12 research outputs found

    The internal caustic structure of illuminated liquid droplets

    Get PDF
    The internal electric field of an illuminated liquid droplet is studied in detail using both wave theory and ray theory. The internal field obtains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye series expansion of the interior field Mie amplitudes is used to calculate the wave theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given

    Internal Caustic Structure of Illuminated Liquid Droplets

    Get PDF
    The internal electric field of an illuminated liquid droplet is studied in detail with the use of both wave theory and ray theory. The internal field attains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye-series expansion of the interior-field Mie amplitudes is used to calculate the wave-theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given

    Internal Caustic Structure of Illuminated Liquid Droplets

    Get PDF
    The internal electric field of an illuminated liquid droplet is studied in detail with the use of both wave theory and ray theory. The internal field attains its maximum values on the caustics within the droplet. Ray theory is used to determine the equations of these caustics and the density of rays on them. The Debye-series expansion of the interior-field Mie amplitudes is used to calculate the wave-theory version of these caustics. The physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid droplet is then given

    Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    Get PDF
    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented

    Semiclassical Scattering of an Electric Dipole Source Inside a Spherical Particle

    Get PDF
    Semiclassical scattering phenomena appearing in the far-zone scattered intensity of a point source of electromagnetic radiation inside a spherical particle are examined in the context of both ray theory and wave theory, and the evolution of the phenomena is studied as a function of source position. A number of semiclassical effects that do not occur for plane-wave scattering by the sphere appear prominently for scattering by an interior source. These include a series of scattering resonances and a new family of rainbows in regions of otherwise total internal reflection. Diffractive effects accompanying the semiclassical phenomena are also examined. (C) 2001 Optical Society of America

    Semiclassical Scattering of an Electric Dipole Source Inside a Spherical Particle

    Get PDF
    Semiclassical scattering phenomena appearing in the far-zone scattered intensity of a point source of electromagnetic radiation inside a spherical particle are examined in the context of both ray theory and wave theory, and the evolution of the phenomena is studied as a function of source position. A number of semiclassical effects that do not occur for plane-wave scattering by the sphere appear prominently for scattering by an interior source. These include a series of scattering resonances and a new family of rainbows in regions of otherwise total internal reflection. Diffractive effects accompanying the semiclassical phenomena are also examined. (C) 2001 Optical Society of America

    Ray Scattering by an Arbitrarily Oriented Spheroid: 2. Transmission and Cross-polarization Effects

    Get PDF
    Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are: (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays

    Ray Scattering by an Arbitrarily Oriented Spheroid .II. Transmission and Cross-Polarization Effects

    Get PDF
    Transmission of an arbitrarily polarized plane wave by an arbitrarily oriented spheroid in the short-wavelength limit is considered in the context of ray theory. The transmitted electric field is added to the diffracted plus reflected ray-theory electric field that was previously derived to obtain an approximation to the far-zone scattered intensity in the forward hemisphere. Two different types of cross-polarization effects are found. These are (a) a rotation of the polarization state of the transmitted rays from when they are referenced with respect to their entrance into the spheroid to when they are referenced with respect to their exit from it and (b) a rotation of the polarization state of the transmitted rays when they are referenced with respect to the polarization state of the diffracted plus reflected rays. (C) 1996 Optical Society of Americ

    Contribution of High-Order Rainbows to the Scattering of a Gaussian Laser Beam by a Spherical Particle

    Get PDF
    I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the details for constructing a computer program to implement the theory. Computational results indicate that if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is incident near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth-order rainbow

    Assessing the Contributions of Surface Waves and Complex Rays to Far-Field Mie Scattering by Use of the Debye Series

    Get PDF
    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye-series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with those of the Debye series. Interference effects among surface waves, complex rays, and geometrical rays are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface-wave-geometrical-ray-interference pattern are presented
    corecore