Definitions

 EnvSP " calls(SP) ; env results from the

StaticFormal " (formal-1 (EnvSP) ; LParam) ;;;; eval (Val (State)) tttt VALUE propagation through

 StaticCom1 " Corres (comDecl-1(EnvSP) ; comVal (State)) the call statement

 Input " (SV (State) † initData (EnvSP)) UUUU (StaticFormal † StaticCom1) call SP (LParam)

ComInh’ " dom (comDecl (Env)) UUUU ComInh ---- dom (comDecl (EnvSP))

 State1 " (Val °°°° comVal)-1 (Input, StaticCom1)

NewVersion " (SP, NewName, State, State2, SP’) new version of SP

Simplification rules

Rule 1: the called procedure has already been specialized with respect to the same static data

V eeee version (SP) input (V) = State1

Propagation

EnvSP, output (V), ComInh’ HHHH stmt (V) : State2
 ___ (1)

Env, State, ComInh, Version HHHH call SP (LParam) ! call name_v (V) (LParam), Version

Rule 2: the specialized version of the called procedure is not as specialized as wanted

State1 ‰‰‰‰ version ; input (SP) V eeee version (SP) most_specialized (V, SP, State1)

EnvSP, output (V), ComInh’, Version HHHH stmt (V) ! SP’, Version’

Propagation

EnvSP, output (V), ComInh’ HHHH SP’ : State2 NewName eeee PROCNAME - ProcName
 __ ___ (2)

Env, State, ComInh, Version HHHH call SP (LParam) ! call NewName (LParam), Version’ UUUU {NewVersion}

3.3 Pointer Analysis

The aim of pointer analysis is for every pointer variable
to approximate the set of objects it may point to. Here, an
object is a location that can store information (for example,
variables). A pointer analysis is equivalent to an alias
analysis. An alias occurs when the left values of two objects
coincide. Taditionally, aliases are represented as an
equivalence relation over abstract locations [16]. Our
analysis is precise enough to represent variables which do
not explicitly appear in the code but this precision is lost
while analyzing conditional statements (we do not
propagate conditional expressions).

In our specication, we use stores to represent
associations between variables and their values. The
variables are represented by locations in stores. The set of
values (denoted by Value) includes integers and other
values (such as locations denoted by Loc). The dynamic
semantics of pointers is modeled by the following functions
that are dened in Fig.8:
•

loc_of

 maps (simple) identifiers to their locations.
• The map

loc_of_gen

 extends the

loc_of

 map to left-hand
sides and dereferences. The location of a pointed record is
the value of its first field.

Figure 8. Dynamic semantics of some variables

loc_of eeee VarName ! Loc
loc_of_gen eeee Lhs ! Loc

i eeee VarName, l eeee Lhs
loc_of_gen (i) = loc_of (i)
loc_of_gen (deref (l)) = store (loc_of_gen (l))
loc_of_gen (eld_lhs (l,i)) =

access_eld (loc_of_gen (l),i)

store eeee Loc ! Value # Loc # ’NULL’
Value zzzz VALUE
access_eld eeee Loc xxxx VarName ß Loc

• (1) SP has already been specialized in a procedure called
V, with respect to the initial static data State1 (State1 re-
sults from the propagation through the call statement to
SP)

.

 In this case, the call to SP is replaced by the call to V
with the same parameters, and the data related to SP are
propagated through V, yielding a new state State2. These
data are:

• the environment of SP (it is accessed through

calls

):

calls

 (SP) ;

env

,
• the initial state of SP, that is the final static data of V

:
output (

V

)

,
• common blocks ComInh’ that are inherited by SP
(they are defined from ComInh).

• (2) SP has already been specialized in V, but with less
constraints on its initial static data. Since SP has not already
been specialized with respect to State1, then necessary Sta-
te1 is not an initial static data of a specialized version of SP:
State1

‰‰‰‰

version

;

input (

SP

)

.
• Since SP has already been specialized,

version (

SP

)

$

0000

 and a version V is selected in

version (

SP

)

. As explained in section 2.2, V is one of the
most specialized versions of SP with respect to State1,
that is

most_specialized

 (V, SP, State1).
• Then, the statements of V are specialized in the
statements SP’ and as in the first rule, data are
propagated through SP’.
• A new name is created for SP’ and the call to SP is
replaced by the call to the name of SP’ with the same
parameters. This new name is a possible name that is not
already a procedure name: NewName

eeee

 PROCNAME

-

ProcName.
• The new version is also added among specialized
versions of SP.

When there is no specializable version of SP with
respect to State1, the rule for simplifying the call statement
is similar to the second rule. Thus, it has not been detailed
in Fig.7

.

Figure 9. An example of linked list

eld_lhs (deref (eld_lhs (deref (p), next)), name) is the abstract syntax for p%next%name
loc_of_gen (eld_lhs (deref (eld_lhs (deref (p), next)), name)) =

access_eld (loc_of_gen (deref (eld_lhs (deref (p), next))), name) =
access_eld (store [loc_of_gen (eld_lhs (deref (p), next))], name) =
access_eld (store [access_eld (loc_of_gen (deref (p)), next)], name) =
access_eld (store [access_eld (store (loc_of (p)), next)], name) = loc5

p 3.4 6.2

q

loc_of = {p!loc1, q!loc4}
loc_of_gen = {deref (p)!loc2, deref (eld_lhs (deref (p), next))!loc5} # loc_of
store = {loc1!loc2, loc3!loc5, loc4!loc5, loc2!3.4, loc5!6.2}
access_eld = {(loc2, next)!loc3, (loc2, name)!loc2, (loc5, name)!loc5, (loc5, next)!loc6}

loc1

loc2 loc3 loc4 loc5 loc6

p%next

• The store is modeled as a map

store

 from locations to va-
lues. The locations give in turn access to the current values
stored in variables. The value of a variable is looked up in
the store through the

loc_of

 map. The store of a pointer is
either the location of its pointed object (if the pointer points
to a target) or the NULL value.
• given the location of a record

r

 and a field

f

,

access_field

yields the location of

r.f

. This is a partial function since
only record names with their corresponding fields may
have a location.

Fig.9 (see previous page) represents in diagrammatic
form the linked list created by the statements of Fig.2. The
rest of the gure shows the dynamic semantics of the
corresponding statements. All pointer chaining are
resolved before the two assignments, so any node can be
referred to directly by its location. Each node has been
dynamically allocated. Thus, each node has a unique
location, as shown in the map

loc_of_gen

. The denition of
this map is illustrated in the last part of Fig.9.

The map from pointers to their targets or to the NULL
value is then dened as follows:

points_to

"

 loc_of_gen

;

 store

;

 loc_of_gen

-1

Ex.

points_to

 = {p

!

deref

 (q), r

!

 loc, s

!

 NULL}

Figure 10. Propagation of a pointer assignment

Fig.10 shows the propagation through a pointer

q eeee dom (points_to)
store, loc_of_gen HHHH p => q :

store † {loc_of_gen (p) ! loc_of_gen (q)},
loc_of_gen †{deref (p) ! store (loc_of_gen (q))}

q ‰‰‰‰ dom (points_to)

store, loc_of_gen HHHH p => q : {loc_of_gen (p)} yyyy store ,
 {deref (p)} yyyy loc_of_gen

assignment p => q. The store is updated by the alias
introduced by that assignment. q points to a target t or to the
NULL value if q

 eeee

 dom

 (

points_to

) (rule 1). Then, when p
is affected by q, p points to t:

store (loc_of_gen

 (p))
becomes

loc_of_gen

 (q) and the location of *p becomes the
location of t,

store (loc_of_gen

 (q)). If there is no location
pointed by q (rule 2) then p does not point to any location
and *p has no location anymore.

4. The Tool

We have implemented our partial evaluator on top of a
kernel that has been generated by the Centaur system [7].
The Centaur system is a generic programming environment
parametrized by the syntax and semantics of programming
languages. When provided with the description of a parti-
cular programming language, including its syntax and
semantics, Centaur produces a language specic environ-
ment. The intermediate format for representing program
texts is the abstract syntax tree. We have merged two spe-
cic environments (one dedicated to Fortran and an other
to a language that we have dened for expressing the scope
of general constraints on variables) into an environment for
partial evaluation. This environment consists of structured
editors for constraints and Fortran procedures (provided by
Centaur), a partial evaluator, together with an uniform gra-
phical interface. Fig.11 shows the architecture of our tool,
its inputs and outputs.

The formal specications have been implemented in a
language provided by Centaur and called Typol. Typol is an
implementation of natural semantics. Typol programs are
compiled into Prolog code. When executing these
programs, Prolog is used as the engine of the deductive
system. Set and relational operators as denitions have
been written directly in Prolog [8]. They are called from
Typol rules. Thus, the Typol rules operate on the abstract
syntax and they are close to the formal specication rules

Figure 11. Architecture of the partial evaluator

abstract and
concrete
syntaxes

pretty-printing
rules

transformation
rules

Lex & Yacc

PrologLisp

prog.f

constraints.exp

ex1.f

ex2.f

result.f

constraints2.exp

pretty-printer

parser +
tree builder

partial evaluator built on Centaur

semantics
tools

Figure 12. Partial evaluation of a Fortran application program (with reuse of specialized versions)

evaluation is triggered, two windows are displayed. The
rst one (called "Initial programs" in Fig.12) displays the
whole procedures to specialize. It is especially useful if
some Fortran les have not been already displayed. The
second window displays the whole specialized procedures.

Hyperlinks have been added to visualize with color:
• all occurrences in all displays with a special selection,
• specialized versions of a procedure,
• propagated data,
• warning messages in a special message window that will
open automatically.

The user may trigger several instances of the tool
together. Fig.12 shows only an instance numbered SFAC(1)
(the number is written in the title of the "Initial programs"
window). Each window depends on an instance and it will
be killed automatically when the instance will be killed.

5. Conclusion

This paper has presented an approach to the
understanding of application programs during their
maintenance. The approach relies on partial evaluation, a
technique that we have adapted to program understanding.
The partial evaluation performs an interprocedural pointer
analysis. We have formally specied our partial evaluation

as shown in [4].

The abstract syntax of Fortran 90 is general and close to
those of any imperative language. For instance, to be more
general, our specications assume a dereferencing operator
that does not exist in Fortran 90. The only peculiarities of
Fortran 90 are the parameter passing (by reference only)
and the use of common blocks instead of global variables.
Except the corresponding specication rules, other rules are
abstract enough to be those of any other imperative
language. Thus, our partial evaluation method could be
easily adapted to any imperative language suitable for
scientic application programs.

We have implemented a graphical interface to facilitate
the exploration of Fortran application programs [15]. It has
been written in Lisp, enhanced with structures for
programming communication between graphical objects
and processes. It is shown in Fig.12 and used as follows.

 The user starts to dene the application program to be
specialized. For example, in Fig.12, the user has selected

the les called

ex1.f

,

ex2.f

 and

ex3.f

. The
constraints related to this application program are called
through a popup menu button (in Fig.12 they are written in
the le called

ex-ter.lgaux

). When the partial

process. In these specications, inference rules in natural
semantics show how statements are simplied from data
propagation and simplication of other statements. A lot of
data are propagated in these rules. The computations
performed on these data are expressed with set and
relational operators. Propagated data have been structured
not to overload the rules.

From the specications, we have implemented a tool. A
graphical interface has also been implemented to visualize
program dependencies (mainly between variables and
values and between reused versions of procedures). The
tool has been tested at EDF (the French national company
that produces and distributes electricity), that provided us
with scientic application programs [4]. The rst results
are very encouraging. We are planning more empirical
work to validate these preliminary results: we intend to test
other application programs made of a great deal of pointers.

We are currently investigating on an automatic proof of
the soundness and correctness of the partial evaluation with
respect to a dynamic semantics of Fortran. We had already
proved it by hand but only for a subset of Fortran 77 and in
the framework of a simple intraprocedural partial
evaluation [5]. Another current focus is in improving the
analysis by propagating general constraints between
variables instead of only equalities between variables and
values.

6. References

[1] J.R.Abrial

The B -Book

Assigning programs to meanings

Cambridge University Press, 1996
[2] L.O.Andersen

Program analysis and specialization for the
C programming language

 Ph.D.Thesis, Univ. of
Copenhagen, Denmark, DIKU rep. 94/19, 1994.

[3] R.Baier, R.Glück, R.Zöchling

Partial evaluation of
numerical programs in Fortran

 ACM SIGPLAN

Workshop on Partial Evaluation and semantics based
Program Manipulation, Melbourne, 1994, 119-132.

[4] S.Blazy, P.Facon

SFAC, a tool for program comprehension
by specialization

 IEEE 3rd Workshop on Program
Comprehension, Washington D.C., 14-15 November
1994, 162-167.

[5] S.Blazy, P.Facon

Formal specication and prototyping of a
program specializer

TAPSOFT’95, Aarhus, Denmark,
May 1995, LNCS 915, 666-680.

[6] S.Blazy, P.Facon

An automatic interprocedural analysis for
the understanding of scientic application programs

Dagstuhl Seminar on partial evaluation, Germany,
February 1996, LNCS 1110, 1-16.

[7]

Centaur 2.0 documentation

, INRIA, 1995.
[8] N.Dubois,P.Sayarath

Aide à la compréhension et à la
maintenance: pointeurs pour la spécialisation de
programmes

 MSc. thesis, IIE-CNAM, June 1996.
[9] A.Haraldsson

A partial evaluator and its use for compiling
iterative statements in Lisp

 5th POPL, Tucson, 1978,
195-202.

[10] C.B.Jones

Systematic development using VDM

 2nd eds.,
Prentice-Hall, 1990.

[11] N.D.Jones, C.K.Gomard, P.Sestoft

Partial evaluation and
automatic program generation

 Prentice-Hall, 1993.
[12] G.Kahn,

Natural semantics

 Proc. of STACS’87, LNCS,
vol.247, March 1983.

[13] Komorovski

An abstract Prolog machine

 Integrated
interactive computing systems 1983, 183-191.

[14] S.Ramsden, F.Lin, M.A.Pettipher, G.S.Noland, J.M.Brooke

FORTRAN 90: a conversion course for Fortran 77
programmers

Manchester and North HC T&EC, 3rd
eds., 1995.

[15] R.Vassallo

Ergonomie et évolution d’un outil d’aide à la
compréhension de programmes

 MSc. thesis, IIE-
CNAM, June 1996.

[16] S.Zhang, B.Ryder, W.Landi

Program decomposition for
pointer aliasing: a step toward practical analyses

 4th
Symp. on the Foundations of Software Engineering, San
Francisco, October 1996, 81-92.

