17 research outputs found

    Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients

    Get PDF
    Parkinson's disease (PD) and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times—rather than the 1/f structure observed in healthy gait—and this randomness of stride times (low fractal scaling) predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS) can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure) and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a) no auditory stimulation, b) fixed-tempo RAS, and c) interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (re)emergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients

    Interactive cueing with walk-Mate for Hemiparetic Stroke Rehabilitation

    Get PDF
    Background: Many techniques that compensate for locomotion problems in daily life using externally controlled stimulation have recently been reported. These techniques are beneficial for effortlessly supporting patients' locomotive functions, but the users of such devices must necessarily remain dependent on them. It is possible that some individuals with gait impairment may be prevented recovering locomotive function. From a rehabilitation viewpoint, it may therefore be supposed that ideally, devices that can be used in daily life to improve the locomotive functions of the body itself should be proposed. Methods: We evaluate the effectiveness of Walk-Mate, which has been used mainly as a gait compensation device, as a gait rehabilitation training device by analyzing improvement in locomotion before, during and after rehabilitation in hemiparetic patients and comparing it with a previous gait training method. Walk-Mate generates a model walking rhythm in response to a user's locomotion in real time, and by indicating this rhythm using auditory stimuli, provides a technology that supports walking by reducing asymmetries and fluctuations in foot contact rhythm. If patients can use the system to learn a regulated walking rhythm, then it may also be expected to fulfil the functions of a gait rehabilitation training device for daily life. Results: With regard to asymmetry, significantly improvements were seen for compensatory movement during training using Walk-Mate, but improvements were not retained as rehabilitative results. Regarding fluctuations in the foot contact period, significant improvement was observed for compensatory movement during training and these significant improvements were retained as rehabilitative results. In addition, it became clear that such improvement could not be adequately obtained by the previously proposed training technique utilizing constant rhythmic auditory stimulation. Conclusions: Walk-Mate effectively compensated for locomotion problems of hemiparetic patients by improving gait rhythm both during and after training, suggesting that locomotive function can be effectively recovered in some patients. The interactive mechanism of Walk-Mate may be capable of simultaneously achieving the aims of gait compensation and gait rehabilitation training methods previously developed under individual frameworks. Walk-Mate is a promising technology for assisting the reintegration of disabled persons into society

    Embodied cooperation using mobile devices: presenting and evaluating the Sync4All application

    Get PDF
    ABSTRACT Embodied cooperation "arises when two co-present, individuals in motion coordinate their goal-directed actions". The adoption of the embodied cooperation paradigm for the development of embodied and social multimedia systems opens new perspectives for future User Centric Media. Systems for embodied music listening, which enable users to influence music in real-time by movement and gesture, can greatly benefit from the embodied cooperation paradigm. This paper presents the design and the evaluation of an application, Sync4All, based on such a paradigm, allowing users to experience social embodied music listening. Each user rhythmically and freely moves a mobile phone trying to synchronise her movements with those of the other ones. The level of such a synchronisation influences the music experience. The evaluation of Sync4All was aimed at finding out which is the overall attitude of the users towards the application, and how the participants perceived embodied cooperation and music embodiment

    Gait-Assist Wearable Robot Using Interactive Rhythmic Stimulation to the Upper Limbs

    Get PDF
    Many power-assist wearable exoskeletons have been developed to provide walking support and gait rehabilitation for elderly subjects and gait-disorder patients. Most designers have focused on a direct power-assist to the wearer's lower limbs. However, gait is a coordinated rhythmic movement of four limbs controlled intrinsically by central pattern generators, with the upper limbs playing an important role in walking. Maintaining a normal gait can become difficult as a person ages, because of decreases in limb coordination, stride length, and gait speed. It is known that coordination mechanisms can be governed by the principle of mutual entrainment, in which synchronization develops through the interaction between nonlinear phase oscillators in biological systems. This principle led us to hypothesize that interactive rhythmic stimulation to upper-limb movements might compensate for the age-related decline in coordination, thereby improving the gait in the elderly. To investigate this hypothesis, we developed a gait-assist wearable exoskeleton that employs interactive rhythmic stimulation to the upper limbs. In particular, we investigated the effects on spatial (i.e., hip-swing amplitude) and temporal (i.e., hip-swing period) gait parameters by conducting walking experiments with 12 healthy elderly subjects under one control condition and five upper-limb-assist conditions, where the output motor torque was applied at five different upper-limb swing positions. The results showed a statistically significant increase in the mean hip-swing amplitude, with a mean increment of about 7% between the control and upper-limb-assist conditions. They also showed a statistically significant decrease in the mean hip-swing period, with a mean decrement of about 2.3% between the control and one of the upper-limb-assist conditions. Although the increase in the hip-swing amplitude and the decrease in the hip-swing period were both small, the results indicate the possibility that interactive rhythmic stimulation to the upper limbs might have a positive effect on the gait of the elderly

    Entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations : a methodological systematic review

    Get PDF
    Background: Interdisciplinary work is needed for scientific progress, and with this review, our interest is in the scientific progress toward understanding the underlying mechanisms of auditory-motor coupling, and how this can be applied to gait rehabilitation. Specifically we look into the process of entrainment and synchronization; where entrainment is the process that governs the dynamic alignments of the auditory and motor domains based on error-prediction correction, whereas synchronization is the stable maintenance of timing during auditory-motor alignment. Methodology: A systematic literature search in databases PubMed and Web of Science were searched up to 9th of August 2017. The selection criteria for the included studies were adult populations, with a minimum of five participants, investigating walking to an auditory stimulus, with an outcome measure of entrainment, and synchronization. The review was registered in PROSPERO as CRD42017080325. Objectives: The objective of the review is to systematically describe the metrics which measure entrainment and synchronization to auditory stimuli during walking in healthy and neurological populations. Results: Sixteen articles were included. Fifty percent of the included articles had healthy controls as participants (N = 167), 19% had neurological diseases such as Huntington's and Stroke (N = 76), and 31% included both healthy and neurological [Parkinson's disease (PD) and Stroke] participants (N = 101). In the included studies, six parameters were found to capture the interaction between the human movement and the auditory stimuli, these were: cadence, relative phase angle, resultant vector length, interval between the beat and the foot contact, period matching performance, and detrended fluctuation analysis. Conclusion: In this systematic review, several metrics have been identified, which measure the timing aspect of auditory-motor coupling and synchronization of auditory stimuli in healthy and neurological populations during walking. The application of these metrics may enhance the current state of the art and practice across the neurological gait rehabilitation. These metrics also have current shortcomings. Of particular pertinence is our recommendation to consider variability in data from a time-series rather than time-windowed viewpoint. We need it in view of the promising practical applications from which the studied populations may highly benefit in view of personalized medical care

    Rhythmic-based audio-haptic feedback for motoric tasks

    Get PDF

    Optimization Algorithms for Integrating Advanced Facility-Level Healthcare Technologies into Personal Healthcare Devices

    Get PDF
    Healthcare is one of the most important services to preserve the quality of our daily lives, and it is capable of dealing with issues such as global aging, increase in the healthcare cost, and changes to the medical paradigm, i.e., from the in-facility cure to the prevention and cure outside the facility. Accordingly, there has been growing interest in the smart and personalized healthcare systems to diagnose and care themselves. Such systems are capable of providing facility-level diagnosis services by using smart devices (e.g., smartphones, smart watches, and smart glasses). However, in realizing the smart healthcare systems, it is very difficult, albeit impossible, to directly integrate high-precision healthcare technologies or scientific theories into the smart devices due to the stringent limitations in the computing power and battery lifetime, as well as environmental constraints. In this dissertation, we propose three optimization methods in the field of cell counting systems and gait-aid systems for Parkinson's disease patients that address the problems that arise when integrating a specialized healthcare system used in the facilities into mobile or wearable devices. First, we present an optimized cell counting algorithm based on heuristic optimization, which is a key building block for realizing the mobile point-of-care platforms. Second, we develop a learning-based cell counting algorithm that guarantees high performance and efficiency despite the existence of blurry cells due to out-focus and varying brightness of background caused by the limitation of lenses free in-line holographic apparatus. Finally, we propose smart gait-aid glasses for Parkinson’s disease patients based on mathematical optimization. ⓒ 2017 DGISTopenI. Introduction 1-- 1.1 Global Healthcare Trends 1-- 1.2 Smart Healthcare System 2-- 1.3 Benefits of Smart Healthcare System 3-- 1.4 Challenges of Smart Healthcare. 4-- 1.5 Optimization 6-- 1.6 Aims of the Dissertation 7-- 1.7 Dissertation Organization 8-- II.Optimization of a cell counting algorithm for mobile point-of-care testing platforms 9-- 2.1 Introduction 9-- 2.2 Materials and Methods. 13-- 2.2.1 Experimental Setup. 13-- 2.2.2 Overview of Cell Counting. 16-- 2.2.3 Cell Library Optimization. 18-- 2.2.4 NCC Approximation. 20-- 2.3 Results 21-- 2.3.1 Cell Library Optimization. 21-- 2.3.2 NCC Approximation. 23-- 2.3.3 Measurement Using an Android Device. 28-- 2.4 Summary 32-- III.Human-level Blood Cell Counting System using NCC-Deep learning algorithm on Lens-free Shadow Image. 33-- 3.1 Introduction 33-- 3.2 Cell Counting Architecture 36-- 3.3 Methods 37-- 3.3.1 Candidate Point Selection based on NCC. 37-- 3.3.2 Reliable Cell Counting using CNN. 40-- 3.4 Results 43-- 3.4.1 Subjects . 43-- 3.4.2 Evaluation for the cropped cell image 44-- 3.4.3 Evaluation on the blood sample image 46-- 3.4.4 Elapsed-time evaluation 50-- 3.5 Summary 50-- IV.Smart Gait-Aid Glasses for Parkinson’s Disease Patients 52-- 4.1 Introduction 52-- 4.2 Related Works 54-- 4.2.1 Existing FOG Detection Methods 54-- 4.2.2 Existing Gait-Aid Systems 56-- 4.3 Methods 57-- 4.3.1 Movement Recognition. 59-- 4.3.2 FOG Detection On Glasses. 62-- 4.3.3 Generation of Visual Patterns 66-- 4.4 Experiments . 67-- 4.5 Results 69-- 4.5.1 FOG Detection Performance. 69-- 4.5.2 Gait-Aid Performance. 71-- 4.6 Summary 73-- V. Conclusion 75-- Reference 77-- 요약문 89본 논문은 의료 관련 연구시설 및 병원 그리고 실험실 레벨에서 사용되는 전문적인 헬스케어 시스템을 개인의 일상생활 속에서 사용할 수 있는 스마트 헬스케어 시스템에 적용시키기 위한 최적화 문제에 대해 다룬다. 현대 사회에서 의료비용 증가 세계적인 고령화에 따라 의료 패러다임은 질병이 발생한 뒤 시설 내에서 치료 받는 방식에서 질병이나 건강관리에 관심있는 환자 혹은 일반인이 휴대할 수 있는 개인용 디바이스를 이용하여 의료 서비스에 접근하고, 이를 이용하여 질병을 미리 예방하는 방식으로 바뀌었다. 이에 따라 언제, 어디서나 스마트 디바이스(스마트폰, 스마트워치, 스마트안경 등)를 이용하여 병원 수준의 예방 및 진단을 실현하는 스마트 헬스케어가 주목 받고 있다. 하지만, 스마트 헬스케어 서비스 실현을 위하여 기존의 전문 헬스케어 장치 및 과학적 이론을 스마트 디바이스에 접목하는 데에는 스마트 디바이스의 제한적인 컴퓨팅 파워와 배터리, 그리고 연구소나 실험실에서 발생하지 않았던 환경적인 제약조건으로 인해 적용 할 수 없는 문제가 있다. 따라서 사용 환경에 맞춰 동작 가능하도록 최적화가 필요하다. 본 논문에서는 Cell counting 분야와 파킨슨 환자의 보행 보조 분야에서 전문 헬스케어 시스템을 스마트 헬스케어에 접목시키는데 발생하는 세 가지 문제를 제시하고 문제 해결을 위한 세 가지 최적화 알고리즘(Heuristic optimization, Learning-based optimization, Mathematical optimization) 및 이를 기반으로 하는 시스템을 제안한다.DoctordCollectio
    corecore