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Internal caustic structure of illuminated liquid droplets
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The internal electric field of an illuminated liquid droplet is studied in detail with the use of both wave theory
and ray theory. The internal field attains its maximum values on the caustics within the droplet. Ray theory
is used to determine the equations of these caustics and the density of rays on them. The Debye-series expan-
sion of the interior-field Mie amplitudes is used to calculate the wave-theory version of these caustics. The
physical interpretation of the sources of stimulated Raman scattering and fluorescence emission within a liquid
droplet is then given.

1. INTRODUCTION
When a spherical liquid droplet is illuminated by a light
source, the light is partially focused inside the droplet,
forming patterns of caustic lines. Our purpose in this
paper is to analyze these patterns by using a reformula-
tion of Mie theory. One limitation of Mie theory is that it
often gives little physical insight as to the origins of vari-
ous scattering effects. As an alternative, ray theory
often provides physical insight into the scattering process.
However, ray calculations are imcomplete and do not take
into account wavelike phenomena such as diffraction and
interference. The gap between Mie theory and ray theory
can be bridged with the use of the Debye-series expan-
sion. The Debye series rearranges the Mie equations into
an infinite series of internal reflection and transmission
terms. Since the Debye series is mathematically equiva-
lent to the Mie equations, it is exact and accounts for
all the mechanisms that produce scattering. Its useful-
ness comes from the calculation of the individual terms of
the series because they are analogous to reflected and
transmitted light rays. These terms of the Debye series
provide the physical insight into the origin of the caustic
patterns inside the spherical droplet.

This paper represents the first time to our knowledge
that the Debye series has been used to study in detail the
interior scattering pattern of illuminated liquid droplets.
In this paper we also make use of the full Mie theory, as
well as ray theory, to analyze the internal caustic struc-
ture of a liquid droplet. The results of stimulated Raman
scattering (SRS) and fluorescence emission experiments
are investigated as well, and the physical mechanisms that
produce the sources of SRS and fluorescence in the
droplet are determined with the use of the above analyti-
cal methods.

2. RAY THEORY OF THE CAUSTICS
WITHIN A LIQUID DROPLET
In this section we consider a spherical droplet of radius a
and refractive index n whose center is at the origin of the

coordinate system and which is illuminated by a family of
rays propagating parallel to the positive Z axis. This ge-
ometry is shown in Fig. 1. Consider a ray whose angle of
incidence at the droplet is 0,. The fraction of this ray's
intensity that is transmitted into the droplet is T(0), and
the fraction that is reflected at the surface is R(0). For
a >> A the droplet surface is approximately flat; thus
T(0) and R(0) are given by the squares of the Fresnel
coefficients.' For the ray that is transmitted into the
droplet, the fraction of its intensity that is internally re-
flected at each subsequent interaction with the droplet
surface is also R(0).

We define the p-ray family to be those rays within the
droplet for all 0i that have made p - 1 internal reflec-
tions. For example, when the incident rays are transmit-
ted into the droplet they become the p = 1 rays, after
their first reflection inside the droplet they become the
p = 2 rays, etc. Figure 2 shows several families of rays
(line drawings) for p values ranging from 1 to 8. The
value for the index of refraction is taken as n = 1.36 + Oi
(i.e., an ethanol droplet), and the incident light is traveling
from left to right in the figure. The line drawings of
Fig. 2 show many different caustics. These drawings are
two-dimensional sections of the spherical droplet. The
full ray picture is given by a figure of revolution about the
Z axis for each drawing. Thus the points where thep = 1
caustic intersects the droplet surface (on the shadow side)
is a caustic ring when the figure is rotated. A photograph
of the p = 1 caustic ring on 18.4-cm-diameter thin-walled
spherical glass globe filled with water is shown as Fig. 3(a).
The p = 2 caustic in Fig. 2 is a cusp of revolution whose
focal point is on the Z axis at r = 0.61a when n = 1.36. A
photograph of the p = 2 cusp of revolution for the thin-
walled water-filled glass globe is shown as Fig. 3(b). For
each higher value of p, the caustic is also a cusp of revo-
lution that winds further and further around the sphere
and intersects itself on the axis a number of times.
These caustics will be referred to as the cusp caustics of
the droplet.
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Fig. 1. Geometrical light ray with an angle of incidence 0, ent
ing and internally reflecting within a liquid droplet of radius

Since the caustics of Fig. 2 and Eqs. (1) correspond to
p rays transmitted into and reflecting within a single cross
section of the sphere, the equations of the analogous ray-
theory caustics for a circular cylinder illuminated by nor-
mally incident rays are identical.

In addition to the cusp caustic, a second type of caustic
that is not readily apparent in Fig. 2 also exists within the
droplet. It is the axial caustic. This caustic corresponds
to the focusing on the Z axis of light rays that enter
the sphere along a ring of constant . Thus, for any
p family of rays, an axial caustic will be present if the
p rays cross the Z axis. For the droplet depicted in Fig. 2,

Z it can be seen that p values of two and larger have the
required internal-axis crossing that forms the axial caus-
tic. Also note in Fig. 2 that the axial caustic never ex-
tends across the full length of the droplet's axis, since rays
never cross the Z axis near the center of the droplet.

The coordinates of the p-ray axial caustic within
the sphere,

sin(Or)
z = s-a ny

sin(y)
er-
a.

Employing the definition of a caustic as the envelope of
the p-ray family,2 we find in Appendix A that the coordi-
nates of the p-ray cusp caustic are

z = [-sin(y)sin(Or) + K cos(y)cos(Or)]a,

p = [-cos(y)sin(Gr) - K sin(y)cos(Gr)]a, (1)

where, from Fig. 1, p is the distance perpendicular to the
Z axis, 0

r is the angle of refraction of the ray whose angle
of incidence is O, and

n sin(Or) = sin(0), (2)y = Oi + pi -(2p -1 ))r, (3)
[2 ~ ~ -cos(Or) ]'

K [2p -1 - n ) * (4)

The cusp points of the caustics of Fig. 2 have the
coordinates

(-1)PZ, -~a,
2p - 1 - n

Pc O, (5)

and, near a cusp point, the cusp takes the usual Pearcey
form 3

(z -z )/a = W(p/a)2 3, (6)

where

W = (-1)P
2

J9[(2p - 1 - n)3 - (2p - 1 - n) + n(n2 - 1)] l/3
x .

p = 0, (8)

are calculated in Appendix A. A photograph of the inter-
nal p = 2 axial caustic for the thin-walled water-filled
glass globe is shown as Fig. 3(c). For O = 0, the p-ray
axial caustic begins at the cusp point of Eqs. (5). For in-
creasing Oi it proceeds along the axis inside the cusp of
revolution toward the surface. For large p it continues
back and forth along the droplet axis with turning points
at the locations where the cusp caustic intersects itself.
This behavior is shown in Fig. 4 for thep = 5 axial caustic.
In the figure the incident rays are labeled with the letters
A-P, and the crossing point of each ray on the axis is la-
beled with the same letter. The exiting rays are denoted
with primes and are shown so that the direction of travel
of the ray can be seen. Note that in the figure there are
regions in which the axis crossings by the p rays are
denser: points A-D and K-N. It is within the second of
these regions that the turning point (L) of the axial caus-
tic occurs. Also note that some of the p = 5 rays do not
cross the axis. These are rays that enter the droplet at
angles greater than the entering angle of ray H and less
than the entering angle of ray I and also rays that enter
at angles greater than the entering angle of ray P.

One important difference between the axial caustics
and the cusp caustics is the degree of focusing that each
represents. For the cusp caustics, incident rays that enter
the droplet over a small element of the droplet's surface
area contribute to the caustic over a small element of the
caustic's surface area. For the axial caustics, incident
rays entering the droplet over an element of the droplet's
surface area (in this case it is in the shape of an annular
ring) contribute to the axial caustic over an element of
the axial caustic's one-dimensional length. This mapping
(surface -> line) for the axial caustic corresponds to a
higher degree of focusing than does the mapping (sur-
face -* surface) for the cusp caustics of revolution. As a
result, the axial caustics are expected to be the largest
contributor to the intensity on the droplet axis. The
turning points of the axial caustics represent an even
higher degree of focusing, since at these points incident

J. A. Lock and E. A. Hovenac
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p = 2

p = 4

p = 6

WAVE THEORY RAY THEORY WAVE THEORY RAY THEORY
Fig. 2. Gray-level plots (left-hand side) of thep term of the Debye-series interior source function forx = 100 and n = 1.36 for unpolarized
incident light. Line drawings (right-hand side) of the geometrical p-ray family within the droplet for n = 1.36.
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(a)

(b) (c)

Fig. 3. 18.4-cm thin-walled water-filled spherical glass globe: (a) thep = 1 caustic ring, (b) thep = 2 cusp caustic of revolution, (c) the
p = 2 axial caustic.

rays entering the droplet over an annular ring are focused
at the turning point rather than along a line. The
method of Ref. 4 is employed in Appendix B to calculate
the density of rays on the axial caustics. We find that the

ray-theory intensity of the p-ray axial caustics is given by

d Fp _2va
2nKT(i)RP- 1(6i)sin(Oi)cos(Or)sin2(y)

dz cos(y)sin(Or) + K sin(y)cos(Or)
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scattering to isolate one component of the far-field inten-
sity from interference effects produced between it and all
other components and to suggest physical mechanisms for
various scattering phenomena.3-22 It also provides a theo-
retical justification for the physical-optics model for light
scattering from bubbles.23

-
26

With the use of the notation of Ref. 13, the Debye series
expansions of the Mie theory partial-wave amplitudes a,
and b, for the scattered fields are

[al] = 1 / 22 _ _______ )[aI 1 -R - - RI"
bi 2 

= 1 [1 _T -_ 121(R111 I21T112j, (10)

MN P

B ~ ~ (

H G F E DBA LK J I

B - N~~-. B'-

Fig. 4. Formation of the p = 5 axial caustic for various incident
ray angles i. Turning points occur at the locations where the
p = 5 cusp caustic intersects itself on the Z axis. The arrows
below the figure show the progression of the axial caustic for the
rays A-H and I-P.

where K is given in Eq. (4) and, for unpolarized light, T(0i)
and R(6i) are given by the averages of Eqs. (18)-(38) and
(18)-(39) of Ref. 1, respectively.

3. WAVE THEORY OF THE CAUSTICS
WITHIN A LIQUID DROPLET

For a plane wave of wavelength A incident upon a spheri-
cal droplet, the components of the interior electric and
magnetic fields in Mie theory are given in Refs. 5-8.
They are written as an infinite series of partial-wave con-
tributions that contain the Mie interior partial-wave am-
plitudes9 cl and di. Each of the partial-wave amplitudes
in turn may be written as another infinite series corre-
sponding to interactions with the droplet surface of the
radially propagating spherical multipole partial waves.
This series expansion of cl and d1 is analogous to the situ-
ation for a flat thin film when the transmitted and the
reflected electric fields are decomposed into a series of
terms corresponding to multiple internal reflections.' 0

This series expansion for cl and d1 is known as the Debye
series, and it provides the link between the wave-theory
and the ray-theory results for the p-ray families of
Fig. 2.1,2 The Debye series has been used for far-field

and the Debye-series expansions of the Mie-theory partial-
wave amplitudes cl and d for the interior fields are

[d] c 1. _ T1
2'

di] 1 -. RI"' = 
(11)

In these expansions region 1 is the interior of the sphere,
region 2 is outside the sphere, T1

2' is the amplitude trans-
mission coefficient for the I spherical multipole partial
wave to be transmitted from region 2 into region 1, RI" is
the amplitude reflection coefficient for the partial wave
to be internally reflected from region 1 back into the
same region, and

T21 -2i/x 2

(t1' + t12) + i(t3
-t

4)
1

1 -(t 1 - t12) - i(t3 + t 4)
RI = (t 1 + t) + i(t13 - t 4)

For a, and ci, the t are given by

ti = xy{jj(x)j-.(y) - nl_1 (x)jz(y)

+ [(n2 - 1)1y]j1(X)j1(y)},

t12 = xy{n 1(x)nz .(y) - nn 1_.(x)n 1 (y)

+ [(n2 -)yn(x)ni(y)},

t3= xy{n1(x)jui_(y) - nnI_.(x)jI(y)

+ [(n2 -1)y]n(x)l(y)},

t14 = xy{j 1(x)nI_,(y) - nj1_1 (x)n(y)

+ [1(n2 - 1)1y~i1(x)n1(y)},

and, for b, and di, the t1i are given by

t1 = xy[nj 1(x)j_1,(y) - i(x)i1(y)],

t1 = xy[nn1(x)nI_.(y) -ni_(x)n1(y%

tI3 = xy[nn1(x)ju ,(y) -n1_(x)jI(y)J,

tI4 = xy[nj1(x)nI_.(y) - j_(x)n1(y)],

(12)

(13)

(14)

(15)

where

x = 2ira/A, (16)

y= nx (17)

and where j, and n1 are spherical Bessel functions and
spherical Neumann functions, respectively. (These are

J. A. Lock and E. A. Hovenac
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also known as spherical Bessel functions of the first and
second kinds;) In addition, the amplitude transmission
and reflection coefficients satisfy

of a sphere

S(r) = [E*(r) E(r)]/E0
2 ,

R221 = IR1"11,

T+"12 = T2/n,

T,2112/n + R, 1112 = 1.

(18)

(19)

(20)

The physical interpretations of the various terms in
Eq. (10) are given in Ref. 13. For the interior of the
droplet, the p term in Eq. (11) corresponds to spherical
multipole partial waves that have entered the droplet and
have made p - 1 internal reflections. The Mie-theory
equivalent of the p-ray family of Section 2 is the evalua-
tion of the internal fields employing the p term in Eq. (11)
for cl and di.

Over the years, one concern in numerical Mie-theory
computations has been the determination of the partial
wave l, , at which the Mie series is truncated. For far-
field scattering Dave's criterion27 is that the Mie scatter-
ing amplitudes a and b satisfy aim 2 +Ibimax2 i-'4.
Occasional numerical difficulties with this criterion and
the need for faster Mie calculation algorithms led Wis-
combe to improve the criterion 2 to Imax = X + 4.05x"/3 +

2, which ensures that almx and bmax are each of order 10-8.
For internal-source-function calculations previous authors
have used either the first2 930 or the second3132 criterion.
However, each of these criteria leads to less precision for
interior-field calculations than for far-field-scattering cal-
culations. This can be seen from the Debye series as fol-
lows. For high partial waves (i.e., I > x) we have T1

2
- 0

and Rll - 1. Assume that, for such a partial wave,

T 2 << 1.

where E0 is the incident field strength, for size parameter

x = 100.0 (27)

and real refractive index

n = 1.36 (28)

illuminated by unpolarized plane waves. The spherical
Bessel functions that occur in the radial dependence of the
electric field and in the evaluation of cl and d were com-
puted by downward recursion. The spherical Neumann
functions were computed by upward recursion.

The full Mie interior source function is shown in Fig. 5
in three different formats. Figure 5(a) is a 100 x 100

(a)

(21)

Then, substituting relation (21) into Eq. (20) and Taylor
series expanding, we get

Rill - 1 - (E2 /2n). (22)

From Eq. (11) the interior Mie amplitudes are of order

Cl d ,E, (23)

while from Eq. (10) the scattering Mie amplitudes are
of order

a, - b- E2. (24)

As a result, the Mie interior amplitudes that are calculated
with cl and di converge more slowly than the Mie scattering
amplitudes that are calculated with a and b. To obtain
the same precision for interior-field computations that one
demands for far-field-scattering computations, one must
employ more terms in the Mie series than indicated by
Dave's or Wiscombe's criterion. A related situation occurs
when one is searching for morphological scattering reso-
nances in the far-field-scattering amplitudes.2 4 33 Using
the formalism of Ref. 34, we find that the series cutoff

maX = X + 7x 13 + 2 (25)

ensures that Clmax and dmax are of the order 10-8 for 35 •
x 10,000 and for Im(n) 0.1.

The cutoff of Eq. (25) was used with the internal-field
formulas of Refs. 5 and 6 to determine the source function

(c)
6 - FULL IE

58 - n = 1.36

= 100
48 

38 -

30 -
20 - w ^

-I -0.75 -0. 5 - Z5 0. 5 0.5 0.75 1

Nornalizedt Dista.nce Crob)

Fig. 5. Interior source function in Mie theory for a sphere with
x = 100, n = 1.36, and for unpolarized incident light shown (a) as
a carpet plot, (b) as a gray-level plot, and (c) along the Z axis of
the droplet.

(26)

(b)

--------------------
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-1. 00 Normalized distance (c/a)

Fig. 6. The p = 2 Debye-series contribution to the interior
source function showing the p = 2 cusp point and the interior
portion of the first-order rainbow and supernumerary rainbows.

point carpet plot and shows the strong interior-field en-
hancements on the sphere's axis at r +0.8a. These
enhancements in the source function are compatible with
the locations of the enhancements found in previous Mie-
theory calculations'9 '35 -4 ' and will be addressed in Sec-
tion 4. Figure 5(b) is the same source function calculated
on a 500 x 500 point grid and logarithmically mapped
into 64 shades of gray, black indicating the most intense
fields and white the least intense. This gray-level plot em-
phasizes the interference structure of the interior source
function. Figure 5(c) shows the source function on the
sphere axis. The enhancements at r ±0.8a appear to
be a number of closely spaced individual enhancements.

The contribution to the source function provided by the
individual p = 1 to p = 8 terms of the Debye series of
Eq. (11) was also calculated for unpolarized incident light
and is shown as the gray-level plots in Fig. 2 along with
the ray-theory predictions. A common rule of thumb has
been that ray theory becomes a good approximation to
the far-field primary-rainbow caustic for x Ž 2 000.42
Furthermore, when rainbows of higher order are observed,
larger values of x are required before these rainbows are
well formed.2 7 For the interior caustic structure of Fig. 2,
ray theory is already a qualitatively good approximation to
wave theory at x = 100 for all values of p 8.

Figure 2 shows a number of other interesting features.
As with all other wave-theory optical caustics,43 the in-
finite intensity of ray-theory caustics is rendered finite
and is surrounded by diffraction and interference struc-
ture. For p = 2 the interior portion of the first-order
rainbow is visible in both the ray picture and the Debye-
series gray-level plot. It begins somewhat above and below
the p = 2 cusp point and extends to the sphere surface,
where it continues into the far field to become the familiar
first-order rainbow. This behavior is shown more visibly
in thep = 2 carpet plot of Fig. 6. Also surprisingly visible
in Fig. 6 are the first few supernumerary rainbows inside
the droplet. One other feature of note in Fig. 2 is how the
interference structure in the gray-level plots corresponds
to regions of intersecting rays in the line points. For
example, the gray-level plot for p = 3 shows much in-
terference structure on the illuminated side of droplet
(from r -1.Oa to r = -0.27a) and a smooth decrease
in intensity on the shadow side (from r -0.27a to r 

+1.0a). The corresponding line plot for p = 3 shows
many rays intersecting one another in the region on the
illuminated side and the rays diverging in the region on
the shadow side.

In order to assess the quantitative agreement between
the caustics of ray theory and the individual terms of the
Debye-series expansion of the interior electric field, we
calculated the source function along the Z axis for the p =
1 to p = 10 terms of the Debye series. The results are
shown in Fig. 7 as the solid curves. It is remarkable that,
for large p, the source function for an individual term
in the Debye series ranges over as many as 16 orders of
magnitude. This large variation is easily understood.
From Section 2 the intensity of a p ray is proportional to
T(0j)RP-1(Oj). Consider the refractive index of Eq. (28)
and p = 10. The intensity at the center of the sphere is
due to rays incident near the sphere axis with Oi = 0, T =
0.977, R 0.023, and TR9 10-15. But the intensity
near the surface of the sphere is due to rays near grazing
incidence with i qr/2 and perhaps with T 0.01 and
R 0.99 giving TR9

- 10-2, 13 orders of magnitude larger
than at the center. In other words, rays near grazing in-
cidence have a low probability of being transmitted into
the droplet. But, once they are inside, the probability of
their surviving many internal reflections is quite large.
On the other hand, rays near normal incidence are likely
to be transmitted into the droplet. But, once inside, they
are again likely to be transmitted back out. Since the
cusp points of the p-ray caustics are due to rays near nor-
mal incidence, this argument explains why they are the
locations on the caustics of nearly the weakest intensity,
rather than the strongest. The illusion in the ray-theory
pictures of Fig. 2 that the cusp point is the most intense
location on the caustic results from incorrectly drawing
all the ray lines with equal darkness or thickness. Since
T(0j)RP-1(0j) continues to grow in going from normal inci-
dence to grazing incidence, the axial caustics become more
intense as they progress from the center of the droplet to
the perimeter.

In Section 2 we argued that, on the Z axis, the electric
field should be dominated by the contribution provided by
the axial caustics. Figure 7 shows the density of rays on
the axial caustics (data displayed as points) given by Eq. (9)
multiplied by a single scaling factor for all p. The loca-
tions on the curves that are multivalued represented re-
gions in which the axial caustic has turned back on itself.
As this figure shows, at x = 100 the ray-theory model of
caustics within a liquid droplet is a quantitatively good
approximation to the caustic structure predicted by wave
theory. At the turning points of the axial caustics, the
ray-theory intensity becomes infinite, while the Debye-
series intensity undergoes a rapid increase by a number of
orders of magnitude and is accompanied on one side by an
interference structure, a behavior typical of diffraction
caustics.4 3 For larger x the interference structure be-
comes finer and the caustics become quite well defined.

4. COMPARISON WITH STIMULATED
RAMAN SCATTERING AND
FLUORESCENCE EMISSION

The transition rates for SRS and fluorescence emission at
a given location within a sample are proportional to the
square of the stimulating electric field at that location,

J. A. Lock and E. A. Hovenae



1548 J. Opt. Soc. Am. A/Vol. 8, No. 10/October 1991

2 ~ ~ ~ 

-1

-dz

LO p= 4
-8I -6.75 -6.5 -6.25 e 8.25 8.5 6.7

11r a11J DlItau Cr/a)

2

6 

18 P 4"7 "s "2 x RZ 

L-1
183

-z'
18s

-4
18 .. 

hormlized Distance r/a)

4

L.
(I

.L..4,

:

._

C

4)

162

181
18
lal

to,

163
185

-9187
18

li
, ile

p = 6

J. A. Lock and E. A. Hovenac

liz -
182

18

Is.'

188

-i3

li'

18

16-5
-i7

101
18

18
l;9s

_to

1i3

184
1i5

16

1i7
18

18

is

lits
-1

lilz

183

i5

187 1

li9

-12

11

Is

-i3

l5

Horsalized Dstance r/a)

182

16
18

-4
18

-i6
18-8to

-12
s

-14
16

p = 3

.' 

- - - - - -
1 -6.75 -6.5 -6.25 0 0.25 8.5

Nor-lized Distance r/a)

8.75 1

Morme Ized D lstance r/a)

MIrmalizod Dstance r/a)

Morelizaed Distance Cr/)

-az

188
iz p= 10 

16Z --|||-16

1;1
1512 .1. . . . . ......

18 Ij -6.75 -8.5 -8.25 8 8.25 0.5 .7S

Morselized Distance r/a)

NorslUsed Dstance r/a)

Fig. 7. Contribution of the p term of the Debye series to the
interior source function on the droplet axis for p = 2 to p = 10
(curves) and the density of geometrical rays on the axial caustic
from Eq. (9) (points).



Vol. 8, No. 10/October 1991/J. Opt. Soc. Am. A 1549

1.0

e(U

IhF
0

a-
0
h.(U0.

0.8

0.6

0.4

0.2 

0

Fig. 8. Apparent
a function of the a
Appendix C and n
measured position
ameter of an 18.4-
positions) and fillE

i.e., the source f
elastic light-scat
the distribution
liquid droplets i
regions of enha
have been obser
shadow side at
droplet's illumin
is the entire circi
of strong emissic
only for droplets
the situation for
fractive index,
satisfy the condi
cal scattering re

The analysis c
to explain the fii
the droplet's shf
focusing on the
occur at focal 
maxima of the I
ated with the ou
tics at r +0.8
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~ 1.333 / - ing points of thep = 5 andp = 9 axial caustics. But these

are lower than those for the p = 6 and p = 10 by approxi-
-_ matly 2-5 orders of magnitude. As a result we attribute

the r = +0.8a source of SRS and fluorescence emission to
-_ the p = 2 focal point amplified by the near-identical turn-

ing points of the p = 6,10,14,.. ., axial caustics.
a/ _ In Refs. 35, 36, and 45 the shadow-side source of SRS

and fluorescence emission seems to be on the droplet axis.
However, in Ref. 46 it appears instead on the surface of
the droplet at the position of the p = 1 caustic ring. It is
pointed out in Refs. 44, 50, and 51 that the electric- and
magnetic-field boundary conditions at the surface of the
droplet must be satisfied not only by the radiation at the
incident wavelength but also by the radiation at the inelas-
tically scattered wavelength. This condition causes the

_ inelastically scattered radiation to be preferentially emit-
ted in certain directions and causes these directions to

0.2 0.4 0.6 0.8 10 D vary for stimulated molecules at different locations within
0.2 04 06the droplet. Since the observations of Refs. 35, 36, and 45

Actual Position (r/a) and those of Ref. 46 were made at different scattering
position of a light source on the droplet axis as angles, this directionality of the inelastically scattered
ctual position for the geometric-optics model of radiation may provide the explanation for the difference
= 1.333. The filled-circle data points are the between the observations. This point, however, requires

as of grid marks on a scale fitted along the di-
-cm thin-walled glass globe when empty (actual further study.
cm with water (apparent positions). The second region of SRS and fluorescence emission on

the illuminated side of the droplet (at r -0.8a) is said to
be caused by the focusing on the axis of rays that have

unction." Exploiting this fact, these in- internally reflected twice within the droplet" (i.e., p =
tering processes have been used to probe 3 rays). This interpretation is shown in Figs. 2 and 7 to
of electric-field strength within spherical be incorrect since, for n = 1.36, Eqs. (5) support the pre-
lluminated by laser light.35' 36'45'46 Three diction that the p = 3 cusp point should occur at z =
nced source function within the droplet -0.27a. This result corresponds to the small enhance-
ved. The first region is on the droplet's ment on the full Mie plot in Fig. 5(c) at z -0.27a. The
r = +0.8a. The second region is on the locations of the outermost turning points of the axial caus-
ated side at r -0.8a. The third region tics at r = -0.80a for p = 4 and at r = -0.78a for p = 8
amference of the droplet. This last region closely correspond to the maximum source function en-
on, in contrast to the first two, is observed hancement in Fig. 5(c). As a result we attribute the r 
of certain diameters and corresponds to -0.8a source to the nearly identical locations of the turn-
which the diameter of the droplet, its re- ing points of the p = 4, 8, 12, . ., axial caustics.

and the wavelength of the incident light It has been noted that, when one is observing the sources
tions for the occurrence of a morphologi- of SRS and fluorescence emission within liquid droplets,
sonance.47

-
49 the curvature of the droplet surface causes the apparent

if Sections 2 and 3 and Fig. 7 can be used source of the emission to be shifted from its actual loca-
rst region of enhanced source function on tion.3 552 This shift in position is calculated in Appen-
idow side. The regions of most intense dix C from geometrical optics and is shown in Fig. 8 for
shadow side of the droplet axis in Fig. 7 n = 1.333. Also shown in Fig. 8 are the results of an
)oint of the p = 2 rays and also at the experimental verification of the position shift. The 18.4-
)ebye-series interference patterns associ- cm-diameter thin-wall glass globe described in Section 2
Ltermost turning points of the axial caus- was fitted with a scale along its diameter. The globe was
Oa for p = 6 and r - +0.78a for p = 10. photographed from the side, then filled with water and

Table 1. Experimentally Observed Locations of the Sources of Stimulated Raman Scattering and
Fluorescence Emission in Liquid Droplets

Reference Liquid Droplet Radius Shadow-Side Enhancement Illuminated-Side Enhancement

35 Ethanol 35 fum 0.66a r c 0.79a -0.78a r c -0.70a
n = 1.36

36 Methanol 25 /.km 0.67a r c 1.00a -1.OOa r ' -0.63a
n = 1.33

45 Ethanola Not given 0.42a r c 1.00a -1.00a r c -0.26a
n = 1.36

aRef. 53.
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photographed again. The shifts in the positions of the
grid marks on the scale between the two photographs
were measured. The agreement with the results of Ap-
pendix C is good.

We applied the method of Appendix C to determine the
actual locations of the sources of SRS and fluorescence
emission in the photographic observations of Refs. 35, 36,
and 45. The results are given in Table 1. The experi-
mental results agree with the locations of the p = 2 cusp
point and the outermost turning points of the p = 4,
6,8,10,..., axial caustics found in Fig. 7.

of the first and second p rays is the location on the caustic
given by Eqs. (1).

For the axial caustic, consider the location where the
p ray crosses the Z axis. Equation (AS) with p = 0 gives

z= zP- + Pp-i
tan(y)

Substituting Eqs. (A2) into Eq. (A7) gives Eqs. (8).

APPENDIX B

(A7)

5. CONCLUSIONS

In the past the Debye-series expansion of the far-field Mie
scattering amplitudes has provided a valuable method by
which a scattering mechanism can be computationally iso-
lated from all the other effects that interfere with it. In
this paper we show that the Debye-series expansion of the
interior-field Mie amplitudes has a physical interpretation
of equal richness. The individual terms of the Debye
series correspond to families of rays inside the droplet.
The caustics of ray theory are reproduced by the Debye-
series calculations and decorated with diffraction struc-
ture typical of wave-theory treatments. Further, the
Debye-series analysis provides the physical explanation of
the source-function hot spots observed with inelastic light
scattering.

APPENDIX A

Consider the p ray that enters the liquid droplet with the
angle of incidence Oi at the coordinates

zi = -a cos(0i),

pi = +a sin(Oi). (Al)

The location where this ray intersects the sphere surface
at the p - 1 internal reflection is

zp- = -a cos[O + 2(p - 1)0],
pp- = +a sin[0 + 2(p - 1)0], (A2)

and the location where it intersects the sphere surface at
the p internal reflection is

zp = -a cos(O + 2po),

Let dine be the flux incident upon the annular ring of
width d centered at the angle of incidence Oi, and let dz
be the progress along the p-ray axial caustic that results
from increasing the angle of incidence from Oi - dOi/2 to
Oi + dOi/2. Then

dnc = 2a 2 sin(0i)cos(0i)dOi. (Bi)

The fraction of this incident flux dFp that survives p - 1
internal reflections is

(B2)dFp = dinc T(Oi)RP-(i).

Then, following the procedure of Ref. 4,

dzp =\dO /{k dz 

dz \d~i dOi/

The expression for z is given in Eqs. (8). Differentiating
it with respect to Oi and inserting the result into Eq. (B3)
give Eq. (9).

APPENDIX C

Consider a point on the axis of the sphere at the location

z,= wa, (Cl)

as in Fig. 9(a). Assume that this point source emits light
rays in all directions. Consider the light ray that leaves
the source at an angle a with respect to the p axis. Then
the z coordinate of the intersection of this light ray
with the surface of the sphere is

zout= ua, (C2)

where

(B3)

pp = +a sin(Oi + 2po),

4) = (/2) - Or

(A3)

(A4)

u = w + [W2 + 1 - 2w cos(,3)]1/ 2 cos( + ), (C3)

sin(O,) = w sin(3)
[W 2

+ 1 - 2w cos(/3)]1/2

and or is the angle of refraction given in Eq. (2). The
equation of this p ray is

p = pp-i - [tan(y)] (z - zp-l), (AS)

where y is given in Eq. (3). Consider the intersection of
this ray with the p ray whose angle of incidence is Oi + e.
The angle of refraction of this second p ray is or + ,

where

forE cos(Os) at

n cos(O,) (6
for small . In the limit as E -> 0, the intersection point

The angle that the exiting ray makes with the Z axis is

= + Or, (C5)

where

sin(O,) = W nw sin(3)s [WO) 2 + 1 - 2w cos(/3)]112 (C6)

As is shown in Fig, 9(b), many such light rays leave the
source S and pass through a lens. These rays are then
imaged at the point S on a viewing screen parallel to the
Z axis, as shown in Fig. 9(c). These rays, such as rays A,

where
(C4)

J. A. Lock and E. A. Hovenac
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In the limit d >> a 2 zot, combining Eqs. (C5) and
(C7) gives

cos(3) = sin(Or)

or

w2 + 1 - 2w cos(3) = n 2 w 2 tan 2(/3).

P

C

(C)
Fig. 9. (a) Light ray leaving a source at the coordinate z, on the
axis of a spherical droplet. (b) Three such rays leaving source S
and imaged by a lens. The virtual source of rays A, B, and C is
S'. (c) Imaging of the spherical droplet by a lens. The image of
the topmost portion of droplet T is T. The image of the lower-
most portion of droplet L is L. The image of source S is S.

B, and C in Fig. 9(b), appear to originate from the virtual
source S' within the droplet. Consider ray B, which passes
through the center of the lens. If d is the distance from
the droplet to the lens, then from Fig. 9(c) the angle that
this ray makes with the Z axis is approximately

= (7r/2) + arctan(zout/d).

Finally, given the actual position of the source w, one nu-
merically solves Eq. (C9) to obtain P3. One then inserts 3
into Eq. (C4) to find 0, and substitutes the result into
Eq. (C3) to find u. If a << d, this result is also the appar-
ent position of the virtual source S'.
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Note added in proof The results of this paper may
also serve as a standard to which the method of Ref. 54
may be compared when that work is extended to two
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