6 research outputs found

    NUMA Time Warp

    Get PDF
    It is well known that Time Warp may suffer from large usage of memory, which may hamper the efficiency of the memory hierarchy. To cope with this issue, several approaches have been devised, mostly based on the reduction of the amount of used virtual memory, e.g., by the avoidance of checkpointing and the exploitation of reverse computing. In this article we present an orthogonal solution aimed at optimizing the latency for memory access operations when running Time Warp systems on Non-Uniform Memory Access (NUMA) multi-processor/multi-core computing systems. More in detail, we provide an innovative Linux-based architecture allowing per simulation-object management of memory segments made up by disjoint sets of pages, and supporting both static and dynamic binding of the memory pages reserved for an individual object to the different NUMA nodes, depending on what worker thread is in charge of running that simulation object along a given wall-clock-time window. Our proposal not only manages the virtual pages used for the live state image of the simulation object, rather, it also copes with memory pages destined to keep the simulation object's event buffers and any recoverability data. Further, the architecture allows memory access optimization for data (messages) exchanged across the different simulation objects running on the NUMA machine. Our proposal is fully transparent to the application code, thus operating in a seamless manner. Also, a free software release of our NUMA memory manager for Time Warp has been made available within the open source ROOT-Sim simulation platform. Experimental data for an assessment of our innovative proposal are also provided in this article

    Multilevel simulation-based co-design of next generation HPC microprocessors

    Get PDF
    This paper demonstrates the combined use of three simulation tools in support of a co-design methodology for an HPC-focused System-on-a-Chip (SoC) design. The simulation tools make different trade-offs between simulation speed, accuracy and model abstraction level, and are shown to be complementary. We apply the MUSA trace-based simulator for the initial sizing of vector register length, system-level cache (SLC) size and memory bandwidth. It has proven to be very efficient at pruning the design space, as its models enable sufficient accuracy without having to resort to highly detailed simulations. Then we apply gem5, a cycle-accurate micro-architecture simulator, for a more refined analysis of the performance potential of our reference SoC architecture, with models able to capture detailed hardware behavior at the cost of simulation speed. Furthermore, we study the network-on-chip (NoC) topology and IP placements using both gem5 for representative small- to medium-scale configurations and SESAM/VPSim, a transaction-level emulator for larger scale systems with good simulation speed and sufficient architectural details. Overall, we consider several system design concerns, such as processor subsystem sizing and NoC settings. We apply the selected simulation tools, focusing on different levels of abstraction, to study several configurations with various design concerns and evaluate them to guide architectural design and optimization decisions. Performance analysis is carried out with a number of representative benchmarks. The obtained numerical results provide guidance and hints to designers regarding SIMD instruction width, SLC sizing, memory bandwidth as well as the best placement of memory controllers and NoC form factor. Thus, we provide critical insights for efficient design of future HPC microprocessors.This work has been performed in the context of the European Processor Initiative (EPI) project, which has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement № 826647. A special thanks to Amir Charif and Arief Wicaksana for their invaluable contributions to the SESAM/VPSim tool in the initial phases of the EPI project.Peer ReviewedPostprint (author's final draft

    Age of Information of a Server with Energy Requirements

    Get PDF
    We investigate a system with Poisson arrivals to two queues. One queue stores the status updates of the process of interest (or data packets) and the other handles the energy that is required to deliver the updates to the monitor. We consider that the energy is represented by packets of discrete unit. When an update ends service, it is sent to the energy queue and, if the energy queue has one packet, the update is delivered successfully and the energy packet disappears; however, in case the energy queue is empty, the update is lost. Both queues can handle, at most, one packet and the service time of updates is exponentially distributed. Using the Stochastic Hybrid System method, we characterize the average Age of Information of this system. Due to the difficulty of the derived expression, we also explore approximations of the average Age of Information of this systemJosu Doncel has received funding from the Department of Education of the Basque Government through the Consolidated Research Group MATHMODE (IT1294-19), from the Marie Sklodowska-Curie grant agreement No. 777778 and from from the Spanish Ministry of Science and Innovation with reference PID2019-108111RB-I00 (FEDER/AEI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Age of Information of Parallel Server Systems with Energy Harvesting

    Get PDF
    Motivated by current communication networks in which users can choose different transmission channels to operate and also by the recent growth of renewable energy sources, we study the average Age of Information of a status update system that is formed by two parallel homogeneous servers and such that there is an energy source that feeds the system following a random process. An update, after getting service, is delivered to the monitor if there is energy in a battery. However, if the battery is empty, the status update is lost. We allow preemption of updates in service and we assume Poisson generation times of status updates and exponential service times. We show that the average Age of Information can be characterized by solving a system with eight linear equations. Then, we show that, when the arrival rate to both servers is large, the average Age of Information is one divided by the sum of the service rates of the servers. We also perform a numerical analysis to compare the performance of our model with that of a single server with energy harvesting and to study in detail the aforementioned convergence result.Josu Doncel has received funding from the Department of Education of the Basque Government through the Consolidated Research Group MATHMODE (IT1294-19), from the Marie Sklodowska-Curie grant agreement No 777778 and from the Spanish Ministry of Science and Innovation with reference PID2019-108111RB-I00 (FEDER/AEI)

    H3N - Analysewerkzeuge für hybride Wegewahl in heterogenen, unterbrechungstoleranten Ad-Hoc-Netzen für Rettungskräfte

    Get PDF
    Rettungskräfte müssen unter widrigen Bedingungen zuverlässig kommunizieren können, um in Rettungseinsätzen effizient arbeiten zu können und somit Leben zu retten. Idealerweise ist dazu ein selbstorganisiertes Ad-Hoc-Netz notwendig, weil die Kommunikationsinfrastruktur ggf. beschädigt oder überlastet sein kann. Um die geforderte Robustheit der Kommunikation auch in Szenarien mit größeren zu überbrückenden Entfernungen zu gewährleisten, werden zusätzlich Mechanismen benötigt, die eine Unterbrechungstoleranz ermöglichen. Verzögerungstolerante Netze (engl. Delay Tolerant Networks, kurz: DTN) stellen solche Mechanismen bereit, erfordern aber zusätzliche Verzögerungen, die für Rettungskommunikation nachteilig sind. Deshalb werden intelligente hybride Wegewahlverfahren benötigt, um die Verzögerung durch DTN-Mechanismen zu begrenzen. Außerdem sollten entsprechende Verfahren heterogene Netze unterstützen. Das ermöglicht zusätzlich eine effizientere Weiterleitung durch die Nutzung von Geräten mit unterschiedlichen Kommunikationstechnologien und damit auch Reichweiten. Um solche Systeme und die dafür benötigten Kommunikationsprotokolle zu entwickeln, werden verschiedene Analysewerkzeuge genutzt. Dazu gehören analytische Modelle, Simulationen und Experimente auf der Zielsystemhardware. Für jede Kategorie gibt es verschiedene Werkzeuge und Frameworks, die sich auf unterschiedliche Aspekte fokussieren. Dadurch unterstützen diese herkömmlichen Analysemethoden jedoch meistens nur einen der oben genannten Punkte, während die Untersuchung von hybriden und/oder heterogenen Ansätzen und Szenarien nicht ohne weiteres möglich ist. Im Falle von Rettungskräften kommt hinzu, dass die charakteristischen Merkmale hinsichtlich der Bewegung der Knoten und des erzeugten Datenverkehrs während eines Einsatzes ebenfalls nicht modelliert werden können. In dieser Arbeit werden deshalb verschiedene Erweiterungen zu existierenden Analysewerkzeugen sowie neue Werkzeuge zur Analyse und Modelle zur Nachbildung realistischer Rettungsmissionen untersucht und entwickelt. Ziel ist es, die Vorteile existierender Werkzeuge miteinander zu kombinieren, um ganzheitliche, realitätsnahe Untersuchungen von hybriden Protokollen für heterogene Netze zu ermöglichen. Die Kombination erfolgt in Form von gezielten Erweiterungen und der Entwicklung ergänzender komplementärer Werkzeuge unter Verwendung existierender Schnittstellen. Erste Ergebnisse unter Verwendung der entwickelten Werkzeuge zeigen Verbesserungspotentiale bei der Verwendung traditioneller Protokolle und erlauben die Bewertung zusätzlicher Maßnahmen, um die Kommunikation zu verbessern. Szenarien zur Kommunikation von Rettungskräften werden dabei als ein Beispiel verwendet, die Tools sind jedoch nicht auf die Analyse dieses Anwendungsfalls beschränkt. Über die reine Analyse verschiedener existierender Ansätze hinaus bildet die entwickelte Evaluationsumgebung eine Grundlage für die Entwicklung und Verifikation von neuartigen hybriden Protokollen für die entsprechenden Systeme.Communication between participating first responders is essential for efficient coordination of rescue missions and thus allowing to save human lives. Ideally, ad hoc-style communication networks are applied to this as the first responders cannot rely on infrastructure-based communication for two reasons. First, the infrastructure could be damaged by the disastrous event or not be available for economic reasons. Second, even if public infrastructure is available and functional, it might be overloaded by users. To guarantee the robustness and reliability requirements of first responders, the Mobile Ad Hoc Networks (MANETs) have to be combined with an approach to mitigate intermittent connectivity due to otherwise limited connectivity. Delay Tolerant Networks (DTNs) provide such a functionality but introduce additional delay which is problematic. Therefore, intelligent hybrid routing approaches are required to limit the delay introduced by DTN mechanisms. Besides that, the approach should be applicable to heterogeneous networks in terms of communication technologies and device capabilities. This is required for cross multi-agency and volunteer communication but also enables the opportunistic exploitation of any given communication option. To evaluate such systems and develop the corresponding communication protocols, various tools for the analysis are available. This includes analytical models, simulations and real-world experiments on target hardware. In each category a wide set of tools is available already. However, each tool is focused on specific aspects usually and thus does not provide methods to analyze hybrid approaches out of the box. Even if the tools are modular and allow an extension, there are often other tools that are better suited for partial aspects of hybrid systems. In addition to this, few tools exist to model the characteristics of first responder networks. Especially the generalized movement during missions and the generated data traffic are difficult to model and integrate into analyses. The focus of this project is therefore to develop selected extensions to existing analysis and simulation tools as well as additional tools and models to realistically capture the characteristics of first responder networks. The goal is to combine the advantages of existing specialized simulation tools to enable thorough evaluations of hybrid protocols for heterogeneous networks based on realistic assumptions. To achieve this, the tools are extended by specifically designing tools that enable the interaction between tools and new tools that complement the existing analysis capabilities. First results obtained via the resulting toolbox clearly indicate further research directions as well as a potential for protocol enhancements. Besides that, the toolbox was used to evaluate various methods to enhance the connectivity between nodes in first responder networks. First responder scenarios are used as an example here. The toolbox itself is however not limited to this use case. In addition to the analysis of existing approaches for hybrid and heterogeneous networks, the developed toolbox provides a base framework for the development and verification of newly developed protocols for such use cases
    corecore