
NUMA Time Warp

Alessandro Pellegrini and Francesco Quaglia
DIAG – Sapienza, University of Rome

Via Ariosto 25, 00185 Rome, Italy
{pellegrini, quaglia}@dis.uniroma1.it

ABSTRACT

It is well known that Time Warp may suffer from large usage
of memory, which may hamper the efficiency of the memory
hierarchy. To cope with this issue, several approaches have
been devised, mostly based on the reduction of the amount
of used virtual memory, e.g., by the avoidance of checkpoint-
ing and the exploitation of reverse computing. In this article
we present an orthogonal solution aimed at optimizing the
latency for memory access operations when running Time
Warp systems on Non-Uniform Memory Access (NUMA)
multi-processor/multi-core computing systems. More in de-
tail, we provide an innovative Linux-based architecture al-
lowing per-simulation-object management of memory seg-
ments made up by disjoint sets of pages, and supporting
both static and dynamic binding of the memory pages re-
served for an individual object to the different NUMA nodes,
depending on what worker thread is in charge of running
that simulation object along a given wall-clock-time window.
Our proposal not only manages the virtual pages used for
the live state image of the simulation object, rather, it also
copes with memory pages destined to keep the simulation
object’s event buffers and any recoverability data. Further,
the architecture allows memory access optimization for data
(messages) exchanged across the different simulation objects
running on the NUMA machine. Our proposal is fully trans-
parent to the application code, thus operating in a seamless
manner. Also, a free software release of our NUMA memory
manager for Time Warp has been made available within the
open source ROOT-Sim simulation platform. Experimental
data for an assessment of our innovative proposal are also
provided in this article.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Vir-
tual Memory ; I.6.8 [Simulation and Modeling]: Types of
Simulation—Discrete Event, Parallel

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.

Copyright c© 2015 ACM ISBN 978-1-4503-3583-6/15/06...$15.00.

DOI: http://dx.doi.org/10.1145/2769458.2769479.

General Terms

Algorithms, Performance

Keywords

PDES; Non-uniform Memory Access; Speculative Process-
ing

1. INTRODUCTION
Speculative computing techniques are widely recognized

as a means to achieve scalability of parallel/distributed ap-
plications thanks to the (partial) removal of the cost for
coordinating concurrent processes and/or threads from the
critical path of task processing [16, 30]. In the context of
Parallel Discrete Event Simulation (PDES), the speculative
paradigm is incarnated by the well-known Time Warp syn-
chronization protocol [18], which has been recently shown
to provide scalability up to thousands or millions of CPU-
cores [20].

On the other hand, it is also known that a core pitfall of
speculative processing schemes lies in their large usage of
memory, given that they typically require maintaining (and
accessing) histories of speculatively-produced data records
and/or recoverability data to cope with misspeculation sce-
narios. This leads to reduced application locality and conse-
quent suboptimal behavior of the memory hierarchy, given
that the working set of the application will more likely ex-
ceed cache-storage.

As for Time Warp, its large usage of virtual memory has
been shown to represent a potentially insurmountable ob-
stacle to the delivery of adequate performance, as for cases
where uncommitted data records saturate RAM (or even
virtual memory) thus requiring secondary storage support
for the parallel run. On the one hand, such extreme sce-
narios have been shown to be faceable by proper memory
management protocols explicitly aimed at limiting the level
of speculation within the Time Warp run (see, e.g., [11]). On
the other hand, the classical approach that is employed for
reducing the memory footprint of Time Warp applications,
and hence for improving their locality, consists in reducing
the amount of memory that is kept for allowing recoverabil-
ity of the state of the concurrent simulation objects (also
known as Logical Processes—LPs). Along this path we can
find solutions based on infrequent and/or incremental check-
pointing of the snapshot of the simulation object’s state (or
a combination of the two approaches) [25, 27, 28] or on the
usage of reverse computing techniques [9]. The latter may
(at least in principle) fully avoid keeping state recoverability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54527053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data, at the expense of an increase in CPU requirements for
rebuilding a past state snapshot.

However, despite the wide literature in the area of re-
ducing the memory usage for state recoverability data, the
large usage of virtual memory and the reduced locality in
Time Warp still stand as intrinsic to this synchronization
approach. As an example, event records keeping informa-
tion about events that have already been processed, but
which cannot yet be discarded because their commitment
is still undetermined, contribute to enlarging the amount
of virtual memory to be managed. Also, this memory is
requested to be scanned upon fossil collection for buffer re-
lease to the underlying allocator, which gives rise to a change
of the locality from the live event buffers’ portion to the
obsolete one. Hence, the efficiency according to which the
cache/RAM hierarchy is exploited still stands as a core is-
sue to be addressed while building high performance Time
Warp systems.

In this article we tackle the above issue by presenting a
memory management architecture that is aimed at reduc-
ing the actual latency for the access to memory locations
when running Time Warp systems on top of multi-core Non-
Uniform-Memory-Access (NUMA) platforms. The relevance
of the NUMA architectural paradigm lies in that systems
continuously increase their number of processors and the
overall size of RAM storage. Hence it is increasingly dif-
ficult to build large platforms with uniform memory access
latency. Nowadays, medium-end parallel machines equipped
with non-minimal amounts of CPU-cores and/or RAM are
de-facto configured to have different RAM zones close to
specific CPU-cores, hence providing low latency and high
throughput of memory access, while other zones are far
from these same CPU-cores and induce higher latency and
a reduced memory access throughput. This de-facto stan-
dard configuration has led system-software developers to re-
cently include facilities for optimizing memory management
in NUMA contexts, such as for the case of Linux, which
starting from version 2.6.18 supports NUMA specific ser-
vices that are exposed to the application-level software via
system calls.

We exploit such services offered by Linux, and reflect them
into a NUMA-aware memory management architecture op-
erating at the level of the Time Warp platform, particu-
larly in the context of multi-threaded Time Warp systems.
Specifically, we provide an architectural organization where
any information record logically bound to a specific simula-
tion object (such as its event records, keeping either already
processed or unprocessed events, and its state recoverabil-
ity data, as well as its live state) is guaranteed to be kept
on private memory pages. Hence, the simulation objects (in-
cluding their event buffers) are actually allocated on disjoint
sets of memory pages. Also, the memory pages associated
with data for an individual simulation object are guaran-
teed to be located on the NUMA node where the worker
thread currently in charge of running the simulation object
resides. This leads the worker thread to benefit from min-
imum RAM-access latency and maximal throughput when
performing read operations (e.g. while scanning data asso-
ciated with the simulation object).

The association of the simulation object’s private pages
with the correct NUMA node is operated in our architecture
according to both static and dynamic policies. The latter
approach is actuated according to an non-intrusive daemon-

based solution, where a thread (similar in spirit to the Linux
kswapd) is in charge of periodically checking whether a mi-
gration from a source to a destination NUMA node is re-
quested for the memory pages of any simulation object, and
in the positive case executes the migration non-intrusively.
Hence, our proposal guarantees NUMA-efficient memory ac-
cess even in contexts where a specific simulation object is
migrated from one worker thread to another one (possibly
operating on a CPU-core close to a different NUMA node),
such as for the case of load-sharing with dynamic migration
of the objects within a multi-thread Time Warp platform
[36] or when the number of worker threads is dynamically
changed with consequent re-distribution of the simulation
objects across the still active worker threads [38]. Further,
our proposal entails optimized NUMA management also in
relation to the memory buffers used for exchanging events
across the concurrent simulation objects.

We finally stress that our proposal is fully application-
transparent, hence allowing the application-level program-
mer to still rely on classical (dynamic) memory manage-
ment services, such as the malloc library, for memory al-
location/deallocation within the simulation model. Also,
the presented NUMA-oriented architecture has been made
freely available by having it been integrated within the open
source ROOT-Sim (ROme OpTimistic Simulator) package
[24]1. Experimental data for an assessment of our proposal
are also presented in this article.

The remainder of the article is structured as follows. In
Section 2 we discuss related work. The NUMA-oriented
memory management architecture is presented in Section
3, together with the support for dynamic migration of the
memory pages destined to an individual simulation object
across different NUMA nodes. Experimental data are pro-
vided in Section 4.

2. RELATED WORK
Optimized approaches and architectures supporting state

recoverability in optimistic PDES systems [25, 27, 28, 29,
31, 40] can be also considered as general solutions aimed at
reducing the memory demand by the optimistic simulation
environment, thanks to the infrequent and/or incremental
nature of the employed checkpointing techniques. Such a
reduction, which can lead to improving the memory local-
ity and the cache/RAM hierarchy efficiency, can be consid-
ered as a reflection of the whole optimization process leading
to well-suited tradeoffs between log and restore overheads.
However, these literature solutions do not directly tackle the
issue of memory-access efficiency in NUMA platforms. In
fact, they do not integrate policies for controlling the deliv-
ering of memory buffers for logging state recoverability data
so as to make memory accesses NUMA optimized, which is
instead the target of this article. Overall, our proposal is
fully complementary to (and can be integrated with) any
of the above mentioned solutions. The same is true when
considering the alternative recoverability method based on
reverse computation (rather than checkpointing) [9].

As hinted, the memory demand by optimistic platforms
does not only involve log operations, but the need for tempo-
rary maintaining event buffers that are not yet detected as
already committed (since Global Virtual Time—GVT—is

1Please refer to https://github.com/HPDCS/ROOT-Sim for
the actual free software package.

typically re-evaluated periodically), and the need for sup-
porting speculative scheduling of future events. The lat-
ter aspect may entail high frequency of buffer allocation re-
quests just due to the fact that purely optimistic approaches
can allow the simulation objects to run far ahead of the cur-
rently committed horizon in case of the absence of blocking
or throttling strategies. As for memory requirements related
to the already committed portion of the computation, some
advanced fossil collection mechanisms have been proposed
[10] that, by means of dissemination of information about
causality relations among events, are aimed at the identi-
fication of the fossils (hence of memory to be recovered)
in a complementary manner compared to the classical ones
based on GVT computation. Still, these approaches do not
provide NUMA optimized memory management approaches,
rather general solutions for prompt release (thus re-usage) of
memory buffers as a general approach for reducing memory
demand and increasing locality.

The effects of the cache/RAM hierarchy and of the un-
derlying virtual memory system on the performance of spe-
cific tasks (such as state saving) and/or of the overall sim-
ulation run have also been (empirically) studied by several
works [2, 3, 8, 14], some of which deal with the context
of NUMA platforms. Outcomes by these studies show how
both caching and virtual memory may have a relevant im-
pact on performance, thus posing the need for optimizing
platform level configuration and/or design in order to limit
the performance degradation phenomenon. This is exactly
what we do with our memory management proposal oriented
to NUMA platforms.

Interesting proposals aimed at the integration of advanced
memory management schemes specifically tailored to opti-
mistic PDES platforms can be found in [13, 19, 21, 26].
Here the authors propose techniques, such as cancelback,
pruneback or artificial rollback, which are aimed at achiev-
ing efficient executions of the optimistic paradigm when con-
sidering limited available memory. This is achieved by, e.g.,
artificially squashing portions of speculated computation in
order to avoid maintaining the related information (such as
the buffers for speculatively scheduled events) when mem-
ory demand becomes critical (e.g. when page-swapping phe-
nomena in the virtual memory system would tent to ap-
pear). With this type of integrations, the optimistic ap-
proach has been shown to be able to complete the run at
reasonable performance by using an amount of memory sim-
ilar (or slightly larger than) the one requested by a sequen-
tial, non-speculative run of the same simulation application.
Further, the performance tradeoffs associated with these
schemes have been thoroughly investigated both analytically
and empirically (see, e.g., [12]). Again, these solutions are
complementary to the one we provide since none of them
is specifically oriented to optimizing the efficiency of the
cache/RAM hierarchy in NUMA systems.

Different approaches, still tailored to the tradeoff between
memory management and performance, relate to the reduc-
tion of the number of memory copies for supporting event
exchanges within the optimistic platform. Particularly, the
proposal in [32] provides a so called zero-copy message pass-
ing approach, suited for both conservative and optimistic
simulation, which allows reducing the whole memory de-
mand due to message buffering on shared memory archi-
tectures, thanks to the reduction of the amount of virtual
memory buffers used for keeping the messages. However,

this approach is not directly oriented to improving the effi-
ciency of memory accesses in NUMA platforms.

The work in [15] faces the cache hierarchy misuse in op-
timistic simulators by pointing out the relevance of buffer
delivery mechanisms that are cache-friendly in shared mem-
ory contexts. The work exclusively accounts for buffers re-
served for exchanged messages. It presents a new approach
that partitions the memory destined to messages so that
the pages are accessed only by the two processes that par-
ticipate in the communication, providing a reduction of the
cache-coherence overhead and the cache invalidation. Our
proposal intrinsically offers the same advantage, but addi-
tionally copes with memory access efficiency to live states of
the simulation objects and recoverability data, also in con-
texts where the simulation objects can be dynamically mi-
grated across worker threads operating in different NUMA
nodes.

The work in [34] presents a partitioning of the data struc-
tures typically employed in optimistic PDES systems in or-
der to determine the so called access-intensive vs access-mild
portions, the latter being the portions of data that unlikely
will be accessed in the future. Access-mild data are mapped
onto virtual addresses that collide on the same cache por-
tion, so as to avoid that write operations when generating
these data will erase access-intensive data from the cache.
This approach does not aim at improving data movement in
the cache/RAM hierarchy, e.g., in NUMA machines, rather
it is aimed at increasing cache hits.

Finally, the work in [39] presents a performance study of
multi-thread optimistic PDES systems (particularly a multi-
thread variant of ROSS [7]) where various optimizations are
considered, one of which is related to memory management
in NUMA machines. Specifically, this work studies the ef-
fects of (re-)using memory buffers belonging to the destina-
tion memory pool when exchanging events across the simula-
tion objects, so as to increase the likelihood that the buffer
is actually located on the NUMA node where the thread
running the destination simulation object resides. This so-
lution does not directly cope with empty-zero memory, thus
the buffer is guaranteed to be hosted on the correct NUMA
node only in case it resides on non-empty-zero memory pre-
viously touched by the destination thread. This is due to the
fact that the actual memory allocation policy is intrinsically
based on default local-policies adopted by NUMA-oriented
operating system kernels. We overcome this problem in our
approach; further, we optimize NUMA access by explicitly
considering the mapping of both the live state of the simula-
tion object and its recoverability data, and by also offering
support for dynamic migration of the object (and of all its
associated data) across threads running on different NUMA
nodes, aspects that are not considered by the proposal in
[39].

3. THE MEMORY MANAGEMENT ARCHI-

TECTURE

3.1 Architectural Context
We target optimistic PDES systems based on the multi-

thread paradigm (rather than multi-process ones), which
have been recently shown to be highly suited for shared
memory platforms thanks to the possibility of optimizing
aspects such as data exchange and balanced usage of the

application mode

platform mode

malloc

wrapper layer

current

get_new_buffer

anonymous

allocation

non-anonymous

allocation

Figure 1: The dual-mode execution model.

computing power [36, 37] in application transparent man-
ner. Also, we consider a convenient execution model where a
simulation object, which we denote as SOBJi, is temporar-
ily bound to a specific worker thread WTj along a given
wall-clock-time window. Hence the simulation objects can
be periodically migrated across the worker threads, e.g., for
load-sharing purposes.

On the basis of recent results in the design and devel-
opment of optimistic PDES platforms, such as [23], we as-
sume that the PDES system runs according to a dual-mode
scheme where we distinguish between application vs platform
modes. When a worker thread dispatches some simulation
object for execution, then the application mode is entered.
When the dispatched application callback function returns
control to the underlying PDES environment along the run-
ning thread we (re)enter platform mode. With no loss of
generality we assume that any worker thread WTj has a no-
tion of current simulation object, indicating the identity of
the simulation object that has been dispatched for applica-
tion execution along the thread.

Still in compliance with recent results in the area of multi-
thread optimistic PDES platforms, we consider the scenario
where the live state of a simulation object, its recoverability
data, and its input and output queues are manipulated by
a single worker thread at a time, namely the worker thread
to which the object is currently bound. As a result, any
event record (or anti-event record) exchanged across differ-
ent simulation objects is never directly inserted into the des-
tination queue. Rather, it is posted on a bottom-half queue,
and later extracted and manipulated by the correct thread,
namely the one in charge of running the destination simula-
tion object. Also, we consider a software architecture where
memory allocation/deallocation services by the application
code are not directly issued towards the standard malloc li-
brary. Instead, they are transparently intercepted by the
underlying PDES environment and redirected to proper al-
locators. As shown in [25], this can be achieved by simple
compile/link time directives, where dynamic memory APIs,
as well as third party libraries linked to the application code,
can be wrapped so as to bounce control back to the under-
lying environment upon any call to these API functions.

According to the above premise, we target the scenario
depicted in Figure 1 where:

• whenever the application code calls a standard-library
memory management API (such the malloc service),
the underlying environment can detect which is the
invoking simulation object;

• the platform layer can perform non-anonymous mem-
ory allocation/deallocation operations where the plat-
form internal API for these operations is aware of which

simulation object is associated with the operation. Par-
ticularly, the function get_new_buffer(int sobj_id,

size_t size) can be invoked so that buffer alloca-
tion will be executed selectively, on the basis of the
identity of the simulation object for which data need
to be stored. A malloc call by the application, ul-
timately intercepted by the platform layer, is served
via a non-anonymous allocation operation in a trans-
parent way to the application. Also, a platform level
allocation, e.g. of some event buffer destined to keep
data for a specific simulation object, is also executed
non-anonymously.

3.2 Memory Allocator
As pointed out before, we operate in a context where the

platform layer allocates memory (either for platform usage
or for application usage) by relying on some allocation ser-
vice get_new_buffer that is non-anonymous. The actual
implementation of this service can be disparate. For conve-
nience we resort on the open-source DyMeLoR allocator [33]
for actual allocation of memory destined to the application,
which is based on pre-allocation of large memory segments
(originally via the actual malloc library), which are then
logically partitioned into chunks. This allocator, besides
delivering memory for usage by the caller, has also facili-
ties for keeping the memory map of non-anonymously allo-
cated chunks for a specific simulation object (via compact
bitmaps) and making it recoverable. Hence it is well suited
for serving memory requests originally issued by the appli-
cation code, which give rise to memory layouts of the simu-
lation objects that need to be made recoverable at past log-
ical time values. We also developed a variant of DyMeLoR
where recoverability data structures are fully removed. This
variant is used in our final architecture to serve memory al-
locations/deallocations for platform level usage (which do
not need to be made recoverable). However, we note that
the actual NUMA memory management architecture we are
presenting can be integrated with other kinds of user-level
allocators. In fact the NUMA manager acts as the final
(back-end) memory allocation service for the adopted user-
level allocator.

Essentially, our NUMA manager can pre-reserve memory
segments to be delivered to the overlying (user-level) chunk
allocator. This is done non-anonymously, in fact the NUMA
manager exposes a segment allocation function void* al-

locate_segment(int sobj, size_t size), to be used for
pre-reserving memory that will ultimately be used for man-
aging chunks (hence data) associated with a specific simu-
lation object. The overlying user-level allocator can install
whatever information onto the segments, such as meta-data
for managing the free room within the same segment (just
like the malloc library does after pre-reserving memory from
the operating system).

Pre-reserving is supported via the POSIX mmap system-
call, which allows for validating in the process memory map
a set of contiguous virtual pages, whose global size com-
plies with the size of the segment allocation request. The
NUMA allocator keeps, for each simulation object, a meta-
data record mem_map which records the following fields:

void* base;

size_t size;

int active;

mem_map

one instance for each

simulation object

size

active
base

<address,numpages>

actual contiguous virtual

memory pages for the segment

segment table

Figure 2: mem_map data structures.

where base is a pointer to a non-anonymous segment table,
size indicates how many entries are currently present in the
table, and active indicates how many of these entries are
currently valid. The scheme is shown in Figure 2. Each time
a new segment allocation is requested, the first free entry
in the segment table associated with a specific simulation
object is reserved, and after the mmap service is called the
entry is used to keep the tuple 〈address, numpages〉 indi-
cating the actual address of the sequence of pages that have
been validated by the underlying operating system, and the
total number of these pages. In case the segment table gets
exhausted it is simply reallocated (again via mmap) with dou-
bled size. On the other hand, in case a segment previously
allocated is released, then the busy entries in the segment
table are re-compacted at the top of the table by copying
the last valid entry into the one of the released segment.
This allows for O(1) time complexity for segment alloca-
tion/deallocation (except for the cases where the table needs
to be resized).

Overall, as shown in Figure 3, anytime some worker thread
needs to allocate a buffer for platform level usage, which is
destined to keep input or output events of a specific sim-
ulation object, or which is needed to record recoverabil-
ity data for the simulation object state (namely a check-
point), the get_new_buffer interface of the DyMeLoR user-
level allocator (particularly the variant not keeping alloca-
tion/deallocation recoverability data) is called, and an ac-
tual buffer is delivered by this allocator which will nec-
essarily reside on a non-anonymous segment pre-reserved
by DyMeLoR. The same happens when the platform level
software issues a call to the get_new_buffer service after
having intercepted a malloc call issued from the applica-
tion, particularly from the current simulation object dis-
patched along the worker thread (with the only difference
that the instance of DyMeLoR is this time the one keep-
ing allocation/deallocation recoverability data). Hence also
the chunks belonging to the live state of the simulation ob-
ject will be actually located on a non-anonymous memory
segment.

By the above architectural organization, the NUMAmem-
ory manager guarantees that the set of virtual memory pages
destined to keep event buffers, live state and recoverability
data for any individual simulation object is actually dis-
joint from the set of virtual memory pages used for storing

<address,numpages>

application mode

platform mode

malloc

<address,numpages>

get_new_buffer

get_new_buffer

original

DyMeLoR

installed

on this

segment
DyMeLoR

variant

(no recoverability

data)

installed

on this

segment

allocation for internal usage

�event-buffers or log-buffers�

segment table

Figure 3: Memory allocation for platform and ap-

plication usage.

data associated with other simulation objects hosted by the
multi-thread PDES system.

Let us now discuss the aspect of how these virtual memory
pages are allocated on the different NUMA nodes. As well
known, once a memory segment is allocated by the NUMA
manager via the mmap system-call, its pages do not actually
exist in physical memory (they are referred to as empty-zero)
and will be allocated only upon a real access by the software
(these are the so called minor-faults in operating system ter-
minology). Modern operating system kernels, such as Linux
2.6.18 (or later versions) expose system-calls driving the ac-
tual allocation of pages onto NUMA nodes, e.g., upon the
occurrence of minor faults. Particularly, the set_mempolicy
system-call allows to specify the rules according to which
the allocation of virtual to physical memory needs to be car-
ried out. In our design, this system-call is employed upon
starting up the NUMA manager in order to post a strict
binding policy so that empty-zero memory is materialized
on the NUMA node associated with the CPU-core where
the memory access is performed. This policy, together with
the memory access rules we consider, such that the memory
pages destined for keeping data (chunks) associated with
a specific simulation object are only accessed by the worker
thread to which the object is bound, leads the physical mem-
ory allocation to occur on the NUMA node associated with
the CPU-core where the thread is running.

The above management rules well fit scenarios where the
worker thread is statically bound to a specific CPU-core
(such as when running with the sched_setaffinity service
posted) and the simulation objects are statically bound to a
specific worker thread. How to cope with dynamic scenar-
ios where these constraints are not met will be discussed in
Section 3.4.

3.3 Management of Data Exchange
Clearly, page-disjoint access by the worker threads to the

chunks hosting data for the different simulation objects can
be guaranteed for input/output event queues, for the live
state of the object and for state recoverability data. However
it cannot be guaranteed when we need to exchange events
(or anti-events) across the different simulation object. In
order to provide effective NUMA-oriented support for the
exchange operation of events across different simulation ob-

jects, we provide a NUMA-oriented implementation of the
scheme originally described in [37], based on the bottom-half
paradigm.

In particular, when a worker thread needs to post a new
event/antievent having with destination SOBJk, no direct
access to the event queue of the target object is performed.
In fact, in case the memory pages keeping the records of the
event queue of SOBJk were located on a different NUMA
node, the access (for scanning records and correctly installing
the new one) might be costly. Rather, the event is posted
on an intermediate queue (the bottom-half queue of SOBJk)
and the actual incorporation into the recipient event queue
will be carried out by the worker thread in charge of running
SOBJk (which will access close memory while manipulating
the queue). The NUMA-oriented optimization lies in that
the bottom-half queue is guaranteed to be hosted by the
NUMA node where the destination object (hence thread)
operates.

More in detail, the mem_map data structure (recall that
an individual instance of this data structure is associated
with any simulation object) previously presented has been
augmented with the additional fields:

void* live_bh;

int live_msgs;

int live_boundary;

where live_bh points to a page aligned buffer that is used
as the buffer for hosting the exchanged events, live_msgs is
the counter of currently available messages into the bottom-
half buffer, and live_boundary is the offset (into the buffer)
where free room is available for additional events to be sent
towards the destination (2). The pages forming the bottom-
half buffer are allocated again via the mmap system-call, hence
we guarantee that the different bottom-half queues are lo-
cated on disjoint sets of memory pages for the different sim-
ulation objects. Overall, all the worker threads sending an
event (or anti-event) towards a specific simulation object
will deliver the information on specific memory pages re-
served for the bottom-half queue of the destination. On the
other hand, the bottom-half pages are materialized (namely
they switch off the empty-zero state) upon their first access,
which can take place by whichever worker thread (running
on whichever NUMA node). Hence on the basis of the em-
ployed operating system memory policies, depicted in the
previous section, the bottom-half queue pages will not nec-
essarily reside on the NUMA node where the thread hosting
the destination simulation object is running. The realign-
ment (if requested) of these pages on the correct NUMA
nodes will be dealt with in Section 3.4, where we cope with
the mechanisms for (dynamically) migrating pages across
the different NUMA nodes.

Overall, with our architecture we guarantee that the pages
forming the bottom-half buffer associated with a specific
simulation object will reside (or will be migrated to) the
NUMA node where the worker thread, say WTj, managing
this object is running. Hence the read operations by WTj

for reading the messages and incorporating the content into
the destination object event queues will occur from close
memory. This will not penalize the event-send operations
by the other threads (possibly operating in different NUMA
nodes) given that the NUMA architecture is not adverse to

2The reason why we use the term live in the names of the
data structures will be clarified later in this same section.

memory writes on remote NUMA nodes (thanks to the fact
that writes occur into the cache) rather, they are adverse to
reads (in case these are not served via cached data).

An additional optimization has been introduced in or-
der not to hamper concurrency in the management of the
bottom-half queue. In fact, given that multiple worker threads
can concurrently send data towards the same destination
simulation object, any insertion of an element in the bottom-
half queue must occur in a critical section (protected by
spin-locks in our implementation). The same would be true
for the reads from the bottom half, in case the bottom-half
buffer would be handled as a circular buffer. To avoid ex-
plicitly synchronizing read and write operations onto the
bottom-half queue, we extended the bottom-half queue sup-
port by having two different bottom-half buffers. One is the
live buffer (as illustrated above) which is managed via the
aforementioned fields kept by the mem_map record. A second
one is the expired buffer, which is a clone of the live one,
in terms of implementation and data structures. The read
operations occur from the expired buffer (and given that
they are carried out by a single worker thread, namely the
one managing the destination simulation object, they are not
subject to concurrency problems), while the write operations
occur into the live one. Each time a read operation is issued
on an empty expired buffer, live and expired buffers are ex-
changed (so as to give rise to a new era of their usage), which
occurs in a fast critical section, e.g., by switching the respec-
tive pointers to the actual buffers. In this way, we do not
need to synchronize reads with writes (except for the start
of a new era), rather only write operations need to occur in
critical sections. Also, a dynamic resize mechanism is em-
ployed so that when a new era is started, and the occupancy
in the bottom-half buffers exceeds a threshold percentage,
then these buffers enlarged by reallocating them (still via
mmap), which allows resizing the memory used for in transit
messages across different worker threads depending on the
frequency of messages arrival towards specific destinations.

3.4 The Page Migration Daemon
A core additional component complementing the above

presented memory management architecture is the page mi-
gration daemon, which we refer to as pagemigd. This dae-
mon, which runs as a set of CPU non-intrusive threads, is in
charge of periodically moving the memory pages associated
with the memory map of a specific simulation object to a
target NUMA node. The work by this daemon is based on an
additional data structure, which we name map_move, instan-
tiated on a per-simulation object basis. This data structure
has the following fields:

pthread_spinlock_t spinlock;

unsigned target_node;

int need_move;

where need_move indicates whether a request to migrate
the whole memory map associated with a given simulation
object has been posted, and (if posted) target_node indi-
cates the target NUMA node for the move operation. The
spinlock field is used to make the access to this data struc-
ture atomic, and to make atomic also the actual move of
the memory map towards the target node (in case a move
has been requested). The move request can be posted to
the daemon via the function void move_sobj(int sobj_id,

unsigned target_node), which can be called by the worker

<address,numpages>

map�move

spinlock

target�node

need�move

addresses[] taget�nodes��

segment table
move�pages

�inux kernel

flag triggering the move

of all the valid segments

by the daemon one instance for each

simulation object

Figure 4: Segment migration operation.

threads operating with the PDES platform. In case a move
request is found to be posted (i.e. the flag need_move is
found to be raised), pagemigd accesses the mem_map data
structure associated with the object to move, and migrates
(one after another) all the currently active segments, namely
the ones registered within the segment table of that simula-
tion object. As already pointed out, a valid entry provides
the initial address of the segment of contiguous pages to be
moved, and the number of these pages. Hence, being the
page size fixed on the target architecture and operating sys-
tem (say 4KB), the address of any page belonging to a given
segment is also known (in fact it is determined on the basis
of a simple offset rule from the segment start address).

The actual move of the pages belonging to an individual
segment is carried out by invoking the move_pages system
call which is supported in Linux starting from kernel 2.6.18.
Among other parameters, this system call takes as input
two arrays, one is the array of virtual addresses of pages
to be moved, the second one is the array telling to which
NUMA nodes the pages need to be moved. Hence, the actual
activities for moving the segment towards the target NUMA
node are the ones schematized in Figure 4.

We underline that the support for the move_pages system-
call in the Linux kernel logically treats the move of an indi-
vidual page from a NUMA node to another one as a couple of
swap-out/swap-in operations (but with no mandatory inter-
action with stable storage). Particularly, the page logically
disappears from memory (namely from the origin node) and
is then faulted-in towards the target node. In case some
worker thread issues a memory access to a page that is cur-
rently being moved, then the access is treated similarly to a
minor fault, hence at low cost. On the other hand, in case
the access occurs after the page move has already been final-
ized, then no fault occurs along the execution of the worker
thread. Also, empty-zero pages are ignored by the kernel,
hence using the above approach leads to pay no cost for
virtual memory that is actually not yet allocated in RAM.

Other aspects deserving attention in the above organi-
zation is related to migrating the pages reserved for the
bottom-half queues. Recall that these pages are not reg-
istered within the segment table associated with the simula-
tion object, rather they are directly accessible via the meta
data kept by the mem_map record. In particular, pagemigd

always attempts to move these pages towards the last value
registered in target_node for a specific simulation object,
independently of whether the need_move flag is raised. This

is because, as pointed out before, these pages can be ma-
terialized as non-empty-zero on generic NUMA nodes, de-
pending on which worker thread issued the first access to
the bottom-half buffer (i.e. to any generic page of that
buffer) while sending events/anti-events to the destination
simulation object. Issuing the move request periodically via
pagemigd allows the pages hosting the bottom-half queue
to be promptly migrated towards the correct NUMA node
(even if originally allocated on a different node). On the
other hand, in case these pages are already located on the
correct node, the move_pages system-call will simply return
by ignoring the move operation, thus inducing minimal over-
head for useless calls.

In our design, the operation of moving the pages hosting
the bottom-half queues does not lock the spinlock in the
map_move data structure, and is executed in full concurrency
with the actual access to the bottom-half buffers by the
worker threads. To allow safe access to the addresses of the
pages forming these buffers, the pagemigd daemon does not
use the live_bh and the expired_bh pointers in the mem_map
data structure. In fact, these are switched (although infre-
quently, namely at the start of a new era for the bottom-half
buffers usage) and would need to be accessed atomically for
correct determination of the page address. To overcome this
issue, as shown in Figure 5 these addresses are duplicated
at startup and recorded in two stable pointers in the array
bh_addresses[]. The only situations in which these point-
ers are changed is when dynamic resize of the bottom-half
buffers is carried out (as hinted, this occurs when a threshold
occupancy is reached). The resize implies that the buffers
are reallocated via mmap so that the bh_addresses[] are up-
dated. Given that the pagemigd daemon uses the pointers
stored in bh_addresses[] to issue the page move request to
the kernel for migrating the pages forming the bottom-half
buffers towards the target NUMA node, a fast critical sec-
tion (implemented via CAS instructions) is used in order to
lock the content of bh_addresses[] so that any resize oper-
ation leads to temporary block the page move action up to
the finalization of the bh_addresses[] content.

Overall, the spinlock in the map_move data structure is
only used for (i) avoiding races when posting new move re-
quests towards pagemigd, (ii) avoiding that the segment ta-
ble is changed while a move is in progress. In fact, each time
the upper level allocator, say DyMeLoR, pre-allocates mem-
ory (or releases) memory segments, this operation blocks the
spinlock associated with the memory map so as to prevent
the pagemigd daemon to scan the segment table while it is
being modified.

Summarizing, the presence of pagemigd allows the whole
NUMA-oriented architecture to:

• dynamically rebind the pages keeping the data (event
buffers, live state, and recoverability information) of
any simulation object to the NUMA node that is clos-
est to the CPU-core where the worker thread managing
the simulation object runs, which is useful both when
the migration of an object from a worker thread to an-
other one is performed (e.g. for load-sharing purposes
[36]) and when the worker threads are switched across
CPU-cores operating in different NUMA nodes;

• dynamically move the pages used for data exchange
towards the NUMA node where the destination sim-
ulation object of the data is hosted (given that the

mem_map

one instance for each

simulation object
e�pired_bh

bh_addresses[]

live_bh

pages for bottom

half queues

pointers switched

upon a new era

stable pointers

Figure 5: Data structures for bottom-half queues

maintenance and migration.

worker thread managing it runs on a CPU-core close
to that NUMA node).

As a final aspect, our pagemoved is not forced to be ex-
ecuted as a single non-CPU intrusive thread. Rather the
number of threads Num_pagemoved forming the daemon (as
well as their wake-up period) can be selected at startup
of the NUMA memory management architecture. Each of
these threads is in charge of checking the request for migra-
tion, and of actually migrating, a subset of the simulation
objects (selected according to a balanced hashing scheme
based on thread identifiers). The reason for this kind of load-
sharing across multiple page-migration threads is twofold.
First, if a move request is standing, it will more likely be
observed promptly after the thread wake-up from the sleep
period. Second, avoiding to perform the whole migration
work along a single thread leads to avoiding the pagemigd

daemon (although being CPU non-intensive) to interfere in
a highly unbalanced manner with the worker threads oper-
ating in the PDES environment, rather, upon their periodic
wake-up, all the pagemigd threads will lead to (more) pro-
portionally slow down the worker threads, which allows not
to increase the skew in the advancement of the simulation
objects along the logical time axis [39]. Consequently, this
approach likely not favors the generation of additional roll-
backs due to the pagemigd daemon interfering work-load.

4. EXPERIMENTAL STUDY
As hinted, we have integrated all our solutions into the

ROme OpTimistic Simulator (ROOT-Sim) [24, 22, 17], an
optimistic simulation platform based on the Time Warp
protocol [18] and tailored for UNIX-like systems. ROOT-

Sim is designed to be a general-purpose platform, that can
support any kind of discrete event model developed by ad-
hering to a very simple and intuitive programming model
(in fact, the platform transparently handles all the mecha-
nisms associated with parallelization and synchronization).
Particularly, the programmer is only requested to code the
logic implementing the callback entry points to the appli-
cation code, whose execution is triggered by the underly-
ing ROOT-Sim platform along any worker thread right upon
CPU-dispatching the execution of some event targeting a
specific object, or when inspecting some newly committed
state of the simulation object. Also the programmer can

use a very simple API offered by ROOT-Sim for injecting
new events in the system, destined to whichever simulation
object.

The hardware architecture used for running the experi-
ments is a 64-bit NUMA machine, namely an HP ProLiant
server, equipped with four 2GHz AMD Opteron 6128 pro-
cessors and 64 GB of RAM. Each processor has 8 cores (for
a total of 32 cores) that share a 12MB L3 cache (6 MB per
each 4-cores set), and each core has a 512KB private L2
cache. The operating system is 64-bit Debian 6, with Linux
Kernel version 2.6.32.5. The compiling and linking tools
used are gcc 4.3.4 and binutils (as and ld) 2.20.0. Also, the
architecture entails 8 different NUMA nodes, each one close
(distance 10) to 4 CPU-cores and far (distance 20) from all
the others.

As a test-bed application, we have used traffic. This appli-
cation simulates a complex highway system (at a single car
granularity), where the topology is a generic graph, in which
nodes represent cities or junctions and edges represent the
actual highways. Every node is described in terms of car
inter-arrival time and car leaving probability, while edges
are described in terms of their length. At startup phase, the
simulation model is asked to distribute the highway’s topol-
ogy on a given number of simulation objects. Every object
therefore handles the simulation of a node or a portion of a
segment, the length of which depends on the total highway’s
length and the number of available simulation objects.

Cars enter the system according to an Erlang probabil-
ity distribution, with a mean inter-arrival time specified (for
each node) in the topology configuration file. They can join
the highway starting from cities/junctions only, and are later
directed towards highway segments with a uniform probabil-
ity. In case a car, after having traversed part of the highway,
enters a new junction, according to a certain probability
(again specified in the configuration file) it decides whether
to leave the highway. Whenever a car is received from any
simulation object, it is enqueued into a list of traversing
cars, and its speed (for the particular object it is entering
in) is determined according to a Gaussian probability dis-
tribution, the mean and the variance of which are specified
at startup time. Then, the model computes the time the
car will need to traverse the node, adding traffic slowdowns
which are again computed according to a Gaussian distribu-
tion. In particular, the probability of finding a traffic jam is
a function of the number of cars which are currently passing
through the node. A LEAVE event is scheduled towards the
same simulation object at the computed time. Additionally,
when a car is enqueued, the whole list of records associated
with cars is scanned, in order to update their position in the
queue, which reflects updates on the relative positions of the
cars along the path they are traversing. Note that this does
not involve time stepped execution of the simulation model.

Accidents are derived according to a probability function
as well. In particular, they are more likely to occur when
the amount of cars traversing the highway portion modeled
by a simulation object is about half of the cars which can be
hosted altogether. In fact, if few cars are in, accidents are
less frequent. Similarly, if there are many, the traffic factor
produces a speed slowdown, thus reducing the likelihood
of an accident to occur. Therefore, the model discretizes
a Normal distribution, computing the Cumulative Density
Function in a contour defined as cars in the node± 1

2
, having

as the mean half of the total number of cars which are at the

current moment in the system, and as the variance a factor
which can be specified at startup. The total number of cars
which can be hosted by a simulation object is computed
according to the actual length of the simulated road, which is
determined when the model is initialized. When an accident
occurs, the cars are not allowed to leave the path portion
modeled by the corresponding simulation object, until the
road is freed. In fact, if a LEAVE event is received, but its
execution is associated with a car involved in an accident,
the record associated with the car is not removed from the
queue. Rather, its leave time is updated according to the
accident’s durations, and a new LEAVE event is scheduled.
The duration of an accident phase is determined according
to a Gaussian distribution, the mean and the variance of
which are again specified at startup.

During the scan of the queue entries, with a certain small
probability (specified at startup), a car decides to stop for
a certain amount of time (e.g. for fuel recharge). This is
reflected by setting a special flag in the record, and a du-
ration for the stop is drawn from a Gaussian distribution.
In this case, if a LEAVE event is received associated with a
stopped car, the behavior of the model is the same as in the
case of an accident. During a queue scan, if a stopped car
expires its stop time, the relevant flag is reset, so that the
next LEAVE event will allow it to exit from the path portion
modeled by the current simulation object.

In our execution, we have simulated the whole Italian
highway network. We have discarded the highways segments
in the islands in order to simulate an undirected connected
graph, which allows to have the actual workload migrating
overall the highway. The topology has been derived from [4],
and the traffic parameters have been tuned according to the
measurements provided in [5]. The average speed has been
set to 110 Km/h, with a variance of 20 Km/h, and accident
durations have been set to 1 hour, with 30 minutes variance.
This model has provided results which are statistically close
to the real measurements provided in [1]. Overall, the used
application is a real world one, that we have produced in
cooperation with colleagues from Logistic Engineering such
in a way to provide support to decision making processes
(such as scheduling of delivery services across the country).
We consider this application benchmark to be significant
for showing how our proposed NUMA memory management
architecture is able to capture the differentiated memory
access patterns, and react via proper migration of memory
pages towards the most access-intensive NUMA nodes.

For this benchmark application, we report performance
data when running according to differentiated modes. In
one mode, the Italian highway has been modeled via 137
simulation objects (individually handling up to 130 Km) in
a configuration fairly balanced and stable in terms of work-
load by the different simulation objects, which is achieved
by having the traffic parameters set to simulate scenarios
where jams due to, e.g., accidents are very infrequent. This
configuration does not require dynamic re-mapping of the
simulation objects across the 32 worker threads operating
within the ROOT-Sim platform in order to achieve competi-
tive parallel executions3. For this balanced case, we compare

3In all the experiments, the worker threads are run with
CPU-affinity setup, which is the classical approach for avoid-
ing cross CPU-core migration of highly CPU intensive ap-
plications, which may induce overhead. As a reflection, any
worker thread constantly operates on a specific NUMA node.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

120
60 45

Ex
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Car Interarrival Time (simulated seconds)

Sequential
glibc-based

NUMA no daemons
NUMA with daemons

Figure 6: Balanced configuration: total execution

time.

the execution time achieved with (i) a traditional sequential
execution (carried out on top of a properly-optimized sched-
uler based on a Calendar-Queue [6]), (ii) a parallel execution
relying on memory management based on the standard glibc

library, and (iii) a parallel execution relying on our NUMA
memory management architecture. The sequential execu-
tion is a baseline one, which allows us to verify the level of
speedup achievable via parallel runs. On the other hand, the
glibc-based parallel run is a reference one allowing us to as-
sess the effectiveness of the ad-hoc NUMA-oriented memory
management support for Time Warp (when compared with
standard memory allocation and management facilities).

In Figure 6, we provide the execution times for such bal-
anced configuration of the traffic application, while vary-
ing the car inter-arrival time. Specifically, we have set all
the source nodes (namely, all the junctions) in the high-
way topology to have a inter-arrival time set to 120 (less
loaded), to 60, and to 45 (more loaded), respectively. Also,
for the NUMA-oriented memory management architecture,
we have considered two different settings. In one we do not
activate pagemoved daemons. In the other one we set the
number of pagemoved daemons to 32 (one per each CPU-
core), and we set an aggressive activation period for them of
one second. This produces a high interference with the ac-
tual simulation work carried out by the worker threads, and
furthermore it provides no actual benefit, as the number of
page migrations required is extremely low, due to the bal-
anced nature of the workload. Overall, we consider a kind
of worst case configuration for the parallel runs given the
relatively reduced workload (in terms of cars to be managed
per virtual time unit), which tends not to favor speedup by
parallel executions, and also leads to reduced efficiency in
optimistic synchronization, given the fine granularity of the
events. The worst case profile for NUMA is further related
to interference by the pagemigd daemons (in case they are
activated).

By the results, we see that the parallel runs provide any-
how speedup vs the sequential execution, which increases
while increasing the workload. On the other hand, the per-
formance achieved by our NUMA-oriented memory manager
is up to 27% better than the one of the glibc configuration
in case no pagemigd daemons are activated, and up to 20%
better in case these daemons are activated. This is a rele-

 2
 3

 4
 5

 6
 7
 8

 9
 10

D
eam

on A
ctivation Interval

 0 5 10 15 20 25 30 35

Number of Parallel Daemons

 28
 29
 30
 31
 32
 33
 34

 35
 36
 37

S
p
e
e
d
u
p

Figure 7: Unbalanced configuration: speedup of the

NUMA memory manager vs sequential execution.

 2
 3

 4
 5

 6
 7
 8

 9
 10

D
eam

on A
ctivation Interval

 0 5 10 15 20 25 30 35

Number of Parallel Daemons

 4

 4.5

 5

 5.5

 6

S
p
e
e
d
u
p

Figure 8: Unbalanced Configuration: speedup of the

NUMA memory manager with daemons vs with no-

daemon.

vant achievement when considering that the maximum effi-
ciency (namely, the percentage of work that is not eventually
rolled back) which has been observed in the optimistic par-
allel runs is on the order of 65% (this is achieved when the
car inter-arrival time is set to 45 simulated seconds, which
gives rise to an increased simulation workload compared to
the other configurations, with consequent increase of the av-
erage event granularity), which means that the ROOT-Sim

Time Warp system is actually executing significant volumes
of memory operations (allocation/deallocation and accesses)
for either forward and rollback modes, which allows assessing
the dynamics of our NUMA-oriented memory manager (vs
glibc) according to a relatively wide spectrum of memory re-
lated activities. Also, the actual rollback pattern seems not
to be significantly influenced by the interference caused by
the pagemigd daemons, given that they lead to a reduction
in performance (compared to the NUMA-oriented memory
manager with no daemons) which is upper bounded by 10%.

In Figures 7-9 we report results related to a different con-
figuration of the traffic application, where the volume of
cars managed is greater (particularly, the car inter-arrival
frequency is derived from [5]), and where we consequently
get the possibility of accidents to occur according to the
aforementioned statistical distribution. This gives rise to
dynamic unbalance of the workload across the simulation ob-
jects, such that the dynamic re-balance of the actual work-
load on the computing platform is actuated by ROOT-Sim

according to the simulation-object-to-worker-thread migra-
tion policy presented in [35]. Also, for this scenario we im-
prove the level of granularity of the representation of the
Italian highway by increasing the total number of simula-

tion objects to 1024 (hence each object simulates a shorter
potion of the highway, which allows for a finer grain repre-
sentation of the –relative– movement of vehicles). Therefore,
this configuration allows us to assess whether the page mi-
gration facility embedded in our NUMA memory manager
is able to promptly respond to variations of the workload
and to the rebinding of the simulation objects towards the
worker threads (hence to the variations of the memory ac-
cess pattern by these threads). Additionally, in order to
study how the pagemigd daemons’ activation frequency and
interference affects the overall execution, we have varied the
number of parallel daemons in the interval [4, 32], and the
activation frequency in the interval [2, 10] seconds.

By the results we see that the speedup achieved by the
parallel run based our NUMA memory management archi-
tecture vs the sequential run (see Figure 7) is up to the order
of 37 (this is achieved with a few pagemoved daemons, acti-
vated relatively frequently), and is at least on the order of
28/30 (for any other suboptimal configuration of the dae-
mons, in terms of their number of instances and activation
frequency). These higher speedup values, as compared to
the balanced configuration of traffic are clearly due to the
higher granularity of simulation events, which comes from
the higher workload of cars that are simulated. As for the
peak speedup configuration, we might expect it to appear
in the actual observed point given that, as hinted before,
accidents duration is set to the average value of 1 simulated
hour, which leads to the scenario where each new imbal-
ance persists for a limited amount of wall-clock-time. Hence
frequent activation of even a few page move daemons repre-
sents a configuration that is able to promptly react to the
re-balance phase and to promptly put in place a new RAM
optimized placement of virtual memory pages. Also, running
with pagemigd daemons allows the NUMA architecture to
achieve up to 5.5 speedup compared to the case where the
daemons are not activated (see Figure 8), which is clearly
due to the fact that the migration of simulation objects for
re-balance purposes is not fully complemented by the mi-
gration of the associated virtual pages towards the correct
NUMA node in case of daemons’ exclusion. Finally, the
NUMA management architecture achieves up to 7x perfor-
mance improvements compared to the case where the glibc

library is used in combination with simulation object migra-
tions across the worker threads as supported by ROOT-Sim

(see Figure 9). In fact, the glibc memory manager exhibits
a twofold performance loss vs the NUMA-oriented memory
manager we have presented: (1) is does not ensure optimized
NUMA access (even for balanced workload, as we already
observed from data in Figure 6) – (2) it does not allow to
move pages across NUMA nodes in order to follow the migra-
tion of simulation objects across the different worker threads
(in their turn operating in the different NUMA zones). Both
the aspects are dealt with by our NUMA memory manage-
ment architecture, with relevant impact on performance im-
provements.

5. CONCLUSIONS
In this article we have presented a fully featured NUMA-

oriented memory management architecture to be employed
in Time Warp platforms running on top of multi-core ma-
chines. The architecture is based on NUMA specific allo-
cation facilities that allow all the virtual pages destined to
store application or platform level data bound to different

 2
 3

 4
 5

 6
 7
 8

 9
 10

D
eam

on A
ctivation Interval

 0 5 10 15 20 25 30 35

Number of Parallel Daemons

 5.6
 5.8

 6
 6.2
 6.4
 6.6

 6.8
 7

 7.2

S
p
e
e
d
u
p

Figure 9: Unbalanced configuration: speedup of the

NUMA memory manager with daemons vs glibc.

simulation objects (such as the object live state, its recov-
erability data and its events) to belong to disjoint sets of
pages. Also, the pages associated with each simulation ob-
ject are recorded onto proper memory maps that are also
managed by daemons that support dynamic page migra-
tion towards the correct NUMA zone any time this might
be requested for performance optimization purposes (such
has when migrating the simulation objects across different
worker threads for load balancing purposes). The NUMA
memory management architecture has been released as free
software and integrated in a reference open source Time
Warp platform. Further, experimental data are reported
in this article demonstrating its effectiveness for the case of
a real word simulation application (particularly, a vehicular
network simulation application) run in top of an off-the-shelf
32 CPU-core Linux machine equipped with 64 GB of RAM.

6. REFERENCES
[1] ACI. Dati e statistiche. http://www.aci.it/?id=54 (last

accessed: May 12, 2015).

[2] I. F. Akyildiz, L. Chen, S. R. Das, R. Fujimoto, and
R. F. Serfozo. Performance analysis of “Time Warp”
with limited memory. In Proceedings of the
International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS),
Newport, Rhode Island, USA, June 1-5, 1992, pages
213–224, ACM Press, 1992.

[3] I. F. Akyildiz, L. Chen, S. R. Das, R. Fujimoto, and
R. F. Serfozo. The effect of memory capacity on Time
Warp performance. Journal of Parallel and Distributed
Computing, 18(4):411–422, 1993.

[4] AUTOMAP. Atlante stradale italia.
http://www.automap.it/ (last accessed: May 12, 2015).

[5] Autostrade per L’Italia S.p.A. Reportistica sul
traffico. http://www.autostrade.it/it/la-nostra-
rete/dati-traffico/reportistica-sul-traffico (last accessed:
May 12, 2015).

[6] R. Brown. Calendar queues: a fast O(1) priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31(10):1220–1227, 1988.

[7] C. D. Carothers, D. W. Bauer, and S. Pearce. ROSS:
A high-performance, low-memory, modular Time
Warp system. Journal of Parallel and Distributed
Computing, 62(11):1648–1669, 2002.

[8] C. D. Carothers, K. S. Perumalla, and R. Fujimoto.
The effect of state-saving in optimistic simulation on a
cache-coherent non-uniform memory access

architecture. In Proceedings of the Winter Simulation
Conference (WSC), Phoenix, AZ, USA, December 5-8,
1999, pages 1624–1633, SCS, 1999.

[9] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto.
Efficient optimistic parallel simulations using reverse
computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, july 1999.

[10] M. Chetlur and P. A. Wilsey. Causality information
and fossil collection in Time Warp simulations. In
Proceedings of the Winter Simulation Conference
(WSC), Monterey, California, USA, December 3-6,
2006, pages 987–994, SCS, 2006.

[11] S. R. Das and R. Fujimoto. An adaptive memory
management protocol for Time Warp simulation. In
Proceesings of the Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS),
Vanderbilt University, Nashville, Tennessee, USA,
May 16-20, pages 201–210, ACM Press, 1994.

[12] S. R. Das and R. M. Fujimoto. A performance study of
the cancelback protocol for Time Warp. ACM SIGSIM
Simulation Digest, 23(1):135–142, ACM Press, 1993.

[13] S. R. Das and R. M. Fujimoto. Adaptive memory
management and optimism control in Time Warp.
ACM Transactions on Modeling and Computer
Simulation, 7(2):239–271, 1997.

[14] S. R. Das and R. M. Fujimoto. An empirical
evaluation of performance-memory trade-offs in Time
Warp. IEEE Transactions on Parallel and Distributed
Systems, 8(2):210–224, 1997.

[15] R. M. Fujimoto and K. S. Panesar. Buffer
management in shared-memory time warp systems. In
Proceedings of the Ninth Workshop on Parallel and
Distributed Simulation (PADS), Lake Placid, New
York, USA, June 14-16, 1995, pages 149–156, IEEE
Computer Society, 1995.

[16] S. Hirve, R. Palmieri, and B. Ravindran. Archie: a
speculative replicated transactional system. In
Proceedings of the 15th International Middleware
Conference, Bordeaux, France, December 8-12, 2014,
pages 265–276, ACM Press, 2014.

[17] HPDCS Research Group. ROOT-Sim: The ROme
OpTimistic Simulator - v 1.0.
http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/ (last
accessed: May 12, 2015).

[18] D. R. Jefferson. Virtual Time. ACM Transactions on
Programming Languages and System, 7(3):404–425,
July 1985.

[19] D. R. Jefferson. Virtual Time II: storage management
in conservative and optimistic systems. In Proceedings
of the Ninth Annual ACM Symposium on Principles of
Distributed Computing (PODC), Quebec City, Quebec,
Canada, August 22-24, pages 75–89. ACM Press, 1990.

[20] P. D. B. Jr., C. D. Carothers, D. R. Jefferson, and
J. M. LaPre. Warp speed: executing Time Warp on
1,966,080 cores. In Procesing of the ACM SIGSIM
Conference on Principles of Advanced Discrete
Simulation, (SIGSIM-PADS), Montreal, QC, Canada,
May 19-22, 2013, pages 327–336, ACM Press, 2013.

[21] Y.-B. Lin and B. R. Preiss. Optimal memory
management for Time Warp parallel simulation. ACM
Transactions on Modeling and Computer Simulation,
1(4):283–307, 1991.

[22] A. Pellegrini and F. Quaglia. The ROme OpTimistic
Simulator: A tutorial (invited tutorial). In Proceedings
of the 1st Workshop on Parallel and Distributed
Agent-Based Simulations (PADABS), Aachen,
Germany, August 26-27, LNCS, Springer-Verlag,
pages 501–512, 2013.

[23] A. Pellegrini and F. Quaglia. Transparent multi-core
speculative parallelization of DES models with event
and cross-state dependencies. In Proceedings of the
ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (SIGSIM-PADS), Denver, CO,
USA, May 18-21, pages 105–116. ACM Press, May
2014.

[24] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme
OpTimistic Simulator: Core internals and
programming model. In Proceedings of the 4th
International ICST Conference on Simulation Tools
and Techniques (SIMUTools), Barcelona, Spain,
March 22-24, pages 96–98, ICST, 2011.

[25] A. Pellegrini, R. Vitali, and F. Quaglia. Autonomic
state management for optimistic simulation platforms.
IEEE Transactions on Parallel and Distributed
Systems (preprint), May 2014,
doi:10.1109/TPDS.2014.2323967.

[26] B. R. Preiss and W. M. Loucks. Memory management
techniques for Time Warp on a distributed memory
machine. In Proceedings of the Ninth Workshop on
Parallel and Distributed Simulation (PADS), Lake
Placid, New York, USA, June 14-16, pages 30–39,
IEEE Computer Society, 1995.

[27] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects
of the checkpoint interval on time and space in Time
Warp. ACM Transactions on Modeling and Computer
Simulation, 4(3):223–253, July 1994.

[28] F. Quaglia. A cost model for selecting checkpoint
positions in Time Warp parallel simulation. IEEE
Transactions on Parallel and Distributed Systems,
12(4):346–362, 2001.

[29] F. Quaglia and A. Santoro. Non-blocking
checkpointing for optimistic parallel simulation:
Description and an implementation. IEEE
Transactions on Parallel and Distributed Systems,
14(6):593–610, 2003.

[30] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and
L. Rodrigues. On speculative replication of
transactional systems. Journal of Computer and
System Sciences, 80(1):257–276, 2014.

[31] R. Rönngren, M. Liljenstam, R. Ayani, and
J. Montagnat. Transparent incremental state saving in
Time Warp parallel discrete event simulation. In
Proceedings of the 10th Workshop on Parallel and
Distributed Simulation (PADS), Philadelphia, PA,
USA, May 22-24, pages 70–77. IEEE Computer
Society, 1996.

[32] B. P. Swenson and G. F. Riley. A new approach to
zero-copy message passing with reversible memory
allocation in multi-core architectures. In Proceedings
of the 26th Workshop on Principles of Advanced and
Distributed Simulation (PADS), Zhangjiajie, China,
July 15-19, 2012, IEEE Computer Society, pages
44–52, 2012.

[33] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic
Memory Logger and Restorer library for optimistic
simulation objects with generic memory layout. In
Proceedings of the Workshop on Principles of
Advanced and Distributed Simulation (PADS), Roma,
Italy, June 3-6, 2008, pages 163–172. IEEE Computer
Society, 2008.

[34] R. Vitali, A. Pellegrini, and G. Cerasuolo.
Cache-aware memory manager for optimistic
simulations. In Proceedings of the International
Conference on Simulation Tools and Techniques
(SIMUTOOLS) Sirmione-Desenzano, Italy, March
19-23, 2012, pages 129–138, ICST, 2012.

[35] R. Vitali, A. Pellegrini, and F. Quaglia. A load
sharing architecture for optimistic simulations on
multi-core machines. In Proceedings of the 19th
International Conference on High Performance
Computing (HiPC), Pune, India, December 18-22,
2012, pages 1–10. IEEE Computer Society, 2012.

[36] R. Vitali, A. Pellegrini, and F. Quaglia. Load sharing
for optimistic parallel simulations on multi core
machines. SIGMETRICS Performance Evaluation
Review, 40(3):2–11, 2012.

[37] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Proceedings of the Workshop on Principles
of Advanced and Distributed Simulation (PADS),
Zhangjiajie, China, July 15-19, 2012, pages 211–220,
IEEE Computer Society, 2012.

[38] J. Wang, N. B. Abu-Ghazaleh, and D. Ponomarev.
Interference resilient PDES on multi-core systems:
towards proportional slowdown. In Proceedings of the
ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, (SIGSIM-PADS), Montreal, QC,
Canada, May 19-22, 2013, pages 115–126, ACM
Press, 2013.

[39] J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and
D. Ponomarev. Parallel discrete event simulation for
multi-core systems: Analysis and optimization. IEEE
Transactions on Parallel and Distributed Systems,
25(6):1574–1584, 2014.

[40] D. West and K. Panesar. Automatic incremental state
saving. In Proceedings of the Workshop on Parallel
and Distributed (PADS), Philadelphia, PA, USA, May
22-24, 1996, pages 78–85, IEEE Computer Society,
1996.

