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Abstract 
 

Novel magnetic resonance (MR) imaging techniques can be validated using accurate co-

registration with histology. Whole-animal histological sections allow for simultaneous 

analysis of multiple tissues, and may also aid in registration by providing contextual 

information and structural support to tissues which if isolated from the body would be 

difficult to register.  

 

This thesis explores the feasibility of co-registration between whole mouse histology with 

3D MR images using an intermediate optical image volume acquired during tissue 

sectioning. Of the two transformations required for this approach, 3D co-registration of 

MR and optical images is more challenging to perform due to changes in contrast, slice 

orientation, and resolution between these modalities. Here, an automated non-rigid 

registration technique utilizing mutual information is proposed to accurately register 3D 

whole mouse optical and MR images as a first step towards automated registration of 

histology. Validation of this technique was accomplished through calculation of post-

registration target registration error.   

 

Keywords: Magnetic Resonance Imaging (MRI), Histology, Optical Imaging, 

Registration, Whole Mouse Imaging, Mutual Information 
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Chapter 1 : 

 

Introduction 

 

 1.1 Motivation 

The spatial alignment of images can be an important component of image processing for 

quantitative comparison. The process of aligning images differing in some way but 

capturing the same object is known as image registration. Specifically, the goal of image 

registration is to find an optimal transformation, mapping all points from one image to the 

other. Applications of this can be found in various fields; however, it has proven to be 

particularly valuable in analysis of medical images.  
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In medical imaging, the goal of image registration is to find a transformation in which the 

homologous anatomies of two or more images are aligned. The process of doing this will 

compensate for superficial differences between the images resulting from changes in 

patient posture, sensor location and other sources to be removed; enabling more important 

features of the images to be compared and correlated.  

 

There are a number of sources of variation between images, differences in the sensor, time 

of acquisition, and the patient being imaged are some examples. Notably, a difference in 

the mode of image acquisition offers a unique opportunity to combine images depicting 

different properties of the same anatomy. Examples of this type of registration can be 

found in numerous medical applications and using a variety of different imaging 

modalities. However, for this thesis the focus will be specifically on registration between 

histology and magnetic resonance (MR) images. Comparison of these particular 

modalities enables validation of novel magnetic resonance imaging (MRI) contrasts using 

histology, a common clinical diagnostic gold standard.  

 

Generally, approaches to this type of registration focus on a specific organ or tissue as a 

result of conventional approaches to histological preparation wherein tissues are 

processed once isolated. Alternatively, processing of whole-animal histological sections 

can address registration of multiple tissues simultaneously. Also this may enable accurate 

registration of tissues which significantly deform once isolated from the body.  
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However, no techniques attempting automated registration of whole mouse MR images 

and histological sections have been proposed. This study attempts to approach this 

problem by using an optical image to bridge the gap between these two modalities. As an 

initial step towards registration of histology and MRI the feasibility of MRI and optical 

image co-registration is investigated here. This can later be combined with a registration 

for histological sections and their corresponding optical images. Together, these two 

registrations will align whole mouse histology and MR images.  

 

1.2 Histology 

The field of histology focuses on the examination of microscopic tissue composition and 

structure. This is accomplished through the collection of tissue samples thin enough to 

allow the transmission of light, which may be examined under a light microscope. The 

power of this technique lies in its capability to image at extremely high resolution, 

allowing direct visualization of tissue architecture, cells and sub cellular structures. This 

can be of particular use in the study of different disease states, in which microscopic 

changes to tissues occur. Moreover, the development of a number of histological stains 

and staining techniques has made histology an invaluable tool in biological research; 

enabling specific structural and molecular components of the tissue to be highlighted and 

easily visualized.  
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Preparation techniques of tissue for histology attempt to create thin sections while 

maintaining the in vivo tissue structure. Although the specifics of any particular 

preparation may vary to suit the requirements of a given application, there are a few steps 

that remain consistent in most conventional protocols1. The first step is to isolate the tissue 

of interest for processing. Clinically, this is accomplished by collecting a small sample of 

tissue, known as a biopsy. In pre-clinical research, animals are euthanized and tissues, as 

large as an organ, are collected. Once isolated, the tissue is fixed to prevent degradation 

and then embedded in some sort of medium, such as paraffin wax, which when solidified 

creates a block. This tissue block is then thinly sectioned using a machine called a 

microtome which repeatedly shaves away thin layers of tissue from one of the block faces. 

Specifically in this work a cryo-sectioning protocol was used, in which the tissue is fixed 

by freezing it once embedded within a gel medium. To maintain the tissues frozen state 

during sectioning, the microtome is operated within a freezer (figure 1.1). As the tissue is 

sectioned it may be collected on microscope slides. Once tissue sections have been 

collected, more specific staining protocols may be employed to achieve the desired 

contrast.  

 

In many disease states including prostate2 and breast3 cancer, as well as liver fibrosis4, 

pathological evaluation of histology is the gold standard for disease diagnosis and staging. 

This remains the case despite continuous efforts in the field of medical imaging to replace 

it. Largely, the continued stance of histology as the gold standard for diagnosis is its 

capability to directly image tissue architecture and cellular composition, to which the 

classifications of many diseases are based. For the most part, non-invasive imaging is 
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forced to measure tissue changes on a larger scale (millimeters) in which subtle changes 

may be less apparent or undetectable.  

 

While providing invaluable information into the structure and composition of tissues, as 

well as being supported by extensive research linking histological appearance to different 

disease states, pathological tissue evaluation does suffer from a number of critical 

limitations. Clinically, histology generally comes in the form of a biopsy, introducing risk 

to the patient in the form of infection5, 6. Additionally, it suffers from sampling error due 

to the small sample size; potentially missing important structures such as tumors7 during 

Figure 1.1: CryoVizTM cryo-imaging system 

used for sectioning and optical imaging of 

frozen mouse volumes 
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sampling or misrepresenting large heterogeneous tissues8, 9. Specifically motivating to 

this thesis however is the limitation histological preparation places on preclinical research. 

To collect tissue for histological processing animals must be euthanized. In doing this the 

ability to perform longitudinal studies is severely limited, requiring multiple animals to 

be euthanized at different time points in order to understand disease progression and 

response to potential interventions. While this does allow longitudinal investigation, it 

prevents each animal from being its own control, and as such important subtle findings 

may be lost due to inter-animal variability. These downfalls contribute to continuing 

efforts to develop new diagnostic techniques, such as non-invasive imaging, to potentially 

replace or correlate with histology and improve diagnostic quality. 

 

1.3 Optical Imaging 

The term optical imaging describes a wide range of techniques that utilize the visible, 

ultraviolet and infrared spectra of electromagnetic waves to generate images10. These 

approaches enable non-invasive imaging of the body without the use of ionizing radiation. 

Because visible light is utilized, full color images can be generated11 giving soft tissue 

structures rich contrast. Moreover, the wavelength of these modalities can support 

acquisition of high resolution images, allowing visualization at the cellular level12. 
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Unfortunately, optical imaging like most other imaging modalities does have critical flaws 

limiting its applications. Probably the most restricting is the limited depth penetration of 

visible light. Related to its wavelength, optical imaging is generally restricted to 

investigating structures within a few millimeters of the tissue surface13. 

 

As described previously however, standard procedures for histological processing of 

tissue inherently offer a unique opportunity for optical imaging of internal structures 

normally too deep below the surface. This can be accomplished during microtoming, 

where thin layers of tissue are serially shaved away. During this process, structures 

normally deep below the skin’s surface become exposed along the face of the tissue block 

as seen in figure 1.2. By alternating between imaging and sectioning of the exposed face, 

Figure 1.2: View of exposed tissue block face during cryo-sectioning 
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optical imaging techniques can be employed throughout the tissue volume; allowing 

optical imaging to be exploited in a novel way.  

 

Specifically, this approach can utilize both bright field and fluorescence microscopy 

throughout the volume of the animal. Using the bright field microscopy, images can be 

captured at high resolution, with full color. These provide detailed anatomical images rich 

in contrast over the entire volume. Additionally, by adding different filters fluorescence 

images of the tissue face can be acquired, enabling the detection of fluorescently labelled 

cells or molecular components13, 14.  

 

Compared to histological images however, the optical images acquired in this manner 

may have an obstructed view of cellular structure despite acquiring images at an adequate 

resolution. This results from the remaining tissue block that lies below the exposed tissue 

face. In contrast, histological tissue is sectioned at a thickness which enables transmission 

of light, allowing a single layer of cells to be imaged clearly without interfering structures 

in the background. The two imaging modalities can be used in conjunction to address 

these limitations. Histological sections, which are more difficult to acquire, can be 

collected sparsely throughout the volume providing samples of detailed cellular structure. 

These can then be put into 3D context using the corresponding optical images which fit 

within the series of optical images covering the full tissue volume. Together these imaging 

techniques can provide a wealth of information. However, their applications remain 

limited by their extremely invasive nature.  
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1.4 Magnetic Resonance Imaging 

1.4.1 Generating Images 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique capable 

of producing detailed anatomical and pathological images. These images are generated by 

exploiting the magnetic properties of the body. To do this, an individual is placed within 

a strong external magnetic field. For most clinical scanners this is usually between 0.5 

and 3 Tesla (T). Typically MRI is used to image hydrogen atoms (1H) because of their 

high natural abundance within the body in the form of water and lipids. Hydrogen nuclei 

within the body possess a polarized axis around which they rotate. In the absence of this 

strong magnetic field these axes are randomly oriented. Conversely once within the 

magnetic field of the MRI scanner, the poles of the nuclei will tend to align with this 

external field. 

 

Additional energy can then be applied in the form of a radio frequency (RF) pulse; which 

can be tuned to different frequencies. By changing the frequency of the applied RF pulse 

different nuclei can be exploited. The RF frequency that will affect a given nuclei is 

dependent upon both the strength of the external magnetic field and the specific type of 

nuclei. This frequency is known as the Larmor frequency. Once an RF pulse is applied, 

certain nuclei will absorb this external energy, become excited, and deflect, no longer 

aligning with the magnetic field. As this happens, the nuclei will begin to precess around 

the axis of the magnetic field; similar to the wobble of a spinning top. The rate of 

precession is also equal to the Larmor frequency. Now that the nuclei have a time varying 
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magnetic component in the transverse plane, their magnetization can be detected. This 

signal from the displaced nuclei in the transverse plane can be detected as an 

electromagnetic wave with a frequency equal to the Larmor frequency; and this is used to 

generate images. These signals can be detected by receive coils that are generally placed 

directly on the surface of the desired anatomy. Once the RF pulse is removed, the nuclei 

will begin to realign with the magnetic field.  

 

A third type of magnetic field, known as a gradient, is also used to generate MR images. 

These are magnetic fields that linearly vary within the main magnetic field causing a 

spatial variation in field strength along one of the three orthogonal axes. The purpose of 

these are to spatially encode signals within the body. Without them, signals detected from 

nuclei in different positions throughout the body would be indistinguishable. The 

gradients work because both the excitation pulse and detected signal have frequencies 

dependent upon the strength of the magnetic field. By altering the gradients in all three 

axes, nuclei can be selectively excited based on their location within the body and detected 

signals can be spatially encoded. Application of a number of carefully timed RF pulses in 

series along with the application of gradients is what is known as a pulse sequence. 

 

1.4.2 MRI Contrasts 

As previously described, a series of RF pulses can be combined into what is known as a 

pulse sequence15. While there are a number of different pulse sequences available, all have 

timing parameters TR and TE which can be altered to exploit different properties of the 
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tissue to generate image contrast. The TR parameter refers to the repetition time, which 

is the time between excitation RF pulses. TE is the echo time, which is the time between 

the RF excitation pulse and sampling of the received signal. 

 

Importantly, tissues have a number of characteristic properties from which MR contrast 

can be derived. The most notable tissue properties that are used to generate contrast are 

the proton density (PD) and two characteristic timing parameters T1 and T2. In PD images, 

the contrast is related to the number of hydrogen atoms in a particular volume. For 

example, fluids generally have higher hydrogen content then bone and will appear brighter 

in PD images.  

 

The T1 and T2 timing parameters refer to the time it takes after the RF pulse for atoms to 

return to equilibrium, and are referred to as relaxation times. Pulse sequences exploiting 

T1 and T2 relaxation times are known as T1-weighted (T1w) (figure 1.3 A) or T2-weighted 

(T2w) (figure 1.3 B) images respectively. The T1 timing parameter refers to what is known 

as the spin-lattice relaxation time, which is the time it takes for atoms of a particular tissue 

to realign with the main magnetic field. These images are often referred to as anatomical 

scans, producing good contrast between different tissues. 

 

Alternatively, T2w images are often referred to as pathological images producing good 

contrast of diseased tissues which often accumulate abnormally large amounts of fluid 

and appear brighter in these images. The T2 timing parameter is known as the spin-spin 
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relaxation and is proportional to the time it takes for the transverse magnetization to relax 

to zero.  

 

In this study we also utilized a less standard pulse sequence known as iterative 

decomposition of water and fat with echo asymmetry and least squares estimation 

(IDEAL)16. By exploiting the difference between hydrogen atoms in water and lipid 

molecules, this pulse sequence generates 3 image contrasts simultaneously: a water-only, 

fat-only and fat fraction image. The water- and fat-only images are essentially inversions 

of one another. The water-separated image, (figure 1.3 C), depicts regions high in water 

content more brightly and regions high in lipids more darkly; fat-separated images are the 

opposite. The fat fraction images are particularly useful as the pixel intensities represent 

the percentage of lipid in that location. These values can be used to quantify fat content 

in a particular region, making these images particularly useful in obesity related disease. 

 

One of the main advantages of MRI over other non-invasive imaging modalities is the 

wide variety of available contrasts. Compared to computerized tomography (CT) imaging 

for example, where images are always generated based on the same property of the tissue, 

which is how much different tissues attenuate or absorb X-rays. For this reason, tissues 

such as bone which are very dense will always appear brighter than most soft tissues in 

the body regardless of what imaging parameters are changed. Conversely, MRI is able to 

generate many contrasts by changing pulse sequence timing parameters to exploit 
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different tissue properties. This allows different tissues to be highlighted by altering the 

pulse sequence.  

 

While the main imaging contrasts have been briefly explained here, this is in no way an 

exhaustive list of available contrasts. Extensive work continues to be done in the field of 

pulse sequence development to generate new contrasts and improve image acquisition 

strategies. Moreover, much work is still needed to be done in fully understanding the 

biological implications of novel contrasts in different disease states. 

B C

Figure 1.3: MR (A) T1w, (B) T2w, and (C) water-separated IDEAL contrast images 

of a mouse in the coronal plane. 
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1.5 MRI-Histology Registration 

1.5.1 Motivation 

Registration with histology has been recognized as a valuable tool in the development of 

non-invasive imaging techniques and sought after in many applications. Once registered, 

histology can be used to understand the microscopic mechanisms behind MRI contrasts. 

As previously mentioned, histology remains the gold-standard for diagnosis and staging 

of many diseases, making it in essence a ground truth for non-invasive techniques 

attempting to image these pathologies. Consequently, registration of histology serves as 

an important and necessary validation step for novel MRI based diagnostic techniques. 

 

In addition to histology being an important tool for validation of MRI, the two modalities 

can also be used in conjunction to provide more comprehensive understanding of 

anatomy. Histology is capable of providing microscopic information about tissue 

composition and structure, but has a relatively limited field of view. Conversely, MRI 

typically generates lower resolution images with a much more comprehensive view of the 

imaged anatomy, providing more information about macroscopic anatomical structure. 

Together, these two modalities can provide information into macroscopic changes and the 

underlying mechanisms; potentially giving more meaningful information than either 

would be able to provide alone.   

 

1.5.2 Problem Description 

While desirable, registration of histology with in vivo images is a challenging problem. A 

suitable approach must address a number of discrepancies between the two images. One 
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difference is the drastic change between contrasts resulting from the different modalities. 

However, utilization of mutual information based registration techniques have been 

shown to be quite robust in dealing with this17 and will be covered more comprehensively 

in Chapter 2. 

 

The other major obstacle in achieving accurate registration is the tissue deformation that 

occurs between imaging sessions. This can be broken down into two major sources 1) 3D 

deformations incurred during tissue excision and embedding steps of histological 

preparation 2) 2D deformation arising from tissue sectioning. In the latter case, sectioning 

may also result in tearing or loss of tissue requiring additional processing to recover in 

vivo structure. Both of these sources however can introduce substantial deformations with 

unique implications on the compensatory approaches.  

 

1.5.3 Approaches  

Given the difficulty associated with achieving accurate registration, it is not surprising 

that many studies investigating non-invasive techniques opt to skip registration in lieu of 

qualitative comparison based on identifiable anatomical features18. While this approach 

is suitable in some cases, it lacks the accuracy required for quantitative comparison and 

is often used merely for verification of some quality. As a result of the difficulty 

associated with this problem, direct registration of histology with in vivo images is often 

avoided. Instead it is common for some sort of intermediate image to be used to bridge 

the gap between the two modalities; addressing the two sources of tissue deformation in 

independent steps. 
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One such approach is to use an ex vivo MR image captured of the excised tissue once it 

has been embedded for sectioning19, 20. In doing this, the registration problem can be 

approached as two easier registrations. The first is co-registration of the in vivo and ex 

vivo MR images. While this will have to compensate for substantial deformations 

resulting from the excision and embedding procedures, the image should have similar 

contrast, resolution and dimensionality. In an independent step the 2D histological section 

is registered to the 3D ex vivo MR image. This operation will give the histology slice 

context within the 3D volume and address the change in contrast. However, deformations 

between the two images should only result from the sectioning procedure making them 

2D and theoretically easier to address.  

 

While this approach can greatly aid registration, the problem of finding the ideal 

placement of the 2D histological section within the ex vivo volume can still be 

challenging. This arises because generally the plane of sectioning will not correspond to 

the plane of MR imaging; rather an oblique plane through the 3D volume. Theoretically, 

the volume could intentionally be sectioned to correspond with the MR imaging plane; 

allowing the histological section to then be registered with the appropriate 2D MR slice. 

However, even between histological sections from the same specimen there can be 

considerable variability in the plane of sectioning21. Alternatively, MR visible extrinsic 

markers, or fiducials, can be added to the tissue of interest before ex vivo imaging and 

sectioning22, 23 to aid in determination of the section position within the volume.  
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Another commonly used intermediate are optical images captured of the tissue block 

during sectioning (as previously described in section 1.3) which are also referred to as 

“block face” images24-26.  By sectioning the tissue at a consistent thickness and capturing 

images of the exposed block face at regular intervals, the images can be combined into a 

3D volume. Again, this allows registration to be broken down into two steps, one of which 

is a 3D registration between the in vivo MRI and the 3D block face volume. Similar to the 

use of an ex vivo MRI intermediate, this step compensates for deformations incurred 

during fixation and embedding. However, it will not have the same contrast or resolution, 

making it slightly more challenging than the previously described approach. The other 

registration step is a 2D registration of the histological section with the corresponding 

block face image. While the registration of the two 3D volumes is slightly more 

complicated as it is now multi-modal, the second registration step becomes considerably 

easier as the location of the histological section within the optical volume is already 

known.  

 

Utilizing these approaches, many successful techniques capable of accurately registering 

histology with in vivo MRI volumes have been developed. Despite this progress however, 

there remain many applications that still have not been addressed. In general, there is not 

a single approach that is suitable for all tissue types and problems; each scenario has its 

own unique considerations which will dictate what approach is taken. For this study in 

particular, an approach utilizing an optical image intermediate will be taken.  
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1.6 Whole Mouse Imaging 

1.6.1 Mouse Models  

Mice have become an invaluable tool in medical research. Arguably they are imperfect 

models of human disease however, for ethical and practical reasons they offer many 

advantages. The use of animal models allows for testing of therapeutic interventions as 

well as carefully controlled experimental conditions, both of which are not possible in 

humans. In comparison to other animal models however, a number of factors contribute 

to their relative popularity. Notably they have a relatively short generation time, are 

B C 

Figure 1.4: Representative (A) T1w MR, (B) optical cryo-section, and (C) histological 

images with corresponding resolution (given in sagittal x axial x coronal directions 

respectively for MR and optical images or sagittal x axial for histology).     
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genetically similar to humans, have a number of established models of human disease, are 

small in size, and have a variety of available transgenic strains. Particularly in the field of 

medical imaging, the commercial availability of small animal imaging systems has made 

pre-clinical imaging research even more attractive. These miniaturized versions of their 

clinical counterparts come at a reduced cost and are able to fit in small laboratory spaces.  

 

1.6.2 Whole-Mouse Image Registration 

Utilizing mice in medical imaging research has a number of interesting applications in 

both biological research and also in the development of novel imaging techniques. In both 

these cases, image registration of whole animal images can also be extremely useful. In 

terms of medical research, mice offer a unique opportunity to investigate highly controlled 

longitudinal effects of disease progression and response to therapeutic interventions. Non-

invasive imaging can play an important role in this research as animals can be imaged at 

regular time intervals, serving as their own controls over time. However, for the results 

from each time to be compared the images should be accurately registered; compensating 

for postural and anatomical changes that have occurred between imaging sessions.  

 

Another situation in which registration of mice may to prove to be extremely useful is in 

multi-modal imaging. While the motivation here is not necessarily specific to mice; 

registering images from different modalities will combine information from multiple 

sources, each of which exploiting a unique quality of the imaged anatomy. The 

implications of this were discussed previously in regard to MRI and histological 
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applications but the same concepts apply to combinations of other imaging modalities as 

well.  

 

While these motivating factors could apply to imaging and registration of any isolated 

portion of anatomy, such as the abdomen, head, or an extremity which is similar to what 

is done clinically, whole animal approaches offer some unique advantages. In terms of 

image processing, development of robust whole animal techniques can circumvent the 

need to develop multiple tools specific to each anatomical application. Alternatively, as a 

tool for investigating biological processes, whole animal investigation may provide a 

more comprehensive view of diseases affecting multiple tissues simultaneously.  

 

However, registration of whole animal images has unique challenges, most notably the 

presence of a number of articulated structures (joints). These anatomical features provide 

a relatively large range of unrestricted motion which must be accounted for in registration. 

One approach to addressing this has been to extract and align the mouse skeletons27, 28 

Presumably, because the skeleton provides the structural framework for the rest of the 

body and is composed of a finite number of rigid components, once it has been aligned 

this should compensate for postural differences between the two images and provide a 

good initialization for subsequent conventional approaches. This approach is particularly 

suited to CT images because they offer high contrast between bony structures and soft 

tissue, making extraction of the skeleton easier.    
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Approaches have also been implemented for the MRI images29. These however do not 

rely on skeletal identification. Rather, images are aligned in hierarchical fashion where 

the volumes are aligned in increasingly smaller sections, corresponding to different levels 

of anatomical detail. Similarly, a piece-wise registration approach has been used30 to 

compensate for displacement of head and extremities between different modalities. 

Typically, clinical images are not or cannot depict the entire body in one continuous 

image. This likely contributes to the relatively limited number of papers focusing on 

whole animal registration as the approaches cannot be directly translated from human 

applications. However, the above mentioned approaches have proven to be successful and 

demonstrate a number of situations in which whole animal imaging is not only possible 

but valuable.   
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1.7 Thesis Objective 

 Both registration addressing whole mouse images, and multi-modality registration 

between MRI and histology have significant obstacles in achieving accurate alignment. 

While both have been addressed in different applications, attempts to align whole mouse 

histological sections with in vivo MRI have not been made. In this thesis I examine the 

feasibility of registering whole mouse histological sections with 3D MR volumes using 

an optical volume intermediate (figure 1.5). At present, a manual technique has been 

developed which can be used to accurately register histological sections with their 

corresponding 2D optical images31. For that reason, this thesis will focus solely on the 

registration of the MR and optical image volumes. Here, I implement and validate a fully 

automated registration algorithm to accurately co-register these two volumes as an initial 

step towards whole mouse MRI and histological registration.  

Figure 1.5: Overview of proposed co-registration approach for whole mouse histological 

and 3D MR images. Transformation T1 maps the MR volume with the corresponding 

optical cryo-section volume. Histological sections are mapped to the corresponding 2D 

optical image, which is a single slice from the 3D optical volume, via a different 

transformation T2. 
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1.8 Thesis Outline 

Chapter 2 will provide a description of general image registration approaches, 

implementation and validation techniques. 

 

Chapter 3 is a more detailed description of the implementation used here for the 

registration of whole mouse optical and MR image volumes as well as the results of 

experimental studies. 

 

Chapter 4 provides a review of important findings as well as insight into future work 

related to this project. 
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Chapter 2 : 

 

Image Registration 

 

 2.1 Types of Registration 

As previously mentioned, there are a wide variety of applications for image registration. 

Consequently, there are also a large number of registration methods that can be used, most 

of which are specifically tailored to a distinct problem. While there are a number of 

proposed methods, most can be classified into a few broad categories of approaches that 

have been developed. The choice of which to use will be dependent on the images being 

registered.  
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2.1.1 Feature Based  

A common approach to registration are feature based methods. These techniques extract 

salient homologous features in the images to guide alignment. Features are typically 

points1, lines or curvature that can be reliably and easily identified in both images2, 3. Once 

these corresponding features have been identified, the registration can proceed to find the 

optimal transformation to bring them together.  

 

Ultimately, the success of this approach is dependent upon what features can be extracted 

from the images4. For a feature to be appropriate it should be easily and reliably 

identifiable in both images. This may be more challenging to address in multimodal 

problems as the appearance or saliency of features may drastically change in different 

modalities5. Moreover, there must be a number of identifiable features spread over the 

area of the image to achieve accurate alignment over the entire field of view.  If these 

criteria cannot be addressed, using another approach may be more appropriate.  

 

2.1.2 Intensity Based  

Alternatively, if features cannot be easily extracted from the images an intensity based 

method may be employed. In these methods, the individual intensities of all overlapping 

pixels in a given alignment will be used to calculate some similarity metric. When images 

are optimally aligned, this metric should reach a global maxima, making this approach in 

essence an optimization problem.  
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These methods look at the individual pixel intensities as independent entities unrelated to 

other pixels and each weighted equally in the metric calculation. This approach makes the 

implementation of intensity based calculations relatively straightforward, but may 

overlook higher order relationships between pixels which may important to consider in 

an optimal registration6.  

 

Moreover, because this method looks exclusively at pixel intensities, anything that will 

affect these intensities will also have an effect on the registration. Some things to consider 

in this regard are image noise, changes to the sensor and differences in the illumination. 

While these factors can be addressed by altering portions of the implementation, it is 

important to acknowledge their potential effect.  

 

2.1.3 Finite Element Method  

A less commonly used approach is finite element method (FEM). As the name alludes to, 

FEM attempts to model the anatomy of interest by defining finite number of discrete units 

over its volume.  Each of these units is assigned a set of physical properties that have been 

experimentally determined based on the tissues being imaged. Once the tissue of interest 

has been divided into discrete units and defined, the mechanical properties of the tissue 

under an applied force can be accurately modelled. Theoretically this approach works 

under the premise that if the volume is divided into small enough sections, and the location 

of each section can be determined, this will accurately approximate the behaviour of the 

tissue as a whole. The advantage of this approach is that it can closely model the 
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mechanical behaviour of the tissue and restrict the registrations to those that are physically 

plausible under the given conditions. In particular, this approach has been shown to be 

useful in modelling soft tissue deformation7. 

 

While having the potential to be extremely accurate, FEM registrations require a 

substantial amount of work to construct. Over the image of interest a number of physical 

parameters defining different tissues need to be determined and assigned. As a result, 

FEM has limited applications. Considering the current problem, determining, defining 

and delineating all the tissue types over the entire animal would be extremely tedious. 

Moreover, because FEM registrations model the behaviour of each finite unit, 

computational times can be extremely long.  

 

 2.2 Intensity Based Registration Framework  

Although there is a large amount of variability even within the category of intensity based 

registrations, generally these can be broken down into a combination of a few basic 

components as seen in figure 2.1. The most obvious of these components are the two input 

images. Conventionally, one of these images is labelled the “fixed” image and remains 

stationary throughout the registration process. The other image is labelled “moving” and 

is transformed to spatially align with the fixed image.  Other components include the 

transform, metric, interpolator and optimizer. Each component has a set function within 
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the registration algorithm, which will be described in more detail, but may be 

implemented differently to meet the demands of a given problem.  

2.3 Transforms 

Transforms define how the moving image may be manipulated to align with the fixed 

image. Once registration is complete, this will spatially map all the points from one image 

Figure 2.1: Block diagram of basic intensity-based registration 

components. During each iteration of the algorithm, a new transform is 

proposed by the optimizer and applied to the moving image resulting in 

a new alignment between the two input images. This alignment is then 

compared to other candidate alignments using the calculated metric 

value. This process is continued until the stopping criteria has been met 

at which point the transform determined to have the most favorable 

metric value is supplied as output.  
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to the other. The purpose of the image registration process is to determine the numerical 

parameters of the transform that will optimally align the images. There are a few types of 

transformations, each of which is slightly different in terms of how much restriction is 

placed on the transformation.   

 

2.3.1 Rigid 

Rigid transformations refer to those in which each point in an image is transformed 

equally, maintaining the image’s original pixel arraignment and spacing. As a result, 

transformations are limited to rotation and translation. These transformations are capable 

of accurately registering structures such as bone, which have a relatively fixed geometry8. 

Conversely, they are not capable of compensating for more localized deformations that 

occur in soft tissues.  

 

2.3.2 Affine 

Slightly less constrained than rigid transformations, affine transformations permit 

translation and rotation and also incorporate shear and scaling. These transformations do 

not necessarily maintain the original spacing of the image but do maintain parallel lines. 

Again these transformations are applied globally over the image and as a result cannot 

compensate for localized deformation.  

 

2.3.3 Non-rigid 
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Non-rigid transformations encompass all geometric transformations which are not applied 

globally over the entire volume.  The advantage of these transformations is their ability to 

compensate for more localized deformations; making them particularly important for soft 

tissue registration. They are also important for multi-modal problems were it is unlikely 

patient posture can be sufficiently restrained between imaging sessions.  

 

There are a number of approaches to non-rigid registration. In particular, B-splines have 

been shown to be useful in medical image registration problems because they can model 

localized deformations9. Implementation of B-splines involves defining a coarse 

uniformly spaced grid over the image volume as demonstrated in figure 2.2. At 

intersections of the grid lines are “control points” which are used to define the 

displacement of the tissue. The location of these control points can then be manipulated 

until an optimal alignment is achieved. Between these points cubic splines will interpolate 

intensities to achieve a smooth displacement field. By enabling the transformations to 

have a spatially varying magnitude, localized deformations can be more appropriately 

represented.   

 

It is common for multiple transformations to be combined in series to achieve a desirable 

registration10. Particularly, rigid or affine transformations will precede non-rigid 

registrations. In doing this the images can be coarsely aligned using a transformation that 

requires less processing time, giving a good initialization for more complex non-rigid 

transformations.  
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Figure 2.2: An example of image warping using B-splines. The top row shows the B-

spline grid of control points (indicated by red dots). In the image on the right the control 

point have been displaced from their original locations (left) causing the underlying grid 

to warp. An overlay of the control point grid on an example image can be seen in the 

middle row before and after control point displacement respectively. Finally the bottom 

row shows the original image (left) and resulting B-spline warped image (right). (Original 

Photograph Courtesy of Suzannelizabeth Photography).  
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2.4 Metrics: 

As stated previously, the purpose of an image similarity metric is to quantify how well a 

given transformation aligns two images; providing a way to compare the accuracy of 

candidate transformations. This serves as a cost function to be maximized or minimized 

(depending on the metric) to achieve accurate alignment. For intensity based registrations, 

these metrics are generally calculated from all overlapping pixels in aligned images.  

There are a number of possible metrics to use, each of which is suited to a different type 

of registration problem.  

 

2.4.1 Mean Squared Error 

The simplest of the similarity metrics is mean squared error (MSE). This is computed by 

calculating the mean of the squared difference between intensity values of overlapping 

pixels:  

𝑀𝑆𝐸(𝐴, 𝐵) =  
1

𝑁
∑(𝐴𝑖

𝑁

𝑖=1

− 𝐵𝑖)
2 

 

Where Ai is the i-th pixel of image A, Bi is the i-th pixel of image B, and N is the number 

of overlapping pixels from A and B. This metric will equal zero when images are perfectly 

aligned. While relatively computationally inexpensive, leading to lower registration time, 

MSE is not particularly robust and as a result is only suitable for a narrow range of 

potential applications. MSE is only appropriate in registration problems where the two 
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images being registered have the same contrast. Inherently, this makes MSE inappropriate 

for multi-modality registration problems and as such would not be used for the MRI-

optical registration being undertaken here.  

 

2.4.2 Normalized Cross-Correlation 

A slightly more robust metric is normalized cross-correlation (NCC). This metric is 

calculated as:  

𝑁𝐶𝐶(𝐴, 𝐵) =  
1

𝑁
∑

(𝑎𝑖 −  �̅�)(𝑏𝑖 −  �̅�)

𝜎𝑎𝜎𝑏
𝑖

 

 

Here ai and bi are overlapping pixels, a and b are the standard deviations in image 

intensity, and  �̅� and �̅� are the intensity means from images A and B respectively. By 

incorporating the mean and standard deviations of the two image intensities this metric is 

capable of compensating for scaling factors in intensity values between images. As a 

result NCC is more appropriate for unimodal registration problems, as it can 

accommodate some changes between signal intensities. However, like MSE, NCC relies 

on a relationship between the intensity values of the two images and as such is not 

appropriate for multi-modal problems.  

 

2.4.3 Mutual Information  
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Unlike either MSE or NCC, mutual information (MI) does not assume any relationship 

between pixel intensities of the two images. This quality makes mutual information 

particularly suited to multi-modal image registration problems where direct comparison 

of grey scale values is inappropriate. Particularly, it has been shown as an effective metric 

for registration problems involving histological and MR images11, 12.  

 

MI is an information theory measure of statistical dependence between the two images. It 

will measure how well one image is able to explain the other. To measure the information 

contained in a single image, the Shannon entropy13 can be used:  

 

𝐻 =  − ∑ 𝑝𝑖 log  𝑝𝑖

𝑖

 

 

Here pi is the probability of event i, which in the case of images refers to how often a 

given intensity value occurs. This can be calculated from a histogram of image intensities, 

where the probability will be the number of times an intensity value occurs in the image 

divided by the total number of pixels. Entropy will reach a maxima when intensity values 

are equally distributed throughout all grey scale values. In the case of overlapping images 

the joint entropy can be calculated: 

 

𝐻(𝐴, 𝐵) =  − ∑ 𝑝𝑖,𝑗 log  𝑝𝑖,𝑗

𝑖,𝑗
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Here pi,j is the probability of event i,j occurring, which is the combination of two 

overlapping pixel intensities. To quantify this, a feature space14 can be constructed in 

which intensity values from overlapping regions of the images are placed in to a 2D plot. 

This feature space is a joint intensity histogram, which will effectively count the number 

Figure 2.3: A demonstration of the relationship between image alignment, feature space 

and the mutual information metric. The top row shows the alignment of a single coronal 

T1w MR image with itself and the associated joint intensity histogram feature space and 

metric value below. The left column corresponds to perfect alignment of the two images, 

resulting in a clustered feature space and high metric value. In the second column images 

have been translated by five pixels resulting in a more dispersed feature space and lower 

metric value. Finally in the right column images have been translated by 100 pixels leading 

to a large degree of scattering in the feature space and low MI value demonstrating the 

relationship between the image alignment and metric value. 
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of occurrences of each combination of intensity values in aligned pixels. Again, this will 

be maximized if there is a large, even distribution of intensity combinations. Compared 

with joint entropy, mutual information constrains the marginal entropies of both images 

to discourage registrations where images are completely misaligned. 

 

𝑀𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 

 

Here H(A) and H(B) are the marginal entropies of images A and B respectively and 

H(A,B) is the joint entropy of the two images. Like the marginal entropies, joint entropy 

will be maximized when there is an even distribution of intensity combinations spread 

throughout the feature space. However, in the MI equation the joint entropy is inversely 

related to MI. Therefore, to maximize MI joint entropy should be minimized, which will 

occur when there are few but frequent combinations of intensity values which is 

demonstrated in figure 2.3. When the images are optimally aligned in the first column, a 

small number if histogram bins in the feature space have high values and MI is high. 

Conversely, as the images are moved away from this optima, the clusters of high bin 

values will decrease and spread out over other bins. This is reflected then in the MI 

calculations as the joint entropy increases with increased dispersion in the feature space 

and MI decreases.  
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Conceptually, the metric reaches an extreme when regions of similar intensities within 

one image align with another relatively homologous region in the other image. Again, this 

does not rely on the actual intensities of the regions to be compared, but instead quantifies 

how often combinations of pixel intensities occur. For example, medical images capture 

a view of tissues and organs; each of which is composed of similar cells and structures 

and as a result should have a relatively consistent intensity across its volume. While the 

specific intensity is dependent on the modality, we can assume that each tissue will have 

some sort of characteristic range of values within a given image. Figure 2.4 demonstrates 

this relationship between the tissue intensities in the feature space. When images are 

aligned (figure 2.4 left) the same anatomy in the two images will align resulting in a 

clustering of frequent intensity value combinations. Conversely, when images are 

unregistered (figure 2.4 right) the intensity combinations are less frequent and more 

spread out in the feature space. MI is able to quantify this clustering of the feature space, 

providing a way to quantify image alignment without relying on a direct relationship 

between intensity values of aligned pixels. 
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 2.5 Interpolators 

The metric value for a given alignment is calculated from overlapping intensity values in 

the two input images. These intensity values are determined by mapping the grid-points 

from the fixed image space to the corresponding locations in the moving image as 

described by the current transform. In general, this mapping will not be to a grid position 

Figure 2.4: A depiction of the relationship between intensity values and image 

alignment in multi-modality registration. Each tissue type has a characteristic range of 

intensity values in each modality. When images are registered (left) intensities from the 

same tissue type align resulting in few small clusters if intensity combinations. 

Alternatively, when the images are unregistered (right) the tissues do not align and the 

intensity clusters spread out. (Source: W. Wells, MICCAI 2009)  
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in the moving image and as such will not have an assigned intensity value. To mitigate 

this, a strategy to determine non-grid position intensities needs to be specified, which is 

the purpose of the interpolator. 

 

Nearest neighbor is the easiest interpolation approach in which the intensity value from 

the closest grid point is used. While computationally inexpensive, this approach imposes 

a discretized view of image intensity where values are constant and jump mid-way 

between grid points, which is not necessarily reflective of the underlying tissue.  

 

Alternatively, linear interpolation approaches determine intensities assuming linear 

variation between grid points. This method of interpolation is still relatively 

computationally inexpensive and allows for spatial continuity in intensities between grid 

points. However, this will result in discontinuity at grid points. 

 

It is also possible to use higher order interpolators including cubic B-spline and sinc 

functions. These methods will result in spatially continuous intensities across the image 

space. However, this comes at the cost of increased computational time. Because the 

metric will be calculated on each iteration, requiring interpolation to be used in the 

process, the interpolation strategy can have a large effect on the computational time and 

should be considered. Despite being potentially more accurate15 a computationally less 

demanding approach may be chosen, given the considerable increase in time required. 

Moreover, because mutual information is calculated from binned intensity values in the 
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joint intensity histogram, more accurate interpolation may not necessarily translate to a 

more accurate metric calculation due to rounding during binning16.  

 

 2.6 Optimizers 

Theoretically, each metric has a finite value that defines the perfect registration. However, 

due to the inclusion of noise and other imperfections this value is generally unattainable 

in practice, even with the optimal transformation. The goal of intensity based registrations 

is then to achieve optimal alignment of the two images by finding the global extreme of a 

given similarity metric. Optimizers define the strategy for finding this extreme within the 

scope of allowable transformations or the parameter space. Figure 2.5 shows an example 

parameter space for a transformation including only translations in two dimensions. 

 

The general approach in a registration algorithm is to use an iterative method depicted in 

figure 2.1, where a new transformation is proposed based on the optimizers strategy and 

tested against the current transformation based on the calculated metric. This process is 

continued until some sort of convergence criteria is achieved indicating an acceptable 

transformation has been reached.  

 

One approach is an exhaustive search strategy, where every possible transformation 

within the parameter space is tested. While this strategy is easy to implement and 

guarantees finding the optimal solution, the computational time can be very long, 
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especially for non-rigid registration problems which generally have a large parameter 

space. 

 

Alternatively, more sophisticated methods can be used to traverse the parameter space in 

search of the optimal transformation. One such method is the gradient descent approach. 

This method takes a step in the direction of the largest negative gradient to move towards 

the minimum17. This process is continued until the gradient decreases to zero at which 

time it is assumed the minimum has been converged upon. The step size on each iteration 

is a function of the current gradient magnitude. When the gradient is large so is the step 

size, and as the gradient converges upon zero, the step size decreases.  

 

A modification to this approach is the regular step gradient descent optimizer. Like the 

gradient descent optimizer, this approach will move in the direction of the largest negative 

gradient. However, the step size in this approach is not dependent on the magnitude of the 

gradient at any time. Rather, the step size is decreased by constant factor at each iteration; 

the gradient only determines the direction of the step in this approach. The user in this 

case specifies a starting and stopping step size, and in the process specifies the 
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convergence criteria. This approach is less reliant on the shape of the cost function and 

may improve efficiency in some cases.  

 

 Unfortunately, because the optimal value of the similarity metric is unknown none of 

these strategies can guarantee convergence onto the optimal transformation, or within 

acceptable proximity. One of the major problems with these techniques is that because 

the cost functions are hardly ever smooth, optimizers may stop at local extremes assuming 

Figure 2.5: Surface plot of MSE values calculated from two copies of a single image 

aligned by translations in the X and Y axis. In the center of the plot, the large valley 

corresponds to the optimal alignment of the images and the metric minimum. 
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they have converged upon the optima. Similarly, if the registration is initialized poorly 

the optimizer may move away from the optimal alignment. This would occur if the 

registration were to be initialized around the perimeter of the parameter space depicted in 

figure 2.5; as the optimizer would descend towards the edges of the parameter space 

reaching incorrect minima. In both cases, this will return an incorrect set of parameters as 

the optimal transformation. Despite this risk, optimization strategies are almost always 

employed as a result of the extremely time consuming process of exhaustive searches. 

 

 2.7 Image Preprocessing  

An optional component of the registration framework is the incorporation of any number 

of image preprocessing operations. This encompasses a wide variety of operations that 

can be performed on images prior to registration to improve accuracy. These include 

things such as smoothing filters, edge detection and deblurring.   

 

While these components are all optional, there is one preprocessing step that is required 

to implement an intensity based registration optimizing MI as outlined previously. In the 

explanation of the metric calculations, they are formulated to compare two images in 

which the pixel intensities are expressed as single values, such as the case in grey scale 

images. However, the optical images have intensity values expressed as a vector with 

values for red, green and blue.  While this does enable representation of color images, it 

also means that optical images need to be converted to grey scale prior to attempting a 

mutual information based registration.  
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There are some different approaches to doing this. One is to use only one of the color 

channels (e.g. red) in the registration. While being easy to implement, this approach only 

considers a portion of the available contrast collected from the three channels. 

Alternatively, a luminance filter can be incorporated; converting images to greyscale by 

computing a linear combination of red, green and blue channels on a pixel-by-pixel 

basis. This approach incorporates information from all three channels without having a 

substantial effect on computational time.  

 

 2.8 Validation Methods 

The goal of image registration is to accurately align two images. While visual inspection 

of the post registration anatomical agreement can assess the registration performance to 

some degree, it relies on qualitative assessment of the images. To quantify the registration 

accuracy, a number of metrics can be calculated, resulting in a meaningful value that can 

be used to compare and validate registration techniques. 

 

2.8.1 Dice Similarity Coefficient 

One common approach to registration validation is to calculate a dice similarity 

coefficient (DSC), which effectively quantifies the percent overlap between homologous 

anatomies. To do this, tissues of interest such as an organ like the kidneys or even a sub 

region like the hippocampus of the brain are segmented in both images being registered. 
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In the post registration images, the percent overlap of the two segmentations is quantified. 

DSC values range from 0 to 1, 0 being a very poor registration achieving no overlap and 

1 achieving full overlap between homologous anatomies. 

 

2.8.2 Target Registration Error 

Another approach to quantifying registration performance is to calculate a target 

registration error (TRE). To do this, a number of anatomically homologous points are 

chosen in both the fixed and moving images prior to registration; these will serve as 

landmark pairs. The locations of the post registration landmarks are then determined and 

the distance between post-registration landmark pairs quantified.  

 

Selection of the anatomical points should ensure that the landmarks are unique points that 

can be positively identified in both images. Compared to 2D images, the landmark 

selection can be greatly complicated in 3D as the landmarks must be points in 3D space, 

not simply intersections of structures with the 2D imaging plane.  In the case of whole 

animal imaging, structures such as blood vessel bifurcations and centroids of small 

circular structures may serve as landmarks. Distribution of the landmarks should also be 

considered when selecting anatomy for TRE calculations.  Densely grouping landmarks 

together may inaccurately represent the overall performance of the registration, as there 

may be a spatial variation in registration performance.  
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Compared with the DSC method of quantifying registration performance, TRE values can 

provide a more accurate depiction of the registration performance. Unlike DSC, TRE 

values examine very specific points of anatomy where DSC looks at larger regions. In this 

way, a DSC may be very high, indicating a high degree of overlap and suggesting a good 

registration, but the anatomy may actually have a completely different orientation where 

substructures are misaligned. This however can be captured by TRE as homologous points 

that are largely misaligned will increase the calculated value; indicating poor registration 

performance. Moreover, TRE values provide a more meaningful metric then DSC. The 

distance measure from TRE values provides insight into exactly how far structures are 

displaced, defining a margin of error for a given application. For these reasons, TRE was 

chosen as the metric for quantifying registration performance for this application.  

 

2.8.3 Fiducial Localization Error 

TRE values calculated in the manner described incorporate both the registration error as 

well as the error associated with landmark selection. Because landmarks are selected 

manually, their localization is subject to the operator’s discretion. To determine the extent 

to which the operator’s localization affects the TRE value, a fiducial localization error 

(FLE) should be quantified. To do this, landmarks should be reselected in multiple 

sessions and the variability between selections quantified.  This will give an indication to 

what extent the TRE reflects variability in the selection of landmarks. 
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 2.9 Conclusion 

While many approaches have been discussed here, this is in no way an exhaustive 

overview of any of the topics covered. Many new methods and modifications to existing 

strategies continue to be developed to not only improve registration performance but also 

decrease computational time. Generally, there is not necessarily a correct way to 

implement registration for a specific problem; often many approaches will be capable of 

providing an acceptable alignment.  Rather, the specific problem should direct the choices 

for any component taking into consideration the required accuracy and computational 

time. In the next chapter I propose and validate a specific implementation for an intensity 

based registration to align 3D whole mouse optical and MRI volumes.  

 

 

 

 

 

 

 

. 
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Chapter 3 : 

 
 

Intensity Based Non-rigid Registration of 3D 

Whole Mouse Optical and MR Image 

Volumes 

 

 

 3.1 Introduction 

Pathological evaluation of histology remains a gold standard for disease diagnosis and an 

important tool for research into the molecular underpinnings of disease. However, the 

need for animal sacrifice in tissue processing for histological preparation substantially 

limits longitudinal research studies investigating disease progression and the efficacy of 
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drug therapies. Novel MR imaging techniques may be able to address this short coming, 

enabling structural and molecular changes associated with disease to be elucidated non-

invasively; allowing the animals to serve as their own controls. However, before these 

techniques can be used in place of histology, they must be validated, ideally via accurate 

co-registration with histological sections1. Moreover, co-registration of histology with in 

vivo MRI may prove to be extremely valuable in the development of MR based diagnostic 

tools, acting as a ground truth to analyze changes to MR contrast in different disease 

states2-4. 

 

However, registration of histology with in vivo MRI is challenging as a result of 

uncontrolled deformations introduced in 3D during histological tissue preparation and 2D 

as a result of the tissue sectioning procedure; both of which must be addressed to achieve 

accurate alignment.  Often, an intermediate image volume is introduced to bridge the gap 

between histology and in vivo images which differ in resolution, contrast, and slice 

orientation. In many cases, an ex vivo MRI is acquired once the tissue of interest is fixed5, 

6 in an attempt to capture 3D distortions which have occurred as a result of histological 

processing; while maintaining consistent contrast and resolution. Alternatively, an optical 

image volume captured during cryo-sectioning7-9 can be used as an intermediate. In this 

case, registration of the 3D optical and in vivo images will address 3D distortions incurred 

during tissue fixation, while 2D registration of histological images with the corresponding 

optical image will address deformation resulting from slicing.  
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In addition, cryo-sectioning techniques capable of whole animal processing may further 

simplify registration. Conventional histological processing techniques require the tissue 

of interest be isolated and processed independently from the rest of the body, introducing 

a number of uncontrolled 3D deformations in the process. While these deformations are 

unavoidable, they may be substantially reduced by leaving the animal intact, allowing 

tissues to be held in place by surrounding structures and also retaining anatomical context 

which may also be useful during registration. This approach may be particularly useful 

for tissues such as adipose and liver can become almost unrecognizably deformed when 

isolated from the body due to the tissue’s low degree of stiffness10, 11 and the lack of 

external constraints. 

 

Furthermore, whole animal processing may prove advantageous in understanding the 

systemic effects of a number of diseases. Research into conditions such as cancer12, 13 and 

obesity14-16 continue to identify the importance of a complex whole body cellular and 

molecular interplay, which may be lost in a single tissue approach to investigation.   

 

Of the two transformations required to co-register histology and MR images with the 

intermediate optical volume, we predict that the 3D MR-optical registration is the more 

difficult of the two. This registration must address drastic changes in contrast, and 

resolution as well as the inherent difficulty associated with an additional image dimension. 

Here we attempt to address this problem and investigate the feasibility of an image-based 

non-rigid registration method for whole animal 3D optical and MR image registration. 
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The effect of different MR contrasts on registration performance will be considered as 

well as a protocol for imaging. Combining this method with existing tools to manually 

register 2D histological slides with corresponding optical images17 will provide a tool for 

accurate co-registration of histology and in vivo whole mouse MR images.  

 

 3.2 Materials  

3.2.1 Animals 

Imaging was performed on a total of nine mice, four of which were obese and the 

remaining five lean. Lean animals were fed a standard diet while obese animals were fed 

a western diet consisting of 42% calories from fat.  Mice were either male strain C57Bl/6, 

or 129/SvJ. All experiments were conducted under a protocol approved by the institution’s 

Animal Use Subcommittee.  

 

3.2.2 MRI 

MR imaging was performed at 3T using a Discovery MR750 (GE Healthcare, Waukesha, 

WI). Animals were imaged in a custom built mouse bird cage coil. Three image contrasts 

were collected: T1-weighted (T1w) 3D spoiled gradient echo (resolution: 0.6 x 0.6 x 0.7, 

TR: 6.2 ms, TE: 2.7 ms, pixel bandwidth: 244.141, Averages: 16, field of view (FOV): 

100 x 55 x 32mm, slice thickness: 0.7mm, slice spacing: 0.7mm, matrix: 158 x 158, slices: 

46, flip angle: 15 °) ; T2-weighted (T2w) fast spin echo (resolution: 0.8 x 0.8 x 0.7, TR: 

2900ms, TE: 200 ms, pixel bandwidth: 244.141, averages: 10, FOV: 100 x 60 x 29mm, 
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slice thickness: 0.7mm, slice spacing: 0.7mm, slices: 42, flip angle: 90°); proton density 

weighted water-fat separated imaging acquired with an investigational version of IDEAL 

(resolution: 0.9 x 0.7 x 0.7, TR: 14.0ms, TE: 2.2ms, Pixel Bandwidth: 868.047, Averages: 

13, FOV: 120 x 54 x 34mm, Slice thickness: 0.7mm, Slice Spacing: 0.7mm, Matrix: 140 

x 176, Slices: 44, Flip angle: 3°).  

 

3.2.3 Optical Imaging 

Cryo-sectioning and optical imaging was performed on frozen tissue volumes using a 

Cryo-VizTM cryo-imaging system (BioInvision, Cleveland Ohio, USA). Immediately 

following MR imaging, mice were prepared for cryo-sectioning using the manufacturer 

recommended protocol for tissue preparation and cryo-sectioning18. Sectioning was 

performed along the coronal plane of the mice with a 200µm slice thickness. High 

resolution optical images were acquired of the exposed face of the remaining tissue block 

with 17.5 µm in plane isotropic resolution resulting in a matrix size of approximately 3300 

x 7100 x 180 (sagittal x axial x coronal). 
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 3.3 Methods 

3.3.1 Imaging Protocols 

For two animals (one obese, one lean), MR imaging was performed while the animals 

were alive and anesthetized using isoflourane. Only IDEAL contrast images were 

collected for these animals. Immediately following MR imaging, these animals were 

euthanized and subsequently processed for cryo-sectioning as previously described.  

In the remaining animals, all imaging was performed post-mortem as outlined in figure 

3.2. All three MR contrasts were collected for these animals.  Processing for cryo-

sectioning was performed in the same way as animals imaged while still alive.  

 

Figure 3.1: An overview of image acquisition and processing for animals in which 

MR imaging was performed prior to euthanasia. The approximate time required is also 

indicated. 



61 
 

3.3.2 Registration 

Prior to registration, animal hair was separated from tissue in optical images through 

segmentation either automatically, using software included in the Cryo-VizTM  image 

processing software, or manually using 3D Slicer software (http://www.slicer.org/). 

Alternatively, a chemical hair removal procedure was performed following euthanasia 

and before MR imaging requiring approximately 30 minutes. 

 

Optical images were down-sampled to an in-plane resolution of 0.21mm and a slice 

thickness of 0.8mm prior to registration. Volumes were initialized so animals in the two 

image volumes were oriented the same way in physical space.  

 

In the registration algorithm, MR image volumes are aligned to the optical volume using 

a combination of rigid and non-rigid transformations. Registrations using IDEAL contrast 

were performed with the water-separated images. All portions of the registration, as 

Figure 3.2: An overview of image acquisition and processing for animals imaged 

post-mortem with the approximate time required indicated 
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depicted in figure 3.3, were coded in C++ using implementations of the Insight 

Segmentation and Registration Toolkit (ITK; National Library of Medicine, Bethesda, 

MD). Optical images are initially converted to grey scale using a luminance filter and 

geometric centers of the image volumes aligned. Both rigid and non-rigid portions of the 

registration are performed using Mattes Mutual Information (MMI)19 similarity metric. In 

this particular implementation of mutual information, the metric value will theoretically 

be minimized when the images are optimally aligned. The number of bins used for the 

MMI calculations was set to 50 and all voxels were sampled in the calculations. Linear 

interpolation was chosen for this implementation. Optimization was performed using a 

regular step descent gradient optimizer. For the rigid registration the minimum step size 

was set to 0.05. 

 

The non-rigid portion of the registration was comprised of two consecutive B-splines of 

increasing grid size. The first B-spline had a control point grid with dimensions of 3x5x2 

(sagittal x axial x coronal) and the second had 7x10x5. Parameters for this portion of the 

registration were consistent with the rigid portion except the minimum step size for the 

optimizer was set to 0.001 and 0.0001 for the first and second B-spline respectively. 
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Figure 3.3: Flow chart of the intensity based image registration algorithm 

implemented in C++ showing the three main components pre-processing, 

rigid and non-rigid registration. Input optical images indicated here would 

have already been down sampled and segmented. 
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3.3.3 Validation 

Registration accuracy was assessed by calculating a target registration error (TRE). TRE 

values were calculated as the post registration 3D Euclidean distance between 

anatomically homologous landmark pairs in corresponding optical and MR image 

volumes. Landmarks were manually chosen to be anatomically identical points 

identifiable by a human observer in both image modalities, which could be localized to a 

point in all three planes. Structures used as landmarks include, but are not limited to, 

centroids of small spherical structures such as eye balls, as well as vascular bifurcations 

and entrance points into tissues. In each of the MR-histology image pairs registered, 15-

B 

C 

Figure 3.4: Distribution of landmarks used in TRE calculations for a single 

mouse in the (A) coronal, (B) sagittal and (C) oblique planes from a pre-

registration optical image volume. The animal volume is shown in gray with 

locations of anatomical landmarks indicated by yellow crosses. 

A 
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18 landmark pairs were identified for TRE calculations; yielding a total of 314 landmarks 

over 20 pairs of registered images. An example of the landmark distribution in a single 

animal can be seen in figure 3.4. For clarity, these points were not used in any way to 

register the images, they were only used for post-registration analysis.  

 

TRE measurements incorporate error associated with the operator’s ability to accurately 

select the landmark location. To quantify the inherent variability in landmark selection, 

the fiducial localization error (FLE) was calculated as an unbiased estimator of the 

standard deviation of repeated localizations of the same landmark20. For each image type 

(optical, T1w, T2w, IDEAL) all landmarks from three different randomly selected 

animals were reselected in six separate sessions, at least one day apart: 

 

𝐹𝐿𝐸 =  √
1

𝐽
 ∑

1

𝐾 − 1

𝐽

𝑗=1

 ∑ ‖𝑝𝑗,𝑘 −  
1

𝐾
 ∑ 𝑝𝑗,𝑘

𝐾

𝑘=1

‖

2

 

𝐾

𝑘=1

 

 

Where pj,k is the kth localization of the j-th fiducial, J is the number of landmarks in a 

given image, and K is the number of repeated localizations of each landmark.  
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3.3.4 Statistical Analysis 

Mean TRE and MMI values before and after the non-rigid portion of the algorithm were 

compared using paired two-tail t-tests. To compare the mean TRE values of the different 

MRI contrasts a repeated-measures analysis of variance (ANOVA) was performed. Post-

hoc two-tailed t-tests were then done to determine the relative accuracy of registration 

using different MR contrasts. All statistical analysis was performed in Excel 2013 

(Microsoft Excel. Redmond, Washington; Microsoft 2013).  

 

Figure 3.5: Sagittal view of corresponding optical 

(top) and T2w MR (bottom) images prior to image 

registration demonstrating the large degree of 

anatomical misalignment. 
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3.4 Results 

Using the proposed method, registration of optical and MR image volumes was completed 

on average in under 7 minutes; in the longest case taking just under 15 minutes. In two 

cases automated segmentation of the optical tissue volumes failed and hair had not been 

removed prior to imaging. In these cases, manual segmentation was required to isolate 

hair from the underlying tissue, taking approximately one hour to complete. In later 

animals hair was removed prior to imaging to eliminate the need for tissue segmentation. 

 

Figure 3.6: Overlay of an IDEAL water-separated MR image on top 

of the corresponding optical image in the sagittal plane following 

rigid registration (top) and non-rigid registration (bottom). The 

yellow arrow indicates a large region of misalignment in the rigid 

only registration along the back of the mouse. MR images are cropped 

to match the size of the optical volume. 
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Post-registration alignment in animals imaged alive can be seen in figures 3.6 and 3.7. 

Mean TRE values for animals imaged alive and post mortem are listed in table 3.1. Error 

values were lower in animals imaged post-mortem following both rigid and non-rigid 

components of the registration. 

 

 

 

Figure 3.7: Coronal image of an optical volume (left) and 

corresponding post-registration water-separated IDEAL image 

(right) from a mouse in which MR images were acquired while the 

animal was still alive. The MR image is severely warped from the 

non-rigid registration and there is almost no correspondence can be 

seen between the two images. 
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Table 3.1 

Mean (SD) TRE values from animals imaged alive and post-mortem following rigid and 

non-rigid registration 

 

 

 

 
Mean (SD) TRE (mm)  

Rigid 

Mean (SD) TRE (mm)       

Non-rigid 

MR Alive 5.99 (2.29) 5.53 (3.21) 

MR Post-mortem 3.33 (2.23) 2.05 (1.42) 
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Figure 3.8: Mean TRE (left) and MMI (right) values before and after the non-rigid 

portion of the registration algorithm with error bars indicating standard deviation. 

Both the mean TRE and mean MMI values were significantly lower following non-

rigid registration (P < 0.001). Values shown here were calculated from all 

registrations performed from mice imaged post-mortem. 
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Figure 3.8 compares mean TRE and MMI values before and after non-rigid registration 

from all registrations performed using images of mice acquired post-mortem. TRE and 

MMI decreased from 3.15 (1.26) to 1.58 (0.57) mm and -0.26 (0.11) to -0.41 (0.16) 

respectively which was determined to be significant (P < 0.001) in both cases.  

 

Coronal, sagittal and axial planes of a single optical image co-registered with 

corresponding IDEAL, T1w and T2w MR contrasts can be seen in figure 3.9. 

Registrations utilizing T2w MR contrast had the lowest mean TRE of 1.23(0.62) mm. 

This value was determined to be significantly lower than both IDEAL and T1w TRE 

values (P < 0.05). Mean TRE values for IDEAL were the highest, however this failed to 

be significant compared with T1w TRE values (P > 0.05). Mean TRE and SD for each 

MR contrast following initialization, rigid, and non-rigid components of the registration 

algorithm are summarized in table 3.2. An example of MR and optical alignment 

following each portion of the registration is shown in figure 3.10. Relative error in each 

animal was consistent with mean values, as depicted in figure 3.11. In all but one case, 

the T2w weighted registration had the lowest mean TRE value and IDEAL had the 

highest.  
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Figure 3.9: From top to bottom, coronal, sagittal and axial planes of optical images 

(left column) with corresponding post-registration T1w, T2w and water-separated MR 

images from left to right respectively; demonstrating anatomical agreement in all three 

planes following the proposed registration. 
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Table 3.2 

Mean (SD) TRE values for MR contrasts following initialization, rigid and non-rigid 

portions of the registration 

 

 

 

FLE on optical images was determined to be 0.27 mm, relative to the voxel size of 

approximately 0.02 x 0.02 x 0.2 mm3. FLE on MR images were 0.50 mm relative to voxel 

size 0.6 x 0.6 x 0.7 mm3 for T1w images, 0.47 mm relative to voxel size 0.8 x 0.8 x 0.7 

mm3 for T2w images, and 0.59 mm relative to voxel size 0.9 x 0.9 x 0.7 mm3 for IDEAL 

images. 

 

 

Mean (SD) TRE 

(mm) 

Initialization 

Mean (SD) 

TRE (mm)  

Rigid 

Mean (SD) TRE (mm) B-

Spline 

IDEAL 8.05 (6.43) 3.33 (2.23) 2.05 (1.42) 

T1w 9.43 (7.06) 3.24 (2.10) 1.48 (0.82) 

T2w 8.81(7.10) 2.86(1.71) 1.23(0.62) 
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Figure 3.10: Overlays of a single optical image in the coronal plane with corresponding 

T2w MR images following (A) initialization, (B) rigid, and (C) non-rigid portions of the 

registration algorithm. Areas of obvious misalignment following rigid registration are 

indicated by the yellow arrows. 
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         3.5 Discussion  

In this study we proposed and validated a method for intensity based registration of 3D 

whole mouse optical and MR images volumes. As the first to investigate registration of 

these two image types over a whole mouse we explored a number of factors including 

image acquisition protocol, transformation types and different MR contrasts to determine 

their effect on registration accuracy.   
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Figure 3.11: Mean TRE values for registrations using the different MR 

contrasts in each animal imaged showing the difference in alignment 

accuracy using different contrasts. In all but one case the T2w images had 

the lowest mean TRE values and IDEAL had the highest. 
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Initially we investigated the effect of performing MR imaging before and after animal 

euthanasia. Qualitative comparison of post-registration anatomical agreement from 

animals imaged while still alive and those imaged post-mortem showed striking 

differences. In animals imaged while still alive, as seen in figure 3.6 in which the MR 

volume is overlaid on top of the optical, it can be seen that rigid registration (top) was 

able to align the volumes but there were areas of substantial misalignment, particularly 

along the dorsal surface of the animal indicated by the yellow arrow. Following the non-

rigid component of registration (bottom) this volumetric misalignment was reduced. 

However, in an attempt to compensate for the deformations between images, the resulting 

post-registration MR volume is extremely warped and there is almost no anatomical 

agreement with the corresponding optical image (figure 3.7). Conversely, post-

registration images from animals imaged post-mortem, seen in figure 3.9, show good 

anatomical agreement in all three planes. These observations were consistent with the 

associated mean TRE values displayed in table 1. The mean TRE following both the rigid 

and the non-rigid components of the registration are substantially lower for the images 

acquired when the animals were euthanized prior to MR image acquisition.  

 

The relative success of registrations performed on volumes of animals imaged post-

mortem can likely be attributed to the onset of rigor mortis during MR imaging in these 

mice. Because MR image acquisition required the animal remain immobile for 

approximately 1.5 hours following euthanasia to generate all three MR contrasts, the 

corpses naturally developed rigor mortis and became extremely stiff when being moved 

from the MR scanner and embedded within OCT and frozen; at which time their posture 



76 
 

was set for optical imaging. Due to this effect, tissue deformation between image 

modalities was substantially limited, reducing the required compensation from the 

registration process to align the volumes.  

 

However, while imaging post-mortem was shown to substantially aid in registration by 

reducing deformation between imaging methods, it also increases the time between death 

and tissue fixation. Fixation during histological processing is done to stop the natural 

tissue degradation that occurs following death. This is done to maintain the in vivo 

biochemical and structural properties of the tissue as much as possible. As the degree of 

degradation is dependent on a number of processes including time21, it is recommended 

that fixation is done immediately following euthanasia. Studies have shown however, that 

these effects may be delayed in situ compared to excised tissue22 conventionally used for 

histological preparation. Moreover, during the first few hours post-mortem, which is 

relevant for this method, there may be minimal ultrastructural changes that occur23. 

Nevertheless, there will be some degree of tissue degradation that occurs using this 

approach and this may need to be taken into consideration and further investigated for 

different applications.  

 

Post-mortem imaging also enabled the incorporation of a hair removal procedure prior to 

imaging. As the separation of hair from the underlying tissue in the optical images was a 

necessary step before registration using the proposed technique, a hair removal procedure 

was incorporated after the automated segmentations failed in two cases. This was done to 
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avoid manual segmentation which is not only time consuming but also susceptible to 

operator error. In the future, it would be desirable to reincorporate automated 

segmentation once it has been shown to be more reliable. This would substantially 

decrease the required time between euthanasia and tissue fixation and aid in limiting tissue 

degradation as previously described.   

 

While performing all imaging post-mortem allowed for the degree of deformation 

between modalities to be substantially reduced, this approach was not able to warrant a 

rigid only approach. Examination of figure 3.10 showing an overlay of the two volumes  

at each step in the registration process demonstrates that following only the rigid portion 

of the registration there remain obvious regions of  misalignment; some of which indicated 

by the yellow arrows. Subsequent non-rigid transformations, the result of which seen in 

figure 3.10 C, address these areas providing more accurate alignment.  

 

Again, these observations are supported by the corresponding mean TRE values. For all 

contrasts, the difference between mean TRE values calculated before and after non-rigid 

registration was over 1mm. Moreover, this difference was determined to be significant 

using a pairwise t-test of the mean TRE values for each registered image pair (P < 0.001).  

 

Similarly, the mean MMI value following the non-rigid portion of the registration was 

determined to be significantly lower than that following only the rigid transformation (P 

< 0.001). This is consistent with what we would expect as the larger negative value should 



78 
 

theoretically indicate a better alignment of the two images. This finding in conjunction 

with the significant reduction in mean TRE values suggests a relationship between the 

two measurements and supports the appropriateness of MMI as the metric for the current 

application.    

 

Finally, we examined the effect of using different MR contrasts for registration. 

Utilization of the T2w MR contrast yielded the lowest mean TRE value of 1.23(0.62) mm, 

which falls within the distance of two MR voxels. Both T1w and IDEAL images were 

determined to have slightly higher mean TRE values, each falling within the distance of 

three of their respective MR voxels.  

 

Calculated FLE values for each image type were small in relation to the TRE values and 

do not dominate the error measurement. In all of the MR contrasts the calculated FLE 

values are less than the size of a single voxel. The FLE value calculated for the optical 

images, while the smallest of all FLE values calculated, is large in relation to the optical 

voxel size. This is likely due to the relatively large anatomical features that were selected 

as landmarks, which was dictated by their visibility in the relatively low resolution MR 

images.  

 

Despite the absolute difference in TRE values there may be little practical difference in 

the degree of accuracy achieved using the different MR contrasts. The anatomical 

agreement between the three different MR contrasts and the corresponding optical image 
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in all three planes can be seen in figure 3.9. From here it can be seen that all three MR 

images appear to be well aligned with the optical volume with little visible misalignment.  

 

In conclusion, here we have proposed an intensity based method for registration of whole 

mouse optical and MR image volumes and explored its feasibility. Utilizing this approach 

along with T2w MR images a registration error of 1.23(0.62) mm was achieved, which is 

less than the size of two MR voxels. This work is the first to investigate registration of 

these two modalities over the area of a whole mouse.  Combined with registration of 

whole mouse histological slides, this provides a promising method for registration of 

histology with in vivo MR images for tissues which become substantially deformed using 

more conventional histological processing techniques.  
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Chapter 4 : 

 

Conclusions and Future Work 
 

 

 4.1 Summary of Important Findings 

Pathological evaluation of histology continues to play an important role in clinical 

diagnosis and staging of many conditions. This remains the case despite its many short 

comings. However development of novel MR imaging techniques offer a promising 

alternative to histology based diagnosis in many disease states, providing a non-invasive 

method to acquire images with a comprehensive view of the tissue of interest. 
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Incorporation of these imaging techniques into clinical practice relies on validation of 

MRI through direct correlation with the clinical gold-standard which is histology. This is 

ideally achieved through accurate registration of the two modalities. 

 

Unfortunately, conventional histological preparation techniques require the tissue of 

interest be excised and processed individually; often leaving it substantially deformed in 

comparison with its former in vivo state. While some organs such as the brain and prostate 

can retain some of their structure observed in vivo, other organs like the liver lack this 

ability and become almost unrecognizably deformed during histological processing; 

making registration with in vivo images exceedingly difficult. Alternatively, histological 

processing can be performed on whole mice, eliminating the need for tissue to be excised. 

In doing this, deformation between in vivo images and histology can be substantially 

reduced, simplifying the necessary compensation required from registration to achieve 

accurate alignment.  

 

Although whole mouse sectioning can substantially aid in registration, the task of aligning 

the two aforementioned modalities must also address differences in contrast, resolution 

and slice orientation. The latter possibly the most difficult to address as the problem is not 

merely that of finding the corresponding 2D MR slice for a given histology image. Rather, 

the histological image is most likely an oblique plane through multiple MR slices. A 

popular approach to addressing this problem, which we chose to utilize here, is the use of 

optical images acquired during sectioning which can be combined into a volume and used 
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as an intermediate image to aid registration and provide 3D context to acquired 

histological sections.  

 

Using a previously developed manual technique1 registration of whole mouse MR 

volumes and histology can be performed manually via co-registration with the optical 

volume intermediate. However, this approach requires manual selection of homologous 

anatomical features in each of the image types leaving it susceptible to operator introduced 

error. Registration of MRI and optical volumes is particularly difficult using this 

technique as a result of the substantial resolution and contrast changes between the two 

image types. Moreover, selection of unique anatomically homologous points becomes 

substantially more complicated with the addition of a third dimension. For these reasons, 

automation of co-registration between MRI and optical volumes was chosen as a priority 

and addressed in this work. 

 

A number of different techniques and aspects of image registration were introduced in 

chapter 2. As a first attempt at registering these two image modalities over the volume of 

a whole mouse, an intensity based registration, optimizing mutual information was chosen 

for its ability to handle images acquired from different modalities.  

 

A specific implementation of this type of registration was proposed in chapter 3 and 

validated using TRE measurements. In this study a protocol for imaging was proposed 

wherein all images used for registration were acquired post mortem allowing for rigor 
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mortis to set in between imaging sessions. As a result, deformation between image 

volumes was substantially reduced compared to MR images acquired while the animal 

was alive; enabling accurate alignment using the proposed method. It was also determined 

that while deformation had been substantially reduced by acquiring images post-mortem 

a rigid only transformation was not adequate to achieve the desirable degree of alignment 

and that additional non-rigid registration components were necessary. Finally, the 

performance of three different MR contrasts using the proposed registration was 

compared. Compared with T1w and IDEAL contrast images, T2w images were found to 

have significantly lower registration error. Furthermore, registration utilizing T2w MR 

images achieved a mean TRE value within two MR voxels supporting this approach as a 

feasible method for registering these two image types. 

 

 4.2 Future Work 

4.2.1 Higher Resolution 

The major limitation of the achievable accuracy in the current study is most likely the 

relatively low resolution of MR images used. Given the resolution of the MR images used, 

the achieved error value is likely nearing a minimum considering the effect of the 

associated FLE. Improving the resolution should allow for visibility of finer details in the 

MR images which could be used to refine alignment with the homologous features in the 

relatively high resolution optical images.  Moreover, additional detail in MR images 

should improve the salience of a number of anatomical features visible in optical images. 

This would enable in the number landmarks chosen for TRE calculations to be increased; 
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providing more information about the accuracy of alignment. Additionally, localization 

of these points should improve with higher resolution images in turn decreasing FLE 

values.  

 

Whether or not the proposed method would work with higher resolution MR images for 

input is unknown. However, should the registration fail to handle the higher resolution 

images in a desirable fashion the proposed method may still be usable as the initial 

component of a hierarchical registration. These methods use a “coarse-to-fine” strategy 

where some quality of the registration can be increased in complexity throughout the 

course of the registration2. For example, the proposed method used a rigid transform 

followed by two consecutive B-splines of increasing grid size which would be considered 

a hierarchical approach of increasing transform complexity. Similarly, resolution may be 

altered; starting at a low resolution and recovering anatomical detail as you move to higher 

resolution. These approaches have also shown large performance gains over approaches 

utilizing a single resolution or high density B-Spline3. Taking a hierarchical approach 

where images are down sampled to resolutions comparable to those validated here, and 

incorporating an additional step to further refine alignment using full resolution images 

may be an appropriate approach to incorporate higher resolution MR images into the 

existing framework proposed here.  
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4.2.2: Potential Applications 

Now that the proposed approach has been validated, the next obvious step would be to 

use it as component of a research study. Considering the major advantage of this tool over 

conventional histological processing techniques is the ability to effectively retain a 

substantial amount of in situ tissue structure by eliminating the need to excise the tissue 

of interest for processing, the applications that would most benefit from this work would 

be those in which tissues become substantially deformed when excised. 

 

During the development of this technique applications to obesity related diseases were of 

particular interest and motivated the inclusion of IDEAL contrast images in the current 

study. This category of conditions is related to an abnormal accumulation of lipid 

throughout the body and affects a number of tissues including the liver4 and brown 

adipose tissue5 both of which are extremely difficult to register when using conventional 

histological processing techniques 

 

A specific application may be validation of liver lipid quantification using IDEAL as a 

diagnostic measure for staging of non-alcoholic fatty liver disease. This has a potential to 

improve upon the clinical gold standard currently based on evaluation of samples obtained 

through biopsy which have a tendency to misrepresent overall tissue properties due to 

their small sample size6. The obvious benefit of MR based diagnosis is the ability to view 

and quantify lipid content over the entire organ to make a more accurate assessment of 

lipid infiltration7.  
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4.2.3: Additional Modalities  

While the motivation behind choosing MRI as the in vivo imaging modality was explored 

in chapter 1, other imaging modalities could also be used to provide complementary 

information. In particular CT images can provide excellent contrast in bony structures and 

produce high resolution images in a fraction of the time of MRI. Considering the utility 

of MRI in soft tissue imaging, registration of these images with complimentary CT data 

has been previously identified and sought after in numerous applications8.  Additionally, 

Figure 4.1: 3D CT image shown in coronal 

(top) and axial (bottom) planes acquired 

prior to MR imaging at 150µm resolution 
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CT is also an in vivo imaging modality and the same factors motivating the previously 

presented work would also apply; namely the use of histology as a validation tool.  

 

In recent animals, CT imaging (performed by Jospeh Umoh) was incorporated into the 

current protocol both before MR imaging and following embedding and freezing of tissue 

in preparation for cryo-sectioning. These images can be acquired in less than 10 minutes 

with 150 micron isotropic resolution, an example of which is shown in figure 4.1. 

Hypothetically, images acquired of the frozen volume should require only a rigid 

transformation to achieve accurate alignment with optical images. An additional CT 

image was acquired prior to MR imaging in case the embedding media complicated the 

registration process.  

 

At this point the ability of the proposed registration technique to register CT and optical 

image volumes has not been explored. While theoretically all components of this intensity 

based approach should be equally applicable to the CT images as the MR images, there 

are a number of parameters that will likely need to be optimized for this image type. 

Furthermore, because the CT images are at a substantially higher resolution than the MR 

images used in this study it may be appropriate to modify the approach and incorporate a 

hierarchical strategy as previously described in section 4.2.1. Nonetheless, co-registration 

of MR and CT volumes with the optical image volume would allow for all three modalities 

to be directly compared providing a wealth of complementary information to correlate 

and compare in different studies.  

A 

 

A 

 

A 

 

A 

 

A 
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4.2.4: 2D Histology-Optical Co-registration 

As discussed throughout this thesis, the main motivation behind this work was to 

eventually achieve full automation of registration between 3D whole mouse MR images 

and 2D histological sections. Registering MR and optical images is only half of the full 

registration in which a different transform will map histological sections to the appropriate 

plane of the optical volume as outlined in figure 1.5. Currently, combining the proposed 

method with the manual registration of histology to the optical volume1, which has been 

demonstrated in figure 4.2, can achieve this. However for reasons previously mentioned 

manual registration is not optimal and in the future it would be advantageous to devise an 

approach to automate the registration of optical and histological images.  
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B C 

D E

F

Figure 4.2: Example of co-registration between a histological section and 3D 

whole mouse T2w MR volume accomplished using a combination of the 

proposed method and manual registration. (D) Shows the original histological 

section prior to registration. Post registration overlays between the histological 

section and MRI can be seen in 2D coronal plane (E) and 3D (F). Anatomical 

correspondence can be seen between coronal sections of the (A) T2w MR image 

and (C) histology co-registered with the corresponding (B) optical image.  
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 4.3 Conclusion 

In this thesis I have presented a feasible method for accurately registering whole mouse 

3D optical and MR image volumes automatically through an intensity based approach 

optimizing mutual information. After determining an appropriate imaging protocol in 

which all imaging is performed post-mortem, I validated the accuracy of the proposed 

method through calculation of TRE. Using these values the importance of the non-rigid 

component of the algorithm was confirmed. Furthermore, it was found that registrations 

utilizing T2w MR images had significantly lower registration error than either T1w or 

IDEAL contrast images.  

 

Although this work was motivated by the desirability of MRI registration with histology, 

the utility of the registration as it currently stands should not be understated. Optical 

images are acquired with high resolution and are rich with contrast which can be used to 

assist in assessment of MR images. Moreover, inclusion of fluorescence filters in the 

optical imaging protocol can allow for a number of molecular processes to be investigated 

and correlated with MR images. However, as pathological tissue evaluation remains a 

common clinical gold-standard for diagnosis of many diseases the main purpose of this 

work is as a first step towards automated registration of whole mouse histological sections 

with 3D MR image volumes.   
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Appendix A: Registration Code 

// BY: Jacqueline K Harris 
// 3D Whole Mouse MRI and Optical image volume registration 
// 
// Code is designed to perform a non-rigid 3D registration of a 
// MRI volume to a corresponding 3D whole mouse optical volume. 
// 
// INPUTS:  
// -A 3D RGB Block Face NIfTI file 
// -A 3D MRI NIfTI file 
// OUTPUTS: 
// -A 3D transformed MRI NIfTI file following rigid, coarse B-
//     spline and fine B-spline components of registration 
// -Transforms for rigid, coarse B-spline and fine B-spline 
//  used to align volumes 
 
#include <iostream> 
using namespace std; 
 
//ITK header files 
#include "itkImage.h" 
#include "itkRGBPixel.h" 
#include "itkImageFileReader.h" 
#include "itkImageFileWriter.h" 
#include "itkRGBToLuminanceImageFilter.h" 
#include "itkChangeInformationImageFilter.h" 
#include "itkCenteredTransformInitializer.h" 
#include "itkImageRegistrationMethod.h" 
#include "itkMattesMutualInformationImageToImageMetric.h" 
#include "itkVersorRigid3DTransform.h" 
#include "itkVersorRigid3DTransformOptimizer.h" 
#include "itkResampleImageFilter.h" 
#include "itkTransformFileWriter.h" 
#include "itkTransformFileReader.h" 
#include "itkTransformFactoryBase.h" 
#include "itkImageRegistrationMethod.h" 
 
 
#include "itkCenteredTransformInitializer.h" 
#include "itkMattesMutualInformationImageToImageMetric.h" 
#include "itkVersorRigid3DTransform.h" 
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#include "itkVersorRigid3DTransformOptimizer.h" 
 
#include "itkBSplineDeformableTransform.h" 
 
//#include "reg.h" 
typedef itk::Image<double, 3> ImageType; 
ImageType::Pointer CenterVolume(string, ImageType::Pointer); 
int RigidReg(string, string, string, string); 
void BSpline(string, string, string, string, int, int, int, 
int); 
void TRE(int, double, double, double, double, double, double, 
string); 
 
 
 
int main() { 
 
 clock_t start; 
    double duration; 
 
    start = std::clock(); 
 

string path = 
"C:\\Users\\Jacqueline\\Documents\\Jackie\\ITK\\Volumes\\Ju
ly182013\\"; 

 string date = "July182013"; 
 string MR = "MRT2w"; 
 string ext = ""; 
 string tag = ""; 
 

string Input_BlockFace = path + "BlockFace_" + date + ext + 
".nii"; 

 string Input_MR = path + MR + "_" + date + ".nii"; 
string Output_Image = path + "Output_" + MR + "_Rigid_" + 
date + ext + tag + ".nii"; 
string Output_Transform = path + "Output_Transform_Rigid" + 
MR + "_" + date + ext + tag + ".tfm"; 

  
string Output_CenteredBlockFace = path + 
"Centered_BlockfaceInput_" + date + ext + tag + ".nii"; 
string Output_CenteredMR = path + MR + "_Input_" + date + 
ext +  tag + ".nii"; 

  
string OutputRigidImage = path + "Output_" + MR + "_Rigid_" 
+ date + ext + tag + ".nii"; 
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string OutputRigidTransform = path + 
"Output_Transform_Rigid" + MR + "_" + date + ext + tag + 
".tfm"; 

  
string OutputCoarseBSplineImage = path + "Output_" + MR + 
"_BSpline_" + date + ext + tag + ".nii"; 
string OutputCoarseBSplineTransform = path + 
"Output_BSplineTransform_" + MR + "_" + date + ext + tag + 
".tfm"; 

  
string OutputFineBSplineImage = path + "Output_" + MR + 
"_Fine_" + date + ext + tag + ".nii"; 
string OutputFineBSplineTransform = path + 
"Output_FineTransform_" + MR + "_" + date + ext + tag + 
".tfm"; 

 
 // -------------Type definitions------------- 
 typedef itk::RGBPixel<unsigned char> ColorPixelType; 
 typedef itk::Image<ColorPixelType, 3> ColorImageType; 

typedef itk::ImageFileReader<ColorImageType> 
ColorReaderType; 

 typedef itk::ImageFileReader<ImageType> MRReaderType; 
 
 // Read/Write 

ColorReaderType::Pointer ColorImageReader = 
ColorReaderType::New(); 

 ColorImageReader->SetFileName(Input_BlockFace); 
 MRReaderType::Pointer MRImageReader = MRReaderType::New(); 
 MRImageReader->SetFileName(Input_MR); 
 ColorImageReader->Update(); 
 std::cout << "Done Read" << std::endl; 
 
 // Luminance Filter For Fixed Image 

typedef itk::RGBToLuminanceImageFilter<ColorImageType, 
ImageType> LuminanceFilterType; 
LuminanceFilterType::Pointer LuminanceFilter = 
LuminanceFilterType::New(); 

 LuminanceFilter->SetInput(ColorImageReader->GetOutput()); 
 
 ImageType* FixedImage = LuminanceFilter->GetOutput(); 
 ImageType* MovingImage = MRImageReader->GetOutput(); 
 

FixedImage = CenterVolume(Output_CenteredBlockFace, 
FixedImage); 

 MovingImage = CenterVolume(Output_CenteredMR, MovingImage); 
 std::cout << "Done Center" << std::endl; 
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RigidReg(Output_CenteredBlockFace, Output_CenteredMR, 
OutputRigidImage, OutputRigidTransform); 

 
 int XNumNodes = 3; 
 int YNumNodes = 2; 
 int ZNumNodes = 5; 
 int minStep = 0.001; 
 

BSpline(OutputCoarseBSplineImage, 
OutputCoarseBSplineTransform, Output_CenteredBlockFace, 
OutputRigidImage, XNumNodes, YNumNodes, ZNumNodes, 
minStep); 

 
 XNumNodes = 7; 
 YNumNodes = 5; 
 ZNumNodes = 10; 
 minStep = 0.0001; 
 

BSpline(OutputFineBSplineImage, OutputFineBSplineTransform, 
Output_CenteredBlockFace, OutputCoarseBSplineImage, 
XNumNodes, YNumNodes, ZNumNodes, minStep); 

 
duration = ( std::clock() - start ) / (double) 
CLOCKS_PER_SEC; 

     cout<<"Total Registration Time: "<< duration <<'\n'; 
 
 
} 
 
ImageType::Pointer CenterVolume(string OutputFile, 
ImageType::Pointer Image) { 
 

typedef itk::ChangeInformationImageFilter<ImageType> 
CenterFilterType; 
CenterFilterType::Pointer CenterFilter = 
CenterFilterType::New(); 

 CenterFilter->SetInput(Image); 
 CenterFilter->CenterImageOn(); 
 
 if (!OutputFile.empty()){ 
  typedef itk::ImageFileWriter<ImageType> WriterType; 
  WriterType::Pointer Writer = WriterType::New(); 
  Writer->SetFileName(OutputFile); 
  Writer->SetInput(CenterFilter->GetOutput()); 
  Writer->Update(); 
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 } 
 
 return Image; 
} 
 
int RigidReg(string FixedFile, string MovingFile, string 
OutputImageFile, string OutputTransFile) { 
 
 clock_t start; 
     double duration; 
 
     start = std::clock(); 
 
 double numHistBin = 50; 
 
 // -------------Type definitions------------- 
 
 //Image 
 typedef itk::Image<double, 3> ImageType; 
 typedef itk::ImageFileReader<ImageType> MovingReaderType; 
 typedef itk::ImageFileWriter<ImageType> WriterType; 
 typedef itk::ImageFileReader<ImageType> FixedReaderType; 
 
 
 //Registration 
 typedef itk::VersorRigid3DTransform<double> TransformType; 
 typedef itk::VersorRigid3DTransformOptimizer OptimizerType; 

typedef 
itk::MattesMutualInformationImageToImageMetric<ImageType, 
ImageType> MetricType; 
typedef itk::LinearInterpolateImageFunction<ImageType, 
double> InterpolatorType; 
typedef itk::ImageRegistrationMethod<ImageType, ImageType> 
RegistrationType;  
typedef itk::CenteredTransformInitializer<TransformType, 
ImageType, ImageType> InitializerType; 

 typedef TransformType::VersorType VersorType; 
 typedef VersorType::VectorType VectorType; 
 typedef OptimizerType::ScalesType OptimizerScalesType; 
 
 //Resample 

typedef itk::ResampleImageFilter<ImageType, ImageType> 
ResamplerType; 

 
 //------------Pointers------------ 
 // Read/Write 
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FixedReaderType::Pointer FixedImageReader = 
FixedReaderType::New(); 
MovingReaderType::Pointer MovingImageReader = 
MovingReaderType::New(); 

 WriterType::Pointer Writer = WriterType::New(); 
 FixedImageReader->SetFileName(FixedFile); 
 MovingImageReader->SetFileName(MovingFile); 
 Writer->SetFileName(OutputImageFile); 
 FixedImageReader->Update(); 
 
 //Registration compenents 
 MetricType::Pointer Metric = MetricType::New(); 
 OptimizerType::Pointer Optimizer = OptimizerType::New(); 

InterpolatorType::Pointer Interpolator = 
InterpolatorType::New(); 
RegistrationType::Pointer Registration = 
RegistrationType::New(); 

 TransformType::Pointer Transform = TransformType::New(); 
InitializerType::Pointer Initializer = 
InitializerType::New(); 

  
  
 //----------Registration---------- 
 //Connect cregistration components 
 Registration->SetMetric(Metric); 
 Registration->SetOptimizer(Optimizer); 
 Registration->SetInterpolator(Interpolator); 
 Registration->SetTransform(Transform); 

Registration->SetMovingImage(MovingImageReader-
>GetOutput()); 

 Registration->SetFixedImage(FixedImageReader->GetOutput()); 
  
 //FixedImageReader->Update(); 

Registration->SetFixedImageRegion(FixedImageReader-
>GetOutput()->GetBufferedRegion()); 
Registration->SetInitialTransformParameters(Transform-
>GetParameters()); 

 
 //Metric Parameters 
 Metric->SetNumberOfHistogramBins(numHistBin); 
 Metric->UseAllPixelsOn(); 
 Metric->ReinitializeSeed( 76926294 ); 
 
 //Initializer 
 Initializer->SetTransform(Transform); 
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Initializer->SetMovingImage(MovingImageReader-
>GetOutput()); 

 Initializer->SetFixedImage(FixedImageReader->GetOutput()); 
 Initializer->MomentsOn(); 
 Initializer->InitializeTransform(); 
 
 //Versor 
 VersorType Rotation; 
 VectorType Axis; 
 Axis[0] = 0.0; 
 Axis[1] = 0.0; 
 Axis[2] = 1.0; 
 const double Angle = 0; 
 Rotation.Set(Axis, Angle); 
 Transform->SetRotation(Rotation); 
 
 //Optimizer 

OptimizerScalesType optimizerScales(Transform-
>GetNumberOfParameters()); 

 const double translationScale = 1.0/10000; 
 optimizerScales[0] = 1.0; 
 optimizerScales[1] = 1.0; 
 optimizerScales[2] = 1.0; 
 optimizerScales[3] = translationScale; 
 optimizerScales[4] = translationScale; 
 optimizerScales[5] = translationScale; 
 Optimizer->SetScales(optimizerScales); 
 Optimizer->SetMaximumStepLength(4.000); 
 Optimizer->SetMinimumStepLength(0.05); 
 Optimizer->SetNumberOfIterations(200);  
 
 //Do Registration 
 Registration->Update(); 
 
 //Get Output 

OptimizerType::ParametersType FinalParameters = 
Registration->GetLastTransformParameters();  

 const double versorX = FinalParameters[0]; 
 const double versorY = FinalParameters[1]; 
 const double versorZ = FinalParameters[2]; 
 const double finalTranslationX = FinalParameters[3]; 
 const double finalTranslationY = FinalParameters[4]; 
 const double finalTranslationZ = FinalParameters[5]; 

const unsigned int numberOfIterations = Optimizer-
>GetCurrentIteration(); 

 const double bestValue = Optimizer->GetValue(); 
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 //Print Results 
 std::cout << std::endl << std::endl; 
 std::cout << "Result = " << std::endl; 
 std::cout << " Versor X      = " <<versorX << std::endl; 
 std::cout << " Versor Y      = " <<versorY << std::endl; 
 std::cout << " Versor Z      = " <<versorZ << std::endl; 

std::cout << " Translation X = " <<finalTranslationX << 
std::endl; 
std::cout << " Translation Y = " <<finalTranslationY << 
std::endl; 
std::cout << " Translation Z = " <<finalTranslationZ << 
std::endl; 
std::cout << " Iterations    = " << numberOfIterations << 
std::endl; 

 std::cout << " Metric Value  = " << bestValue << std::endl; 
 
 //Resample moving image to transformed image for output 
 ResamplerType::Pointer Resampler = ResamplerType::New(); 
 Resampler->SetTransform(Transform); 

Resampler->SetOutputParametersFromImage(FixedImageReader-
>GetOutput()); 

 Resampler->SetInput(MovingImageReader->GetOutput()); 
 
 //Write 
 Writer->SetInput(Resampler->GetOutput()); 
 Writer->Update(); 
 
 //Write Transform 

itk::TransformFileWriter::Pointer writer = 
itk::TransformFileWriter::New(); 

 writer->SetInput(Transform); 
 writer->SetFileName(OutputTransFile); 
 writer->Update(); 
 
 //------Transform Test------ 
 string fileName; 
     fileName = OutputTransFile; 
  
 // Register default transforms 
 itk::TransformFactoryBase::RegisterDefaultTransforms(); 
  

itk::TransformFileReader::Pointer reader = 
itk::TransformFileReader::New(); 

 reader->SetFileName(fileName); 
 reader->Update(); 
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 // Display the transform 

std::cout << *(reader->GetTransformList()->begin()) << 
std::endl; 

 
duration = ( std::clock() - start ) / (double) 
CLOCKS_PER_SEC; 

     cout<<"Rigid Registration Time: "<< duration <<'\n'; 
 
 return 0; 
} 
 
void BSpline(string OutputImageFile, string OutputTransformFile, 
string FixedImageFile, string MovingImage, int numNodesX, int 
numNodesY, int numNodesZ, int minStep) { 
 
 clock_t start; 
     double duration; 
 
     start = std::clock(); 
 
 int maxStep = 4;  
 
 const int ImageDim = 3; 
 typedef short PixelType; 
 
 // TYPE DEFINITIONS 
 typedef itk::Image<short, 3> ImageType; 
 typedef itk::ImageFileReader<ImageType> ReaderType; 

typedef 
itk::MattesMutualInformationImageToImageMetric<ImageType, 
ImageType> MetricType; 
typedef itk::LinearInterpolateImageFunction<ImageType> 
InterpolatorType; 
typedef itk::RegularStepGradientDescentOptimizer 
OptimizerType; 
typedef itk::BSplineDeformableTransform<double, 3, 3> 
TransformType; 
typedef itk::ImageRegistrationMethod<ImageType, ImageType> 
RegistrationType; 
typedef itk::ResampleImageFilter<ImageType,ImageType> 
ResamplerType; 

 typedef itk::ImageFileWriter<ImageType> WriterType; 
 std::cout << "Done Type Defs" << std::endl; 
 
 // OBJECT CREATION 
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 ReaderType::Pointer FixedImageReader = ReaderType::New(); 
 FixedImageReader->SetFileName(FixedImageFile); 

ImageType::ConstPointer FixedImage = FixedImageReader-
>GetOutput(); 

 FixedImageReader->Update(); 
 
 ReaderType::Pointer MovingImageReader = ReaderType::New(); 
 MovingImageReader->SetFileName(MovingImage); 
 MovingImageReader->Update(); 
 
 WriterType::Pointer Writer = WriterType::New(); 
 Writer->SetFileName(OutputImageFile); 
 

RegistrationType::Pointer Registration = 
RegistrationType::New(); 

 std::cout << "Done Object Creation" << std::endl; 
 
 //Connect Registration Components 
 OptimizerType::Pointer Optimizer = OptimizerType::New(); 
 TransformType::Pointer Transform = TransformType::New(); 
 MetricType::Pointer Metric = MetricType::New(); 

InterpolatorType::Pointer Interpolator = 
InterpolatorType::New(); 

 ResamplerType::Pointer Resample = ResamplerType::New(); 
 std::cout << "Done Connecting" << std::endl; 
 
 //Get Image Parameters 

ImageType::SpacingType FixedSpacing = FixedImage-
>GetSpacing(); 
ImageType::SizeType FixedSize =  
FixedImage->GetLargestPossibleRegion().GetSize();   
ImageType::PointType FixedOrigin = FixedImage->GetOrigin(); 
ImageType::DirectionType FixedDirection = FixedImage-
>GetDirection(); 

 
 std::cout << "Size "; 

std::cout << FixedSize[0] << ", " << FixedSize[1] << ", " 
<< FixedSize[2] << std::endl; 

 
std::cout << "Origin "; 
std::cout << FixedOrigin[0] << ", " << FixedOrigin[1] << ", 
" << FixedOrigin[2] << std::endl; 

 
 std::cout << "Spacing "; 
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std::cout << FixedSpacing[0] << ", " << 
FixedSpacing[1] << ", " << FixedSpacing[2] << 
std::endl; 

 
 // PARAMETER TUNING 
 
 // Number of Nodes 
 TransformType::SizeType GridSize; 
 GridSize[0] = numNodesX + 3; 
 GridSize[1] = numNodesY + 3; 
 GridSize[2] = numNodesZ + 3; 
 TransformType::RegionType BSplineRegion; 
 BSplineRegion.SetSize(GridSize); 
 Transform->SetGridRegion(BSplineRegion); 
 
 // Node Spacing 
 TransformType::SpacingType Spacing; 
 Spacing[0] = FixedSize[0]*FixedSpacing[0] / numNodesX; 
 Spacing[1] = FixedSize[1]*FixedSpacing[1] / numNodesY; 
 Spacing[2] = FixedSize[2]*FixedSpacing[2] / numNodesZ; 
 Transform->SetGridSpacing(Spacing); 
 
 std::cout << "Grid Spacing "; 

std::cout << Spacing[0] << ", " << Spacing[1] << ", " << 
Spacing[2] << std::endl; 

 
 // Set origin 
 TransformType::OriginType Origin; 
 Origin[0] = (abs(FixedOrigin[0]) * -1) - Spacing[0]; 
 Origin[1] = (abs(FixedOrigin[1]) * -1) - Spacing[1]; 
 Origin[2] = (abs(FixedOrigin[2]) * -1) - Spacing[2]; 
 Transform->SetGridOrigin(Origin); 
 
 // Registration  

RegistrationType::ParametersType 
InitialParameters(GridSize[0]*GridSize[1]*GridSize[2]*3); 

 InitialParameters.Fill(0.0);  
Registration->SetInitialTransformParameters 
(InitialParameters); 

 
 //Metric Parameters 
 Metric->SetNumberOfHistogramBins(50); 
 
 // Set step sizes 
 Optimizer->SetMaximumStepLength(maxStep);   
 Optimizer->SetMinimumStepLength(minStep); 
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 std::cout << "Done Parameters" << std::endl; 
 
 // PIPELINE CONNECTION 
 Registration->SetFixedImage(FixedImage); 

Registration->SetMovingImage(MovingImageReader-
>GetOutput()); 

 Registration->SetMetric(Metric); 
 Registration->SetOptimizer(Optimizer); 
 Registration->SetTransform(Transform); 
 Registration->SetInterpolator(Interpolator); 
 std::cout << "Done Connecting Pipeline" << std::endl; 
 
 // ACTION! 
 std::cout << "Start Registration" << std::endl; 
     Registration->Update();  
 std::cout << "Done Registration" << std::endl; 
 
 // PROVIDING OUTPUT TO THE USER 
 Resample->SetTransform(Transform); 
 Resample->SetOutputParametersFromImage(FixedImage); 
 Resample->SetInput(MovingImageReader->GetOutput()); 
 Writer->SetInput(Resample->GetOutput()); 
 
 typedef itk::TransformFileWriter TransformWriterType; 

TransformWriterType::Pointer transformWriter = 
TransformWriterType::New(); 

     transformWriter->AddTransform(Transform); 
     transformWriter->SetFileName(OutputTransformFile); 
     transformWriter->Update(); 
 
 Writer->Update(); 
 

duration = ( std::clock() - start ) / (double) 
CLOCKS_PER_SEC; 

     cout<<"BSpline Registration Time: "<< duration <<'\n'; 
 
 const double bestValue = Optimizer->GetValue(); 
 std::cout << " Metric Value  = " << bestValue << std::endl; 
 
} 
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