322,233 research outputs found

    Nonlinear autoregressive moving average-L2 model based adaptive control of nonlinear arm nerve simulator system

    Get PDF
    This paper considers the trouble of the usage of approximate strategies for realizing the neural controllers for nonlinear SISO systems. In this paper, we introduce the nonlinear autoregressive moving average (NARMA-L2) model which might be approximations to the NARMA model. The nonlinear autoregressive moving average (NARMA-L2) model is an precise illustration of the input–output behavior of finite-dimensional nonlinear discrete time dynamical systems in a neighborhood of the equilibrium state. However, it isn't always handy for purposes of neural networks due to its nonlinear dependence on the manipulate input. In this paper, nerves system based arm position sensor device is used to degree the precise arm function for nerve patients the use of the proposed systems. In this paper, neural network controller is designed with NARMA-L2 model, neural network controller is designed with NARMA-L2 model system identification based predictive controller and neural network controller is designed with NARMA-L2 model based model reference adaptive control system. Hence, quite regularly, approximate techniques are used for figuring out the neural controllers to conquer computational complexity. Comparison were made among the neural network controller with NARMA-L2 model, neural network controller with NARMA-L2 model system identification based predictive controller and neural network controller with NARMA-L2 model reference based adaptive control for the preferred input arm function (step, sine wave and random signals). The comparative simulation result shows the effectiveness of the system with a neural network controller with NARMA-L2 model based model reference adaptive control system. Index Terms--- Nonlinear autoregressive moving average, neural network, Model reference adaptive control, Predictive controller DOI: 10.7176/JIEA/10-3-03 Publication date: April 30th 202

    Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control

    Full text link
    [EN] New upper limb prostheses controllers are continuously being proposed in the literature. However, most of the prostheses commonly used in the real world are based on very old basic controllers. One reason to explain this reluctance to change is the lack of robustness. Traditional controllers have been validated by many users and years, so the introduction of a new controller paradigm requires a lot of strong evidence of a robust behavior. In this work, we approach the robustness against donning/doffing and arm position for recently proposed linear filter adaptive controllers based on myoelectric signals. The adaptive approach allows to introduce some feedback in a natural way in real time in the human-machine collaboration, so it is not so sensitive to input signals changes due to donning/doffing and arm movements. The average completion rate and path efficiency obtained for eight able-bodied subjects donning/doffing five times in four days is 95.83% and 84.19%, respectively, and for four participants using different arm positions is 93.84% and 88.77%, with no statistically significant difference in the results obtained for the different conditions. All these characteristics make the adaptive linear regression a potential candidate for future real world prostheses controllers.This work is partially supported by Ministerio de Educacion, Cultura y Deporte (Spain) under grant FPU15/02870. The authors would like to thank Lucas Parra for the Myo device and Janne M. Hahne for discussions about the subject of the paper.Igual, C.; Camacho-García, A.; Bernabeu Soler, EJ.; Igual García, J. (2020). Donning/Doffing and Arm Positioning Influence in Upper Limb Adaptive Prostheses Control. Applied Sciences. 10(8):1-19. https://doi.org/10.3390/app10082892S119108Esquenazi, A. (2004). Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disability and Rehabilitation, 26(14-15), 831-836. doi:10.1080/09638280410001708850Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., & Brookmeyer, R. (2008). Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation, 89(3), 422-429. doi:10.1016/j.apmr.2007.11.005Igual, C., Pardo, L. A., Hahne, J., & Igual, J. M. (2019). Myoelectric Control for Upper Limb Prostheses. Electronics, 8(11), 1244. doi:10.3390/electronics8111244Biddiss, E., & Chau, T. (2007). Upper-Limb Prosthetics. American Journal of Physical Medicine & Rehabilitation, 86(12), 977-987. doi:10.1097/phm.0b013e3181587f6cBiddiss, E. A., & Chau, T. T. (2007). Upper limb prosthesis use and abandonment. Prosthetics & Orthotics International, 31(3), 236-257. doi:10.1080/03093640600994581Davidson, J. (2002). A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. Journal of Hand Therapy, 15(1), 62-70. doi:10.1053/hanthe.2002.v15.01562Datta, D., Selvarajah, K., & Davey, N. (2004). Functional outcome of patients with proximal upper limb deficiency–acquired and congenital. Clinical Rehabilitation, 18(2), 172-177. doi:10.1191/0269215504cr716oaVujaklija, I., Farina, D., & Aszmann, O. (2016). New developments in prosthetic arm systems. Orthopedic Research and Reviews, Volume 8, 31-39. doi:10.2147/orr.s71468Scheme, E. J., Englehart, K. B., & Hudgins, B. S. (2011). Selective Classification for Improved Robustness of Myoelectric Control Under Nonideal Conditions. IEEE Transactions on Biomedical Engineering, 58(6), 1698-1705. doi:10.1109/tbme.2011.2113182Englehart, K., & Hudgins, B. (2003). A robust, real-time control scheme for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 50(7), 848-854. doi:10.1109/tbme.2003.813539Parker, P., Englehart, K., & Hudgins, B. (2006). Myoelectric signal processing for control of powered limb prostheses. Journal of Electromyography and Kinesiology, 16(6), 541-548. doi:10.1016/j.jelekin.2006.08.006Fougner, A., Stavdahl, Ø., Kyberd, P. J., Losier, Y. G., & Parker, P. A. (2012). Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 663-677. doi:10.1109/tnsre.2012.2196711Resnik, L., Huang, H. (Helen), Winslow, A., Crouch, D. L., Zhang, F., & Wolk, N. (2018). Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0361-3Sartori, M., Durandau, G., Došen, S., & Farina, D. (2018). Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. Journal of Neural Engineering, 15(6), 066026. doi:10.1088/1741-2552/aae26bVelliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098-1101. doi:10.1038/nature06996Amsuess, S., Vujaklija, I., Goebel, P., Roche, A. D., Graimann, B., Aszmann, O. C., & Farina, D. (2016). Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 744-753. doi:10.1109/tnsre.2015.2454240Kuiken, T. A., Miller, L. A., Turner, K., & Hargrove, L. J. (2016). A Comparison of Pattern Recognition Control and Direct Control of a Multiple Degree-of-Freedom Transradial Prosthesis. IEEE Journal of Translational Engineering in Health and Medicine, 4, 1-8. doi:10.1109/jtehm.2016.2616123Phinyomark, A., N. Khushaba, R., & Scheme, E. (2018). Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors. Sensors, 18(5), 1615. doi:10.3390/s18051615Asghari Oskoei, M., & Hu, H. (2007). Myoelectric control systems—A survey. Biomedical Signal Processing and Control, 2(4), 275-294. doi:10.1016/j.bspc.2007.07.009Spanias, J. A., Perreault, E. J., & Hargrove, L. J. (2016). Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 226-234. doi:10.1109/tnsre.2015.2413393Castellini, C., & van der Smagt, P. (2008). Surface EMG in advanced hand prosthetics. Biological Cybernetics, 100(1), 35-47. doi:10.1007/s00422-008-0278-1Ameri, A., Akhaee, M. A., Scheme, E., & Englehart, K. (2019). Regression convolutional neural network for improved simultaneous EMG control. Journal of Neural Engineering, 16(3), 036015. doi:10.1088/1741-2552/ab0e2eHahne, J. M., Biebmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C., … Parra, L. C. (2014). Linear and Nonlinear Regression Techniques for Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 269-279. doi:10.1109/tnsre.2014.2305520Ameri, A., Scheme, E. J., Kamavuako, E. N., Englehart, K. B., & Parker, P. A. (2014). Real-Time, Simultaneous Myoelectric Control Using Force and Position-Based Training Paradigms. IEEE Transactions on Biomedical Engineering, 61(2), 279-287. doi:10.1109/tbme.2013.2281595Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., … Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164-171. doi:10.1038/nature04970Interface Prostheses With Classifier-Feedback-Based User Training. (2017). IEEE Transactions on Biomedical Engineering, 64(11), 2575-2583. doi:10.1109/tbme.2016.2641584Thomas, N., Ung, G., McGarvey, C., & Brown, J. D. (2019). Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis. Journal of NeuroEngineering and Rehabilitation, 16(1). doi:10.1186/s12984-019-0545-5Guémann, M., Bouvier, S., Halgand, C., Borrini, L., Paclet, F., Lapeyre, E., … de Rugy, A. (2018). Sensory and motor parameter estimation for elbow myoelectric control with vibrotactile feedback. Annals of Physical and Rehabilitation Medicine, 61, e467. doi:10.1016/j.rehab.2018.05.1090Markovic, M., Schweisfurth, M. A., Engels, L. F., Farina, D., & Dosen, S. (2018). Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Journal of NeuroEngineering and Rehabilitation, 15(1). doi:10.1186/s12984-018-0422-7Pasquina, P. F., Perry, B. N., Miller, M. E., Ling, G. S. F., & Tsao, J. W. (2015). Recent advances in bioelectric prostheses. Neurology: Clinical Practice, 5(2), 164-170. doi:10.1212/cpj.0000000000000132NING, J., & Dario, F. (2014). Myoelectric control of upper limb prosthesis: current status, challenges and recent advances. Frontiers in Neuroengineering, 7. doi:10.3389/conf.fneng.2014.11.00004Lendaro, E., Mastinu, E., Håkansson, B., & Ortiz-Catalan, M. (2017). Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain. Frontiers in Neurology, 8. doi:10.3389/fneur.2017.00470Mastinu, E., Ortiz-Catalan, M., & Hakansson, B. (2015). Analog front-ends comparison in the way of a portable, low-power and low-cost EMG controller based on pattern recognition. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318805BECK, T. W., HOUSH, T. J., CRAMER, J. T., MALEK, M. H., MIELKE, M., HENDRIX, R., & WEIR, J. P. (2008). Electrode Shift and Normalization Reduce the Innervation Zone’s Influence on EMG. Medicine & Science in Sports & Exercise, 40(7), 1314-1322. doi:10.1249/mss.0b013e31816c4822Pasquina, P. F., Evangelista, M., Carvalho, A. J., Lockhart, J., Griffin, S., Nanos, G., … Hankin, D. (2015). First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Journal of Neuroscience Methods, 244, 85-93. doi:10.1016/j.jneumeth.2014.07.016Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., & Stavdahl, Ø. (2011). Resolving the Limb Position Effect in Myoelectric Pattern Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), 644-651. doi:10.1109/tnsre.2011.2163529Hwang, H.-J., Hahne, J. M., & Müller, K.-R. (2017). Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing. PLOS ONE, 12(11), e0186318. doi:10.1371/journal.pone.0186318Young, A. J., Hargrove, L. J., & Kuiken, T. A. (2011). The Effects of Electrode Size and Orientation on the Sensitivity of Myoelectric Pattern Recognition Systems to Electrode Shift. IEEE Transactions on Biomedical Engineering, 58(9), 2537-2544. doi:10.1109/tbme.2011.2159216Prahm, C., Schulz, A., Paaben, B., Schoisswohl, J., Kaniusas, E., Dorffner, G., … Aszmann, O. (2019). Counteracting Electrode Shifts in Upper-Limb Prosthesis Control via Transfer Learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 956-962. doi:10.1109/tnsre.2019.2907200Cipriani, C., Sassu, R., Controzzi, M., & Carrozza, M. C. (2011). Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: Preliminary study. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6090468Amsuss, S., Paredes, L. P., Rudigkeit, N., Graimann, B., Herrmann, M. J., & Farina, D. (2013). Long term stability of surface EMG pattern classification for prosthetic control. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610327Scheme, E., & Englehart, K. (2011). Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. The Journal of Rehabilitation Research and Development, 48(6), 643. doi:10.1682/jrrd.2010.09.0177Scheme, E., Fougner, A., Stavdahl, Ø., Chan, A. D. C., & Englehart, K. (2010). Examining the adverse effects of limb position on pattern recognition based myoelectric control. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. doi:10.1109/iembs.2010.5627638Dohnalek, P., Gajdos, P., & Peterek, T. (2013). Human activity recognition on raw sensor data via sparse approximation. 2013 36th International Conference on Telecommunications and Signal Processing (TSP). doi:10.1109/tsp.2013.6614027Marasco, P. D., Hebert, J. S., Sensinger, J. W., Shell, C. E., Schofield, J. S., Thumser, Z. C., … Orzell, B. M. (2018). Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine, 10(432). doi:10.1126/scitranslmed.aao6990Mastinu, E., Doguet, P., Botquin, Y., Hakansson, B., & Ortiz-Catalan, M. (2017). Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant. IEEE Transactions on Biomedical Circuits and Systems, 11(4), 867-877. doi:10.1109/tbcas.2017.2694710Igual, C., Igual, J., Hahne, J. M., & Parra, L. C. (2019). Adaptive Auto-Regressive Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(2), 314-322. doi:10.1109/tnsre.2019.2894464Huang, Y., Englehart, K. B., Hudgins, B., & Chan, A. D. C. (2005). A Gaussian Mixture Model Based Classification Scheme for Myoelectric Control of Powered Upper Limb Prostheses. IEEE Transactions on Biomedical Engineering, 52(11), 1801-1811. doi:10.1109/tbme.2005.856295Hahne, J. M., Dahne, S., Hwang, H.-J., Muller, K.-R., & Parra, L. C. (2015). Concurrent Adaptation of Human and Machine Improves Simultaneous and Proportional Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 618-627. doi:10.1109/tnsre.2015.240113

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund

    An Improved Stock Price Prediction using Hybrid Market Indicators

    Get PDF
    In this paper the effect of hybrid market indicators is examined for an improved stock price prediction. The hybrid market indicators consist of technical, fundamental and expert opinion variables as input to artificial neural networks model. The empirical results obtained with published stock data of Dell and Nokia obtained from New York Stock Exchange shows that the proposed model can be effective to improve accuracy of stock price prediction
    corecore