450,188 research outputs found

    A neural information retreival approach for resume searching in a recruitment agency

    Get PDF
    Finding resumes that match a job description can be a daunting task for a recruitment agency, due to the fact that these agencies are dealing with hundreds of job descriptions and tens of thousands of resumes simultaneously. In this paper we explain a search method devised for a recruitment agency by measuring similarity between resume documents and job description documents. Document vectors are obtained via TF-IDF weights from word embeddings arising from a neural language model with a skip-gram loss function. We show that, with this approach, successful searches can be achieved, and that the number of skips assumed in the skip gram loss function determines how successful it can be for different job descriptions.peer-reviewe

    Handwriting recognition by using deep learning to extract meaningful features

    Full text link
    [EN] Recent improvements in deep learning techniques show that deep models can extract more meaningful data directly from raw signals than conventional parametrization techniques, making it possible to avoid specific feature extraction in the area of pattern recognition, especially for Computer Vision or Speech tasks. In this work, we directly use raw text line images by feeding them to Convolutional Neural Networks and deep Multilayer Perceptrons for feature extraction in a Handwriting Recognition system. The proposed recognition system, based on Hidden Markov Models that are hybridized with Neural Networks, has been tested with the IAM Database, achieving a considerable improvement.Work partially supported by the Spanish MINECO and FEDER founds under project TIN2017-85854-C4-2-R.Pastor Pellicer, J.; Castro-Bleda, MJ.; España Boquera, S.; Zamora-Martinez, FJ. (2019). Handwriting recognition by using deep learning to extract meaningful features. AI Communications. 32(2):101-112. https://doi.org/10.3233/AIC-170562S101112322Baldi, P., Brunak, S., Frasconi, P., Soda, G., & Pollastri, G. (1999). Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15(11), 937-946. doi:10.1093/bioinformatics/15.11.937LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Bertolami, R., & Bunke, H. (2008). Hidden Markov model-based ensemble methods for offline handwritten text line recognition. Pattern Recognition, 41(11), 3452-3460. doi:10.1016/j.patcog.2008.04.003Bianne-Bernard, A.-L., Menasri, F., Mohamad, R. A.-H., Mokbel, C., Kermorvant, C., & Likforman-Sulem, L. (2011). Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10), 2066-2080. doi:10.1109/tpami.2011.22C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.T. Bluche, H. Ney and C. Kermorvant, Feature extraction with convolutional neural networks for handwritten word recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, pp. 285–289.T. Bluche, H. Ney and C. Kermorvant, Tandem HMM with convolutional neural network for handwritten word recognition, in: 38th International Conference on Acoustics Speech and Signal Processing (ICASSP), 2013, pp. 2390–2394.T. Bluche, H. Ney and C. Kermorvant, A comparison of sequence-trained deep neural networks and recurrent neural networks optical modeling for handwriting recognition, in: Slsp-2014, 2014, pp. 1–12.H. Bourlard and N. Morgan, Connectionist Speech Recognition – A Hybrid Approach, Series in Engineering and Computer Science, Vol. 247, Kluwer Academic, 1994.Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114H. Bunke, Recognition of cursive roman handwriting – past, present and future, in: International Conference on Document Analysis and Recognition, Vol. 1, 2003, pp. 448–459.E. Caillault, C. Viard-Gaudin and A. Rahim Ahmad, MS-TDNN with global discriminant trainings, in: International Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 856–860.P. Doetsch, M. Kozielski and H. Ney, Fast and robust training of recurrent neural networks for offline handwriting recognition, in: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 279–284.P. Dreuw, P. Doetsch, C. Plahl and H. Ney, Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained Gaussian HMM: A comparison for offline handwriting recognition, in: International Conference on Image Processing (ICIP), 2011, pp. 3541–3544.Dreuw, P., Heigold, G., & Ney, H. (2011). Confidence- and margin-based MMI/MPE discriminative training for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR), 14(3), 273-288. doi:10.1007/s10032-011-0160-xEspaña-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F. (2011). Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4), 767-779. doi:10.1109/tpami.2010.141A. Graves, S. Fernández, F. Gomez and J. Schmidhuber, Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks, in: 23rd International Conference on Machine Learning (ICML), ACM, 2006, pp. 369–376.A. Graves and N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks, in: 31st International Conference on Machine Learning (ICML), 2014, pp. 1764–1772.Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/tpami.2008.137A. Graves and J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: International Joint Conference on Neural Networks (IJCNN), Vol. 4, 2005, pp. 2047–2052.A. Graves and J. Schmidhuber, Offline handwriting recognition with multidimensional recurrent neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 545–552.F. Grézl, M. Karafiát, S. Kontár and J. Černocký, Probabilistic and bottle-neck features for LVCSR of meetings, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol. 4, 2007.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Jaeger, S., Manke, S., Reichert, J., & Waibel, A. (2001). Online handwriting recognition: the NPen++ recognizer. International Journal on Document Analysis and Recognition, 3(3), 169-180. doi:10.1007/pl00013559M. Kozielski, P. Doetsch and H. Ney, Improvements in RWTH’s system for off-line handwriting recognition, in: 12th International Conference on Document Analysis and Recognition (ICDAR), IEEE, 2013, pp. 935–939.A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems (NIPS), F. Pereira, C.J.C. Burges, L. Bottou and K.Q. Weinberger, eds, Vol. 25, Curran Associates, Inc., 2012, pp. 1097–1105.Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791M. Liwicki, A. Graves, H. Bunke and J. Schmidhuber, A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks, in: 9th International Conference on Document Analysis and Recognition (ICDAR), 2007, pp. 367–371.Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071S. Marukatat, T. Artieres, R. Gallinari and B. Dorizzi, Sentence recognition through hybrid neuro-Markovian modeling, in: 6th International Conference on Document Analysis and Recognition (ICDAR), 2001, pp. 731–735.F.J. Och, Minimum error rate training in statistical machine translation, in: 41st Annual Meeting on Association for Computational Linguistics, ACL’03, Vol. 1, 2003, pp. 160–167.J. Pastor-Pellicer, S. España-Boquera, M.J. Castro-Bleda and F. Zamora-Martínez, A combined convolutional neural network and dynamic programming approach for text line normalization, in: 13th International Conference on Document Analysis and Recognition (ICDAR), 2015.J. Pastor-Pellicer, S. España-Boquera, F. Zamora-Martínez, M. Zeshan Afzal and M.J. Castro-Bleda, Insights on the use of convolutional neural networks for document image binarization, in: The International Work-Conference on Artificial Neural Networks, Vol. 9095, 2015, pp. 115–126.V. Pham, T. Bluche, C. Kermorvant and J. Louradour, Dropout improves recurrent neural networks for handwriting recognition, in: International Conference on Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 285–290.Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition: a survey. International Journal on Document Analysis and Recognition (IJDAR), 12(4), 269-298. doi:10.1007/s10032-009-0098-4A. Poznanski and L. Wolf, CNN-N-gram for HandwritingWord recognition, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2305–2314.Puigcerver, J. (2017). Are Multidimensional Recurrent Layers Really Necessary for Handwritten Text Recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). doi:10.1109/icdar.2017.20L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989.Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252. doi:10.1007/s11263-015-0816-yT.N. Sainath, B. Kingsbury and B. Ramabhadran, Auto-encoder bottleneck features using deep belief networks, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012, pp. 4153–4156.Sayre, K. M. (1973). Machine recognition of handwritten words: A project report. Pattern Recognition, 5(3), 213-228. doi:10.1016/0031-3203(73)90044-7Schenkel, M., Guyon, I., & Henderson, D. (1995). On-line cursive script recognition using time-delay neural networks and hidden Markov models. Machine Vision and Applications, 8(4), 215-223. doi:10.1007/bf01219589Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093A.W. Senior and A.J. Robinson, An off-line cursive handwriting recognition system, in: IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, 1998, pp. 309–321.E. Singer and R.P. Lippman, A speech recognizer using radial basis function neural networks in an HMM framework, in: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, IEEE, 1992, pp. 629–632.J. Stadermann, A hybrid SVM/HMM acoustic modeling approach to automatic speech recognition, in: International Conference on Spoken Language Processing (ICSLP), 2004.A. Stolcke, SRILM: An extensible language modeling toolkit, in: International Conference on Spoken Language Processing (ICSLP), 2002, pp. 901–904.C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–12.TOSELLI, A. H., JUAN, A., GONZÁLEZ, J., SALVADOR, I., VIDAL, E., CASACUBERTA, F., … NEY, H. (2004). INTEGRATED HANDWRITING RECOGNITION AND INTERPRETATION USING FINITE-STATE MODELS. International Journal of Pattern Recognition and Artificial Intelligence, 18(04), 519-539. doi:10.1142/s0218001404003344Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019J.M. Vilar, Efficient computation of confidence intervals for word error rates, in: International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 5101–5104.Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR). doi:10.1109/icfhr.2016.0052E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and Y. Wang, Intel math kernel library, in: High-Performance Computing on the Intel® Xeon Phi™, Springer, 2014, pp. 167–188.F. Zamora-Martínez et al., April-ANN Toolkit, a Pattern Recognizer in Lua, Artificial Neural Networks Module, 2013, https://github.com/pakozm/ [github.com]april-ann.Zamora-Martínez, F., Frinken, V., España-Boquera, S., Castro-Bleda, M. J., Fischer, A., & Bunke, H. (2014). Neural network language models for off-line handwriting recognition. Pattern Recognition, 47(4), 1642-1652. doi:10.1016/j.patcog.2013.10.020Zeyer, A., Beck, E., Schlüter, R., & Ney, H. (2017). CTC in the Context of Generalized Full-Sum HMM Training. Interspeech 2017. doi:10.21437/interspeech.2017-107

    Precise eye localization using HOG descriptors

    Full text link
    In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain the best pair of eyes among all possible combinations of preselected eyes. Finally, we compare the eye detection results with three state-of-the-art works and a commercial software. The results show that our algorithm achieves the highest accuracy on the FERET and FRGCv1 databases, which is the most complete comparative presented so far. © Springer-Verlag 2010.This work has been partially supported by the grant TEC2009-09146 of the Spanish Government.Monzó Ferrer, D.; Albiol Colomer, A.; Sastre, J.; Albiol Colomer, AJ. (2011). Precise eye localization using HOG descriptors. Machine Vision and Applications. 22(3):471-480. https://doi.org/10.1007/s00138-010-0273-0S471480223Riopka, T., Boult, T.: The eyes have it. In: Proceedings of ACM SIGMM Multimedia Biometrics Methods and Applications Workshop, Berkeley, CA, pp. 9–16 (2003)Kim C., Choi C.: Image covariance-based subspace method for face recognition. Pattern Recognit. 40(5), 1592–1604 (2007)Wang, P., Green, M., Ji, Q., Wayman, J.: Automatic eye detection and its validation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 3, San Diego, CA, pp. 164–171 (2005)Amir A., Zimet L., Sangiovanni-Vincentelli A., Kao S.: An embedded system for an eye-detection sensor. Comput. Vis. Image Underst. 98(1), 104–123 (2005)Zhu Z., Ji Q.: Robust real-time eye detection and tracking under variable lighting conditions and various face orientations. Comput. Vis. Image Underst. 98(1), 124–154 (2005)Huang, W., Mariani, R.: Face detection and precise eyes location. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Washington, DC, USA, pp. 722–727 (2000)Brunelli R., Poggio T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)Guan, Y.: Robust eye detection from facial image based on multi-cue facial information. In: Proceedings of IEEE International Conference on Control and Automation, pp. 1775–1778 (2007)Rizon, M., Kawaguchi, T.: Automatic eye detection using intensity and edge information. In: Proceedings of TENCON, vol. 2, Kuala Lumpur, Malaysia, pp. 415–420 (2000)Han, C., Liao, H., Yu, K., Chen, L.: Fast face detection via morphology-based pre-processing. In: Proceedings of the 9th International Conference on Image Analysis and Processing, vol. 2. Springer, London, UK, pp. 469–476 (1997)Song J., Chi Z., Liu J.: A robust eye detection method using combined binary edge and intensity information. Pattern Recognit. 39(6), 1110–1125 (2006)Campadelli, P., Lanzarotti, R., Lipori, G.: Precise eye localization through a general-to-specific model definition. In: Proceedings of the British Machine Vision Conference, Edinburgh, Scotland, pp. 187–196 (2006)Smeraldi F., Carmona O., Bign J.: Saccadic search with gabor features applied to eye detection and real-time head tracking. Image Vis. Comput. 18(4), 323–329 (1998)Sirohey S. A., Rosenfeld A.: Eye detection in a face image using linear and nonlinear filters. Pattern Recognit. 34(7), 1367–1391 (2001)Ma, Y., Ding, X., Wang, Z., Wang, N.: Robust precise eye location under probabilistic framework. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, pp. 339–344 (2004)Lu, H., Zhang, W., Yang D.: Eye detection based on rectangle features and pixel-pattern-based texture features. In: Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, pp. 746–749 (2007)Jin, L., Yuan, X., Satoh, S., Li, J., Xia, L.: A hybrid classifier for precise and robust eye detection. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, Hong Kong, pp. 731–735 (2006)Vapnik V. N.: The Nature of Statistical Learning Theory. Springer, New York Inc, New York, NY (1995)Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, Hawaii, pp. 511–518 (2001)Fasel I., Fortenberry B., Movellan J.: A generative framework for real time object detection and classification. Comput. Vis. Image Underst. 98(1), 182–210 (2005)Huang J., Wechsler H.: Visual routines for eye location using learning and evolution. IEEE Trans. Evolut. Comput. 4(1), 73–82 (2000)Behnke S.: Face localization and tracking in the neural abstraction pyramid. Neural Comput. Appl. 14(2), 97–103 (2005)Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 9th European Conference on Computer Vision, vol. 2, San Diego, CA, pp. 886–893 (2005)Albiol A., Monzo D., Martin A., Sastre J., Albiol A.: Face recognition using hog-ebgm. Pattern Recognit. Lett. 29(10), 1537–1543 (2008)Lowe D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)Bicego, M., Lagorio, A., Grosso, E., Tistarelli M.: On the use of SIFT features for face authentication. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition Workshop, New York, p. 35 (2006)Yang M.-H., Kriegman D., Ahuja N.: Detecting faces in images: a survey. Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)Jain A., Murty M., Flynn P.: Data clustering: a review. ACM Comput. Syst. 31(3), 264–323 (1999)Mikolajczyk K., Schmid C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)Humanscan, BioID database. http://www.bioid.comPeer, P.: CVL Face database, University of Ljubjana. http://www.fri.uni-lj.si/enPhillips P. J., Moon H., Rizvi S. A., Rauss P. J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Jin, C., Hoffman, K., Marques, J., Jaesik, M., Worek, W.: Overview of the face recognition grand challenge. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, San Diego, CA, pp. 947–954 (2005)Jesorsky, O., Kirchberg, K.J., Frischholz, R.: Robust face detection using the hausdorff distance. In: Proceedings of the Third International Conference on Audio- and Video-Based Biometric Person Authentication, Springer, London, UK, pp. 90–95 (2001)Neurotechnologija, Biometrical and Artificial Intelligence Technologies, Verilook SDK. http://www.neurotechnologija.comWitten I., Frank E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn: Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)Turk M., Pentland A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991

    Querying out-of-vocabulary words in lexicon-based keyword spotting

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2197-8[EN] Lexicon-based handwritten text keyword spotting (KWS) has proven to be a faster and more accurate alternative to lexicon-free methods. Nevertheless, since lexicon-based KWS relies on a predefined vocabulary, fixed in the training phase, it does not support queries involving out-of-vocabulary (OOV) keywords. In this paper, we outline previous work aimed at solving this problem and present a new approach based on smoothing the (null) scores of OOV keywords by means of the information provided by ``similar'' in-vocabulary words. Good results achieved using this approach are compared with previously published alternatives on different data sets.This work was partially supported by the Spanish MEC under FPU Grant FPU13/06281, by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMA-MATER, and through the EU Projects: HIMANIS (JPICH programme, Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, grant Ref. 674943).Puigcerver, J.; Toselli, AH.; Vidal, E. (2016). Querying out-of-vocabulary words in lexicon-based keyword spotting. Neural Computing and Applications. 1-10. https://doi.org/10.1007/s00521-016-2197-8S110Almazan J, Gordo A, Fornes A, Valveny E (2013) Handwritten word spotting with corrected attributes. In: 2013 IEEE international conference on computer vision (ICCV), pp 1017–1024. doi: 10.1109/ICCV.2013.130Amengual JC, Vidal E (2000) On the estimation of error-correcting parameters. In: Proceedings 15th international conference on pattern recognition, 2000, vol 2, pp 883–886Fernández D, Lladós J, Fornés A (2011) Handwritten word spotting in old manuscript images using a pseudo-structural descriptor organized in a hash structure. In: Vitri'a J, Sanches JM, Hern'andez M (eds) Pattern recognition and image analysis: Proceedings of 5th Iberian Conference, IbPRIA 2011, Las Palmas de Gran Canaria, Spain, June 8–10. Springer, Berlin, Heidelberg, pp 628–635. doi: 10.1007/978-3-642-21257-4_78Fischer A, Keller A, Frinken V, Bunke H (2012) Lexicon-free handwritten word spotting using character HMMs. Pattern Recognit Lett 33(7):934–942. doi: 10.1016/j.patrec.2011.09.009 Special Issue on Awards from ICPR 2010Fornés A, Frinken V, Fischer A, Almazán J, Jackson G, Bunke H (2011) A keyword spotting approach using blurred shape model-based descriptors. In: Proceedings of the 2011 workshop on historical document imaging and processing, pp 83–90. ACMFrinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224. doi: 10.1109/TPAMI.2011.113Gatos B, Pratikakis I (2009) Segmentation-free word spotting in historical printed documents. In: 10th International conference on document analysis and recognition, 2009. ICDAR’09, pp 271–275. IEEEJelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer Society, Los Alamitos, CA, USA. doi: http://doi.ieeecomputersociety.org/10.1109/ICASSP.1995.479394Kolcz A, Alspector J, Augusteijn M, Carlson R, Popescu GV (2000) A line-oriented approach to word spotting in handwritten documents. Pattern Anal Appl 3:153–168. doi: 10.1007/s100440070020Konidaris T, Gatos B, Ntzios K, Pratikakis I, Theodoridis S, Perantonis SJ (2007) Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. Int J Doc Anal Recognit 9(2–4):167–177Kumar G, Govindaraju V (2014) Bayesian active learning for keyword spotting in handwritten documents. In: 2014 22nd International conference on pattern recognition (ICPR), pp 2041–2046. IEEELevenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10(8):707–710Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMarti UV, Bunke H (2002) The IAM-database: an English sentence database for offline handwriting recognition. Int J Doc Anal Recognit 5(1):39–46. doi: 10.1007/s100320200071Puigcerver J, Toselli AH, Vidal E (2014) Word-graph and character-lattice combination for KWS in handwritten documents. In: 14th International conference on frontiers in handwriting recognition (ICFHR), pp 181–186Puigcerver J, Toselli AH, Vidal E (2014) Word-graph-based handwriting keyword spotting of out-of-vocabulary queries. In: 22nd International conference on pattern recognition (ICPR), pp 2035–2040Puigcerver J, Toselli AH, Vidal E (2015) A new smoothing method for lexicon-based handwritten text keyword spotting. In: 7th Iberian conference on pattern recognition and image analysis. SpringerRath T, Manmatha R (2007) Word spotting for historical documents. Int J Doc Anal Recognit 9:139–152Robertson S. (2008) A new interpretation of average precision. In: Proceedings of the international. ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACM, New York, NY, USA. doi: http://doi.acm.org/10.1145/1390334.1390453Rodriguez-Serrano JA, Perronnin F (2009) Handwritten word-spotting using hidden markov models and universal vocabularies. Pattern Recognit 42(9):2106–2116. doi: 10.1016/j.patcog.2009.02.005 . http://www.sciencedirect.com/science/article/pii/S0031320309000673Rusinol M, Aldavert D, Toledo R, Llados J (2011) Browsing heterogeneous document collections by a segmentation-free word spotting method. In: International conference on document analysis and recognition (ICDAR), pp 63–67. doi: 10.1109/ICDAR.2011.22Shang H, Merrettal T (1996) Tries for approximate string matching. IEEE Trans Knowl Data Eng 8(4):540–547Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR), pp 501–505Toselli AH, Vidal E (2014) Word-graph based handwriting key-word spotting: impact of word-graph size on performance. In: 11th IAPR international workshop on document analysis systems (DAS), pp 176–180. IEEEToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politécnica de ValénciaVidal E, Toselli AH, Puigcerver J (2015) High performance query-by-example keyword spotting using query-by-string techniques. In: 2015 13th International conference on document analysis and recognition (ICDAR), pp 741–745. IEEEWoodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76. doi: 10.1109/ICASSP.1995.479276Wshah S, Kumar G, Govindaraju V (2012) Script independent word spotting in offline handwritten documents based on hidden markov models. In: 2012 International conference on frontiers in handwriting recognition (ICFHR), pp 14–19. doi: 10.1109/ICFHR.2012.26

    Word graphs size impact on the performance of handwriting document applications

    Full text link
    [EN] Two document processing applications are con- sidered: computer-assisted transcription of text images (CATTI) and Keyword Spotting (KWS), for transcribing and indexing handwritten documents, respectively. Instead of working directly on the handwriting images, both of them employ meta-data structures called word graphs (WG), which are obtained using segmentation-free hand- written text recognition technology based on N-gram lan- guage models and hidden Markov models. A WG contains most of the relevant information of the original text (line) image required by CATTI and KWS but, if it is too large, the computational cost of generating and using it can become unafordable. Conversely, if it is too small, relevant information may be lost, leading to a reduction of CATTI or KWS performance. We study the trade-off between WG size and performance in terms of effectiveness and effi- ciency of CATTI and KWS. Results show that small, computationally cheap WGs can be used without loosing the excellent CATTI and KWS performance achieved with huge WGs.Work partially supported by the Generalitat Valenciana under the Prometeo/2009/014 Project Grant ALMAMATER, by the Spanish MECD as part of the Valorization and I+D+I Resources program of VLC/CAMPUS in the International Excellence Campus program, and through the EU projects: HIMANIS (JPICH programme, Spanish Grant Ref. PCIN-2015-068) and READ (Horizon-2020 programme, Grant Ref. 674943).Toselli ., AH.; Romero Gómez, V.; Vidal, E. (2017). Word graphs size impact on the performance of handwriting document applications. Neural Computing and Applications. 28(9):2477-2487. https://doi.org/10.1007/s00521-016-2336-2S24772487289Amengual JC, Vidal E (1998) Efficient error-correcting Viterbi parsing. IEEE Trans Pattern Anal Mach Intell 20(10):1109–1116Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR system for English and Arabic. IEEE Trans Pattern Anal Mach Intell 21(6):495–504Erman L, Lesser V (1990) The HEARSAY-II speech understanding system: a tutorial. Readings in Speech Reasoning, pp 235–245Evermann G (1999) Minimum word error rate decoding. Ph.D. thesis, Churchill College, University of CambridgeFischer A, Wuthrich M, Liwicki M, Frinken V, Bunke H, Viehhauser G, Stolz M (2009) Automatic transcription of handwritten medieval documents. In: 15th international conference on virtual systems and multimedia, 2009. VSMM ’09, pp 137–142Frinken V, Fischer A, Manmatha R, Bunke H (2012) A novel word spotting method based on recurrent neural networks. IEEE Trans Pattern Anal Mach Intell 34(2):211–224Furcy D, Koenig S (2005) Limited discrepancy beam search. In: Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05, pp 125–131Granell E, Martínez-Hinarejos CD (2015) Multimodal output combination for transcribing historical handwritten documents. In: 16th international conference on computer analysis of images and patterns, CAIP 2015, chap, pp 246–260. Springer International PublishingHakkani-Tr D, Bchet F, Riccardi G, Tur G (2006) Beyond ASR 1-best: using word confusion networks in spoken language understanding. Comput Speech Lang 20(4):495–514Jelinek F (1998) Statistical methods for speech recognition. MIT Press, CambridgeJurafsky D, Martin JH (2009) Speech and language processing: an introduction to natural language processing, speech recognition, and computational linguistics, 2nd edn. Prentice-Hall, Englewood CliffsKneser R, Ney H (1995) Improved backing-off for N-gram language modeling. In: International conference on acoustics, speech and signal processing (ICASSP ’95), vol 1, pp 181–184. IEEE Computer SocietyLiu P, Soong FK (2006) Word graph based speech recognition error correction by handwriting input. In: Proceedings of the 8th international conference on multimodal interfaces, ICMI ’06, pp 339–346. ACMLowerre BT (1976) The harpy speech recognition system. Ph.D. thesis, Pittsburgh, PALuján-Mares M, Tamarit V, Alabau V, Martínez-Hinarejos CD, Pastor M, Sanchis A, Toselli A (2008) iATROS: a speech and handwritting recognition system. In: V Jornadas en Tecnologías del Habla (VJTH’2008), pp 75–78Mangu L, Brill E, Stolcke A (2000) Finding consensus in speech recognition: word error minimization and other applications of confusion networks. Comput Speech Lang 14(4):373–400Manning CD, Raghavan P, Schutze H (2008) Introduction to information retrieval. Cambridge University Press, New YorkMohri M, Pereira F, Riley M (2002) Weighted finite-state transducers in speech recognition. Comput Speech Lang 16(1):69–88Odell JJ, Valtchev V, Woodland PC, Young SJ (1994) A one pass decoder design for large vocabulary recognition. In: Proceedings of the workshop on human language technology, HLT ’94, pp 405–410. Association for Computational LinguisticsOerder M, Ney H (1993) Word graphs: an efficient interface between continuous-speech recognition and language understanding. IEEE Int Conf Acoust Speech Signal Process 2:119–122Olivie J, Christianson C, McCarry J (eds) (2011) Handbook of natural language processing and machine translation. Springer, BerlinOrtmanns S, Ney H, Aubert X (1997) A word graph algorithm for large vocabulary continuous speech recognition. Comput Speech Lang 11(1):43–72Padmanabhan M, Saon G, Zweig G (2000) Lattice-based unsupervised MLLR for speaker adaptation. In: ASR2000-automatic speech recognition: challenges for the New Millenium ISCA Tutorial and Research Workshop (ITRW)Pesch H, Hamdani M, Forster J, Ney H (2012) Analysis of preprocessing techniques for latin handwriting recognition. In: International conference on frontiers in handwriting recognition, ICFHR’12, pp 280–284Povey D, Ghoshal A, Boulianne G, Burget L, Glembek O, Goel N, Hannemann M, Motlicek P, Qian Y, Schwarz P, Silovsky J, Stemmer G, Vesely K (2011) The Kaldi speech recognition toolkit. In: IEEE 2011 workshop on automatic speech recognition and understanding. IEEE Signal Processing SocietyPovey D, Hannemann M, Boulianne G, Burget L, Ghoshal A, Janda M, Karafiat M, Kombrink S, Motlcek P, Qian Y, Riedhammer K, Vesely K, Vu NT (2012) Generating Exact Lattices in the WFST Framework. In: IEEE international conference on acoustics, speech, and signal processing (ICASSP)Rabiner L (1989) A tutorial of hidden Markov models and selected application in speech recognition. Proc IEEE 77:257–286Robertson S (2008) A new interpretation of average precision. In: Proceedings of the international ACM SIGIR conference on research and development in information retrieval (SIGIR ’08), pp 689–690. ACMRomero V, Toselli AH, Rodríguez L, Vidal E (2007) Computer assisted transcription for ancient text images. Proc Int Conf Image Anal Recogn LNCS 4633:1182–1193Romero V, Toselli AH, Vidal E (2012) Multimodal interactive handwritten text transcription. Series in machine perception and artificial intelligence (MPAI). World Scientific Publishing, SingaporeRybach D, Gollan C, Heigold G, Hoffmeister B, Lööf J, Schlüter R, Ney H (2009) The RWTH aachen university open source speech recognition system. In: Interspeech, pp 2111–2114Sánchez J, Mühlberger G, Gatos B, Schofield P, Depuydt K, Davis R, Vidal E, de Does J (2013) tranScriptorium: an European project on handwritten text recognition. In: DocEng, pp 227–228Saon G, Povey D, Zweig G (2005) Anatomy of an extremely fast LVCSR decoder. In: INTERSPEECH, pp 549–552Strom N (1995) Generation and minimization of word graphs in continuous speech recognition. In: Proceedings of IEEE workshop on ASR’95, pp 125–126. Snowbird, UtahTanha J, de Does J, Depuydt K (2015) Combining higher-order N-grams and intelligent sample selection to improve language modeling for Handwritten Text Recognition. In: ESANN 2015 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning, pp 361–366Toselli A, Romero V, i Gadea MP, Vidal E (2010) Multimodal interactive transcription of text images. Pattern Recogn 43(5):1814–1825Toselli A, Romero V, Vidal E (2015) Word-graph based applications for handwriting documents: impact of word-graph size on their performances. In: Paredes R, Cardoso JS, Pardo XM (eds) Pattern recognition and image analysis. Lecture Notes in Computer Science, vol 9117, pp 253–261. Springer International PublishingToselli AH, Juan A, Keysers D, Gonzlez J, Salvador I, Ney H, Vidal E, Casacuberta F (2004) Integrated handwriting recognition and interpretation using finite-state models. Int J Pattern Recogn Artif Intell 18(4):519–539Toselli AH, Vidal E (2013) Fast HMM-Filler approach for key word spotting in handwritten documents. In: Proceedings of the 12th international conference on document analysis and recognition (ICDAR’13). IEEE Computer SocietyToselli AH, Vidal E, Romero V, Frinken V (2013) Word-graph based keyword spotting and indexing of handwritten document images. Technical report, Universitat Politècnica de ValènciaUeffing N, Ney H (2007) Word-level confidence estimation for machine translation. Comput Linguist 33(1):9–40. doi: 10.1162/coli.2007.33.1.9Vinciarelli A, Bengio S, Bunke H (2004) Off-line recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans Pattern Anal Mach Intell 26(6):709–720Weng F, Stolcke A, Sankar A (1998) Efficient lattice representation and generation. In: Proceedings of ICSLP, pp 2531–2534Wessel F, Schluter R, Macherey K, Ney H (2001) Confidence measures for large vocabulary continuous speech recognition. IEEE Trans Speech Audio Process 9(3):288–298Wolf J, Woods W (1977) The HWIM speech understanding system. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP ’77, vol 2, pp 784–787Woodland P, Leggetter C, Odell J, Valtchev V, Young S (1995) The 1994 HTK large vocabulary speech recognition system. In: International conference on acoustics, speech, and signal processing (ICASSP ’95), vol 1, pp 73 –76Young S, Odell J, Ollason D, Valtchev V, Woodland P (1997) The HTK book: hidden Markov models toolkit V2.1. Cambridge Research Laboratory Ltd, CambridgeYoung S, Russell N, Thornton J (1989) Token passing: a simple conceptual model for connected speech recognition systems. Technical reportZhu M (2004) Recall, precision and average precision. Working Paper 2004–09 Department of Statistics and Actuarial Science, University of WaterlooZimmermann M, Bunke H (2004) Optimizing the integration of a statistical language model in hmm based offline handwritten text recognition. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 2, pp 541–54

    Using latent features for short-term person re-identification with RGB-D cameras

    Full text link
    This paper presents a system for people re-identification in uncontrolled scenarios using RGB-depth cameras. Compared to conventional RGB cameras, the use of depth information greatly simplifies the tasks of segmentation and tracking. In a previous work, we proposed a similar architecture where people were characterized using color-based descriptors that we named bodyprints. In this work, we propose the use of latent feature models to extract more relevant information from the bodyprint descriptors by reducing their dimensionality. Latent features can also cope with missing data in case of occlusions. Different probabilistic latent feature models, such as probabilistic principal component analysis and factor analysis, are compared in the paper. The main difference between the models is how the observation noise is handled in each case. Re-identification experiments have been conducted in a real store where people behaved naturally. The results show that the use of the latent features significantly improves the re-identification rates compared to state-of-the-art works.The work presented in this paper has been funded by the Spanish Ministry of Science and Technology under the CICYT contract TEVISMART, TEC2009-09146.Oliver Moll, J.; Albiol Colomer, A.; Albiol Colomer, AJ.; Mossi García, JM. (2016). Using latent features for short-term person re-identification with RGB-D cameras. Pattern Analysis and Applications. 19(2):549-561. https://doi.org/10.1007/s10044-015-0489-8S549561192http://kinectforwindows.org/http://www.gpiv.upv.es/videoresearch/personindexing.htmlAlbiol A, Albiol A, Oliver J, Mossi JM (2012) Who is who at different cameras. Matching people using depth cameras. Comput Vis IET 6(5):378–387Bak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using haar-based and dcd-based signature. In: 2nd workshop on activity monitoring by multi-camera surveillance systems, AMMCSS 2010, in conjunction with 7th IEEE international conference on advanced video and signal-based surveillance, AVSS. AVSSBak S, Corvee E, Bremond F, Thonnat M (2010) Person re-identification using spatial covariance regions of human body parts. In: Seventh IEEE international conference on advanced video and signal based surveillance. pp. 435–440Bak S, Corvee E, Bremond F, Thonnat M (2011) Multiple-shot human re-identification by mean riemannian covariance grid. In: Advanced video and signal-based surveillance. Klagenfurt, Autriche. http://hal.inria.fr/inria-00620496Baltieri D, Vezzani R, Cucchiara R, Utasi A, BenedeK C, Szirányi T (2011) Multi-view people surveillance using 3d information. In: ICCV workshops. pp. 1817–1824Barbosa BI, Cristani M, Del Bue A, Bazzani L, Murino V (2012) Re-identification with rgb-d sensors. In: First international workshop on re-identificationBasilevsky A (1994) Statistical factor analysis and related methods: theory and applications. Willey, New YorkBäuml M, Bernardin K, Fischer k, Ekenel HK, Stiefelhagen R (2010) Multi-pose face recognition for person retrieval in camera networks. In: International conference on advanced video and signal-based surveillanceBazzani L, Cristani M, Perina A, Farenzena M, Murino V (2010) Multiple-shot person re-identification by hpe signature. In: Proceedings of the 2010 20th international conference on pattern recognition. Washington, DC, USA, pp. 1413–1416Bird ND, Masoud O, Papanikolopoulos NP, Isaacs A (2005) Detection of loitering individuals in public transportation areas. IEEE Trans Intell Transp Syst 6(2):167–177Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, SecaucusCha SH (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1(4):300–307Cheng YM, Zhou WT, Wang Y, Zhao CH, Zhang SW (2009) Multi-camera-based object handoff using decision-level fusion. In: Conference on image and signal processing. pp. 1–5Dikmen M, Akbas E, Huang TS, Ahuja N (2010) Pedestrian recognition with a learned metric. In: Asian conference in computer visionDoretto G, Sebastian T, Tu P, Rittscher J (2011) Appearance-based person reidentification in camera networks: problem overview and current approaches. J Ambient Intell Humaniz Comput 2:1–25Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by symmetry-driven accumulation of local features. In: Proceedings of the 2010 IEEE computer society conference on computer vision and pattern recognition (CVPR 2010). IEEE Computer Society, San Francisco, CA, USAFodor I (2002) A survey of dimension reduction techniques. Technical report. Lawrence Livermore National LaboratoryFreund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969Gandhi T, Trivedi M (2006) Panoramic appearance map (pam) for multi-camera based person re-identification. Advanced Video and Signal Based Surveillance, IEEE Conference on, p. 78Garcia J, Gardel A, Bravo I, Lazaro J (2014) Multiple view oriented matching algorithm for people reidentification. Ind Inform IEEE Trans 10(3):1841–1851Gheissari N, Sebastian TB, Hartley R (2006) Person reidentification using spatiotemporal appearance. CVPR 2:1528–1535Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of IEEE international workshop on performance evaluation for tracking and surveillance (PETS)Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Proceedings of the 10th european conference on computer vision: part I. Berlin, pp. 262–275 (2008)Ilin A, Raiko T (2010) Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res 99:1957–2000Javed O, Shafique O, Rasheed Z, Shah M (2008) Modeling inter-camera space–time and appearance relationships for tracking across non-overlapping views. Comput Vis Image Underst 109(2):146–162Kai J, Bodensteiner C, Arens M (2011) Person re-identification in multi-camera networks. In: Computer vision and pattern recognition workshops (CVPRW), 2011 IEEE computer society conference on, pp. 55–61Kuo CH, Huang C, Nevatia R (2010) Inter-camera association of multi-target tracks by on-line learned appearance affinity models. Proceedings of the 11th european conference on computer vision: part I, ECCV’10. Springer, Berlin, pp 383–396Lan R, Zhou Y, Tang YY, Chen C (2014) Person reidentification using quaternionic local binary pattern. In: Multimedia and expo (ICME), 2014 IEEE international conference on, pp. 1–6Loy CC, Liu C, Gong S (2013) Person re-identification by manifold ranking. In: icip. pp. 3318–3325Madden C, Cheng E, Piccardi M (2007) Tracking people across disjoint camera views by an illumination-tolerant appearance representation. Mach Vis Appl 18:233–247Mazzon R, Tahir SF, Cavallaro A (2012) Person re-identification in crowd. Pattern Recogn Lett 33(14):1828–1837Oliveira IO, Souza Pio JL (2009) People reidentification in a camera network. In: Eighth IEEE international conference on dependable, autonomic and secure computing. pp. 461–466Papadakis P, Pratikakis I, Theoharis T, Perantonis SJ (2010) Panorama: a 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2–3):177–192Prosser B, Zheng WS, Gong S, Xiang T (2010) Person re-identification by support vector ranking. In: Proceedings of the British machine vision conference. BMVA Press, pp. 21.1–21.11Roweis S (1998) Em algorithms for pca and spca. In: Advances in neural information processing systems. MIT Press, Cambridge, pp. 626–632 (1998)Pedagadi S, Orwell J, Velastin S, Boghossian B (2013) Local fisher discriminant analysis for pedestrian re-identification. In: CVPR. pp. 3318–3325Satta R, Fumera G, Roli F (2012) Fast person re-identification based on dissimilarity representations. Pattern Recogn Lett, Special Issue on Novel Pattern Recognition-Based Methods for Reidentification in Biometric Context 33:1838–1848Tao D, Jin L, Wang Y, Li X (2015) Person reidentification by minimum classification error-based kiss metric learning. Cybern IEEE Trans 45(2):242–252Tipping ME, Bishop CM (1999) Probabilistic principal component analysis. J R Stat Soc Ser B 61:611–622Tisse CL, Martin L, Torres L, Robert M (2002) Person identification technique using human iris recognition. In: Proceedings of vision interface, pp 294–299Vandergheynst P, Bierlaire M, Kunt M, Alahi A (2009) Cascade of descriptors to detect and track objects across any network of cameras. Comput Vis Image Underst, pp 1413–1416Verbeek J (2009) Notes on probabilistic pca with missing values. Technical reportWang D, Chen CO, Chen TY, Lee CT (2009) People recognition for entering and leaving a video surveillance area. In: Fourth international conference on innovative computing, information and control. pp. 334–337Zhang Z, Troje NF (2005) View-independent person identification from human gait. Neurocomputing 69:250–256Zhao T, Aggarwal M, Kumar R, Sawhney H (2005) Real-time wide area multi-camera stereo tracking. In: IEEE computer society conference on computer vision and pattern recognition. pp. 976–983Zheng S, Xie B, Huang K, Tao D (2011) Multi-view pedestrian recognition using shared dictionary learning with group sparsity. In: Lu BL, Zhang L, Kwok JT (eds) ICONIP (3), Lecture notes in computer science, vol 7064. Springer, New York, pp. 629–638Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance comparison. In: Computer vision and pattern recognition (CVPR), 2011 IEEE conference on. pp. 649–65

    Integration of perceptal grouping and depth

    Get PDF
    International Conference on Pattern Recognition (ICPR), 2000, Barcelona (España)Different data acquisition methods are tailored at extracting particular characteristics from a scene and by combining their results a more robust scene description can be created. A method to fuse perceptual groupings extracted from color-based segmentation and depth information from stereo using supervised classification is presented. The merging of data from these two acquisition modules allows for a spatially coherent blend of smooth regions and detail in an image. Depth cues are used to limit the area of interest in the scene and to improve perceptual grouping solving subsegmentation and oversegmentation of the original images. The complexity of the algorithm does not exceed that of the individual acquisition modules. The resulting scene description can then be fed to an object recognition modules for scene interpretation.This work was supported by the project 'Active vision systems based in automatic learning for industrial applications' ().Peer Reviewe
    corecore