1,222 research outputs found

    Registration of Standardized Histological Images in Feature Space

    Full text link
    In this paper, we propose three novel and important methods for the registration of histological images for 3D reconstruction. First, possible intensity variations and nonstandardness in images are corrected by an intensity standardization process which maps the image scale into a standard scale where the similar intensities correspond to similar tissues meaning. Second, 2D histological images are mapped into a feature space where continuous variables are used as high confidence image features for accurate registration. Third, we propose an automatic best reference slice selection algorithm that improves reconstruction quality based on both image entropy and mean square error of the registration process. We demonstrate that the choice of reference slice has a significant impact on registration error, standardization, feature space and entropy information. After 2D histological slices are registered through an affine transformation with respect to an automatically chosen reference, the 3D volume is reconstructed by co-registering 2D slices elastically.Comment: SPIE Medical Imaging 2008 - submissio

    Robust point correspondence applied to two and three-dimensional image registration

    Get PDF
    Accurate and robust correspondence calculations are very important in many medical and biological applications. Often, the correspondence calculation forms part of a rigid registration algorithm, but accurate correspondences are especially important for elastic registration algorithms and for quantifying changes over time. In this paper, a new correspondence calculation algorithm, CSM (correspondence by sensitivity to movement), is described. A robust corresponding point is calculated by determining the sensitivity of a correspondence to movement of the point being matched. If the correspondence is reliable, a perturbation in the position of this point should not result in a large movement of the correspondence. A measure of reliability is also calculated. This correspondence calculation method is independent of the registration transformation and has been incorporated into both a 2D elastic registration algorithm for warping serial sections and a 3D rigid registration algorithm for registering pre and postoperative facial range scans. These applications use different methods for calculating the registration transformation and accurate rigid and elastic alignment of images has been achieved with the CSM method. It is expected that this method will be applicable to many different applications and that good results would be achieved if it were to be inserted into other methods for calculating a registration transformation from correspondence

    Large Deformation Diffeomorphic Metric Mapping Registration of Reconstructed 3D Histological Section Images and in vivo MR Images

    Get PDF
    Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI) and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1) manual segmentation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) compartments in histological sections, (2) alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3) registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4) intensity normalization of images via histogram matching, and (5) registration of the volumes via intensity based large deformation diffeomorphic metric (LDDMM) image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39 ± 0.13 mm) compared to distances after affine registration (0.76 ± 0.41 mm). Similarly, WM/GM distances decreased to 0.28 ± 0.16 mm after LDDMM compared to 0.54 ± 0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, for example, receptor distributions, gene expression, onto MRI volumes

    Differently stained whole slide image registration technique with landmark validation

    Get PDF
    Abstract. One of the most significant features in digital pathology is to compare and fuse successive differently stained tissue sections, also called slides, visually. Doing so, aligning different images to a common frame, ground truth, is required. Current sample scanning tools enable to create images full of informative layers of digitalized tissues, stored with a high resolution into whole slide images. However, there are a limited amount of automatic alignment tools handling large images precisely in acceptable processing time. The idea of this study is to propose a deep learning solution for histopathology image registration. The main focus is on the understanding of landmark validation and the impact of stain augmentation on differently stained histopathology images. Also, the developed registration method is compared with the state-of-the-art algorithms which utilize whole slide images in the field of digital pathology. There are previous studies about histopathology, digital pathology, whole slide imaging and image registration, color staining, data augmentation, and deep learning that are referenced in this study. The goal is to develop a learning-based registration framework specifically for high-resolution histopathology image registration. Different whole slide tissue sample images are used with a resolution of up to 40x magnification. The images are organized into sets of consecutive, differently dyed sections, and the aim is to register the images based on only the visible tissue and ignore the background. Significant structures in the tissue are marked with landmarks. The quality measurements include, for example, the relative target registration error, structural similarity index metric, visual evaluation, landmark-based evaluation, matching points, and image details. These results are comparable and can be used also in the future research and in development of new tools. Moreover, the results are expected to show how the theory and practice are combined in whole slide image registration challenges. DeepHistReg algorithm will be studied to better understand the development of stain color feature augmentation-based image registration tool of this study. Matlab and Aperio ImageScope are the tools to annotate and validate the image, and Python is used to develop the algorithm of this new registration tool. As cancer is globally a serious disease regardless of age or lifestyle, it is important to find ways to develop the systems experts can use while working with patients’ data. There is still a lot to improve in the field of digital pathology and this study is one step toward it.Eri menetelmin värjättyjen virtuaalinäytelasien rekisteröintitekniikka kiintopisteiden validointia hyödyntäen. Tiivistelmä. Yksi tärkeimmistä digitaalipatologian ominaisuuksista on verrata ja fuusioida peräkkäisiä eri menetelmin värjättyjä kudosleikkeitä toisiinsa visuaalisesti. Tällöin keskenään lähes identtiset kuvat kohdistetaan samaan yhteiseen kehykseen, niin sanottuun pohjatotuuteen. Nykyiset näytteiden skannaustyökalut mahdollistavat sellaisten kuvien luonnin, jotka ovat täynnä kerroksittaista tietoa digitalisoiduista näytteistä, tallennettuna erittäin korkean resoluution virtuaalisiin näytelaseihin. Tällä hetkellä on olemassa kuitenkin vain kourallinen automaattisia työkaluja, jotka kykenevät käsittelemään näin valtavia kuvatiedostoja tarkasti hyväksytyin aikarajoin. Tämän työn tarkoituksena on syväoppimista hyväksikäyttäen löytää ratkaisu histopatologisten kuvien rekisteröintiin. Tärkeimpänä osa-alueena on ymmärtää kiintopisteiden validoinnin periaatteet sekä eri väriaineiden augmentoinnin vaikutus. Lisäksi tässä työssä kehitettyä rekisteröintialgoritmia tullaan vertailemaan muihin kirjallisuudessa esitettyihin algoritmeihin, jotka myös hyödyntävät virtuaalinäytelaseja digitaalipatologian saralla. Kirjallisessa osiossa tullaan siteeraamaan aiempia tutkimuksia muun muassa seuraavista aihealueista: histopatologia, digitaalipatologia, virtuaalinäytelasi, kuvantaminen ja rekisteröinti, näytteen värjäys, data-augmentointi sekä syväoppiminen. Tavoitteena on kehittää oppimispohjainen rekisteröintikehys erityisesti korkearesoluutioisille digitalisoiduille histopatologisille kuville. Erilaisissa näytekuvissa tullaan käyttämään jopa 40-kertaista suurennosta. Kuvat kudoksista on järjestetty eri menetelmin värjättyihin peräkkäisiin kuvasarjoihin ja tämän työn päämääränä on rekisteröidä kuvat pohjautuen ainoastaan kudosten näkyviin osuuksiin, jättäen kuvien tausta huomioimatta. Kudosten merkittävimmät rakenteet on merkattu niin sanotuin kiintopistein. Työn laatumittauksina käytetään arvoja, kuten kohteen suhteellinen rekisteröintivirhe (rTRE), rakenteellisen samankaltaisuuindeksin mittari (SSIM), sekä visuaalista arviointia, kiintopisteisiin pohjautuvaa arviointia, yhteensopivuuskohtia, ja kuvatiedoston yksityiskohtia. Nämä arvot ovat verrattavissa myös tulevissa tutkimuksissa ja samaisia arvoja voidaan käyttää uusia työkaluja kehiteltäessä. DeepHistReg metodi toimii pohjana tässä työssä kehitettävälle näytteen värjäyksen parantamiseen pohjautuvalle rekisteröintityökalulle. Matlab ja Aperio ImageScope ovat ohjelmistoja, joita tullaan hyödyntämään tässä työssä kuvien merkitsemiseen ja validointiin. Ohjelmointikielenä käytetään Pythonia. Syöpä on maailmanlaajuisesti vakava sairaus, joka ei katso ikää eikä elämäntyyliä. Siksi on tärkeää löytää uusia keinoja kehittää työkaluja, joita asiantuntijat voivat hyödyntää jokapäiväisessä työssään potilastietojen käsittelyssä. Digitaalipatologian osa-alueella on vielä paljon innovoitavaa ja tämä työ on yksi askel eteenpäin taistelussa syöpäsairauksia vastaan

    Affine Registration of label maps in Label Space

    Get PDF
    Two key aspects of coupled multi-object shape\ud analysis and atlas generation are the choice of representation\ud and subsequent registration methods used to align the sample\ud set. For example, a typical brain image can be labeled into\ud three structures: grey matter, white matter and cerebrospinal\ud fluid. Many manipulations such as interpolation, transformation,\ud smoothing, or registration need to be performed on these images\ud before they can be used in further analysis. Current techniques\ud for such analysis tend to trade off performance between the two\ud tasks, performing well for one task but developing problems when\ud used for the other.\ud This article proposes to use a representation that is both\ud flexible and well suited for both tasks. We propose to map object\ud labels to vertices of a regular simplex, e.g. the unit interval for\ud two labels, a triangle for three labels, a tetrahedron for four\ud labels, etc. This representation, which is routinely used in fuzzy\ud classification, is ideally suited for representing and registering\ud multiple shapes. On closer examination, this representation\ud reveals several desirable properties: algebraic operations may\ud be done directly, label uncertainty is expressed as a weighted\ud mixture of labels (probabilistic interpretation), interpolation is\ud unbiased toward any label or the background, and registration\ud may be performed directly.\ud We demonstrate these properties by using label space in a gradient\ud descent based registration scheme to obtain a probabilistic\ud atlas. While straightforward, this iterative method is very slow,\ud could get stuck in local minima, and depends heavily on the initial\ud conditions. To address these issues, two fast methods are proposed\ud which serve as coarse registration schemes following which the\ud iterative descent method can be used to refine the results. Further,\ud we derive an analytical formulation for direct computation of the\ud "group mean" from the parameters of pairwise registration of all\ud the images in the sample set. We show results on richly labeled\ud 2D and 3D data sets

    Intensity Based Non-rigid Registration of 3D Whole Mouse Optical and MR Image Volumes

    Get PDF
    Novel magnetic resonance (MR) imaging techniques can be validated using accurate co-registration with histology. Whole-animal histological sections allow for simultaneous analysis of multiple tissues, and may also aid in registration by providing contextual information and structural support to tissues which if isolated from the body would be difficult to register. This thesis explores the feasibility of co-registration between whole mouse histology with 3D MR images using an intermediate optical image volume acquired during tissue sectioning. Of the two transformations required for this approach, 3D co-registration of MR and optical images is more challenging to perform due to changes in contrast, slice orientation, and resolution between these modalities. Here, an automated non-rigid registration technique utilizing mutual information is proposed to accurately register 3D whole mouse optical and MR images as a first step towards automated registration of histology. Validation of this technique was accomplished through calculation of post-registration target registration error

    Patch-based nonlinear image registration for gigapixel whole slide images

    Get PDF
    Producción CientíficaImage registration of whole slide histology images allows the fusion of fine-grained information-like different immunohistochemical stains-from neighboring tissue slides. Traditionally, pathologists fuse this information by looking subsequently at one slide at a time. If the slides are digitized and accurately aligned at cell level, automatic analysis can be used to ease the pathologist's work. However, the size of those images exceeds the memory capacity of regular computers. Methods: We address the challenge to combine a global motion model that takes the physical cutting process of the tissue into account with image data that is not simultaneously globally available. Typical approaches either reduce the amount of data to be processed or partition the data into smaller chunks to be processed separately. Our novel method first registers the complete images on a low resolution with a nonlinear deformation model and later refines this result on patches by using a second nonlinear registration on each patch. Finally, the deformations computed on all patches are combined by interpolation to form one globally smooth nonlinear deformation. The NGF distance measure is used to handle multistain images. Results: The method is applied to ten whole slide image pairs of human lung cancer data. The alignment of 85 corresponding structures is measured by comparing manual segmentations from neighboring slides. Their offset improves significantly, by at least 15%, compared to the low-resolution nonlinear registration. Conclusion/Significance: The proposed method significantly improves the accuracy of multistain registration which allows us to compare different antibodies at cell level

    Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

    Get PDF
    Joint registration of a stack of 2D histological sections to recover 3D structure ("3D histology reconstruction") finds application in areas such as atlas building and validation of in vivo imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as "banana effect" (straightening of curved structures) and "z-shift" (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. We consider two likelihood models: Gaussian (ℓ2 norm, which can be minimised in closed form) and Laplacian (ℓ1 norm, minimised with linear programming). Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest

    Registration of serial sections: An evaluation method based on distortions of the ground truths

    Get PDF
    Registration of histological serial sections is a challenging task. Serial sections exhibit distortions and damage from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations extremely difficult. This work proposes methods for ground-truth-based evaluation of registrations. Firstly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Secondly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches. Both under- and over-registration become evident in our evaluations. We also survey existing validation efforts. We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.Comment: Supplemental data available under https://zenodo.org/record/428244
    corecore