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Contribution of high-order rainbows to the scattering of a
Gaussian laser beam by a spherical particle
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I review the theory of the scattering of a Gaussian laser beam by a dielectric spherical particle and give the
details for constructing a computer program to implement the theory. Computational results indicate that
if the width of the laser beam is much less than the diameter of the particle and if the axis of the beam is inci-
dent near the edge of the particle, the fifth-, sixth-, and ninth-order rainbows should be evident in the far-field
scattered intensity. I performed an experiment that yielded tentative evidence for the presence of the sixth-
order rainbow.

1. INTRODUCTION

In the operation of a number of particle-sizing instru-
ments the diameter of a small liquid droplet is deter-
mined, as it passes through the focal waist of a focused
laser beam, from the various details of its far-field light-
scattering signature.' 6 For such instruments the diame-
ter of the droplet is often comparable with the width of the
laser beam focal waist. As a result standard Mie theory,
which assumes plane-wave illumination, is unable to pre-
dict adequately the details of the far-field intensity of the
scattered light.' In response to this inadequacy of Mie
theory, Gouesbet and his collaborators devised a method
to calculate theoretically the light scattered by a spherical
particle that is illuminated by a polarized Gaussian laser
beam8 9 They found that the far-field intensity is deter-
mined by two sets of partial-wave amplitudes, the usual
plane-wave Mie scattering amplitudes a, and b1 and the
partial-wave coefficients Alm and Blm of the incident beam.

In the formalism of Gouesbet et al., evaluation of the in-
cident beam partial-wave coefficients Alm and BRm requires
either three-dimensional integrations of the highly os-
cillatory radial component of the incident electric and
magnetic fields over all space or the use of a finite-series
technique. Barton et al.'" simplified the computation of
Aim and Blm by expressing the incident beam coefficients as
two-dimensional surface integrals. They also applied the
Gaussian beam formalism to the calculation of the interior
fields of the spherical particle and to the near-field region
and examined the production of morphological scattering
resonances by on-axis and off-axis Gaussian beams."' 2

In the numerical evaluation of Alm and Blm, it was no-
ticed that the computed values of the coefficients exhib-
ited a simple pattern that was reminiscent of the shape of
the Gaussian beam."' 5 As a result it was believed that
there existed some simple approximation to Alm and Blm in
the A - 0 limit that could be used to simplify further the
computation of the incident beam partial-wave coefficients.
Such an approximation, accurate to a few parts in 105, has
been devised by Gouesbet et al., 6 although we still lack
a rigorous proof of it. This approximation is called the
localization approximation since it resembles the local-
ization principle for associating a geometrical light ray

with a small group of partial waves in the plane-wave-
incidence scattering problem.'7

If one uses numerical integration, the finite-series
method, or the localization approximation for the evalu-
ation of Alm and Bim, the resulting far-field scattered in-
tensity 1(0, )) for 27Ta/A >> 1, where a is the sphere radius,
does not resemble the familiar I(0) graphs for plane-wave
incidence.'8 The distinctive behavior of the scattered in-
tensity for Gaussian beam incidence has been exploited by
various authors. To observe the glare spots associated
with high-order rainbows, Walker used a beam-blocking
technique and on other occasions used an off-axis Gaussian
laser beam (i.e., the center of the droplet does not lie on the
symmetry axis of the beam) to illuminate his suspended
liquid droplets.'91 2' Similar off-axis beam experiments
were performed earlier by Fahlan and Bryant to isolate
the edge-ray contribution to glory scattering.2 2 From the
viewpoint of ray theory, Walker's experiments used the off-
axis Gaussian beam to amplify weak-scattering mecha-
nisms relative to traditionally predominant ones in the
following way. For plane-wave incidence with 27ra/A >> 1,
van de Hulst2 ' and Bohren and Huffman24 have calculated
that >93% of the transverse-electric scattered intensity is
produced by the geometrical light rays that are diffracted,
specularly reflected, and transmitted by the sphere.
More than 99.5% of the intensity is produced by these
three ray processes and by the rays that emerge from the
sphere after one or two internal reflections. Thus an ex-
ceedingly small fraction of the incident intensity is chan-
neled into the production of high-order rainbows. But for
off-axis Gaussian beam illumination, especially if the
width of the beam is substantially less than the diameter
of the particle, the rays that contribute to one or a number
of the dominant processes are scattered to one side of the
droplet, whereas the rays for some of the high-order rain-
bows are scattered to the other side. With the otherwise
dominant contributions now absent, high-order rainbow
visibility is increased.

In this paper I consider the idea that an off-axis Gaussian
beam selectivity channels the scattered light of different
physical processes to one side or the other of the spherical
particle and use it to explain the novel features that are
present in the Gaussian beam I(0,4) graphs. The balance
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of this paper will proceed as follows. First, I briefly de-
scribe my notation, which is intermediate between that
used by Gouesbet et al."9 and by Barton et al.'0 Second,
using this notation, I point out a number of the computa-
tional problems that must be addressed when one numeri-
cally calculates the far-field scattered intensity. Third,
I perform a Debye-series decomposition of the Gauss-
ian beam partial-wave scattering amplitudes am and
f
3
im The Debye series is the wave-theory analog of the

geometrical-ray trajectories described above.2 5
-
29 This

procedure decomposes the partial-wave scattering ampli-
tudes into a series of terms that correspond to the spheri-
cal multipole partial waves that are diffracted, specularly
reflected (p = 0), transmitted (p = 1), and transmitted
after p - 1 internal reflections within the sphere. I then
compare the results of the Debye-series calculations with
the complete Gaussian beam intensity graphs. Finally I
describe an experiment whose purpose is to verify the de-
pendence of rainbow intensity on the distance by which
the laser beam is incident off axis.

2. EXPRESSION FOR THE FAR-FIELD
SCATTERED INTENSITY

Consider a spherical particle of radius a and refractive
index n whose center is at the origin of coordinates. Inci-
dent upon this particle is an electromagnetic wave of an-
gular frequency co, wavelength A, and propagation number

27r co
a=-=- ~~~~~~~~~(1)

A c

traveling in the z direction, polarized in the x direction,
and whose scalar radiation potential3 0 is of the form

inc(r, t) = inc(r)exp(-icot), (2)

where

V2 inc + k2qinc = 0. (3)

The transverse electric and transverse magnetic compo-
nents of 1in, are given by

inc =m 2 i21( + 1 Bmjl(kr)PIm1[cos (0)]exp(imq,),
qJM Eim 21 + 1)

zinc I= 2 i21(l + 1) Amjil(kr)Pi1mI[cos (0)]exp(imso), (4)

where j1 and n are spherical Bessel and spherical Neu-
mann functions, pmI are the associated Legendre polyno-
mials, and Alm and Blm are the incident field partial-wave
coefficients. By taking the appropriate derivatives of finc
one may calculate the r, 0, and components of the inci-
dent electric and magnetic fields.30 For an arbitrary inci-
dent electromagnetic wave, the partial-wave coefficients
Aim and Blm are given by'0

Alm = ` ji(k ) (I + I ml)! sin(O)d0J d4)PimI[cos(0)]

xexp(-imo)ET ad(r, 0,4)),

rad(.-i'l kr ( - ml)! sin (2ff
im 2qr ji(kr) (I + ml) Jo i0df dPlII[cos(O)]

x exp(-imp)cB inc(r,0,0O, (5)

where the value of the radial coordinate r is arbitrary,
or by 931

Alm 2(21 + 1) + | l)! krd(kr)F sin(0)dO
2 21 (1+ I)! J0 , fo

J2,f

X d~ji(kr)Pll'l[cos(O)]exp(-im)Ei,'c(r , 0),

Blm (21 + 1)( l)! I krd(kr) sin(0)dO

r2,,

X + dI jk(kr)Pdll[cos(k)rexp-im)cBI'nacd(rOk)). (6)

Before we continue, Eqs. (5) and (6) warrant a number of
comments. First, in Eqs. (4)-(6) I used the complete set
of angular functions Pi*m[cos(0)]exp(imp), as did Gouesbet
et al.,',9 instead of the spherical harmonics Yjm(0, 4) used by
Barton et al.'0 I prefer the angular functions of Gouesbet
et al. because of their computational convenience. In par-
ticular, since the associated Legendre function differen-
tial equation depends only on m2 rather than on m,32 I
can employ the same function PIlmi for both positive and
negative m rather than renormalizing the associated Le-
gendre polynomials for negative m. Second, since the
scalar radiation potential in, is assumed to be a solution
of Eq. (3), the expansion coefficients Alm and Blm are
unique, i.e., since EIa~d and BrFad are derived from in, the
values of Alm and Bm in Eqs. (5) are independent of the
radial evaluation point r that is chosen. This means that
the two-dimensional integrals of Eqs. (5) must be propor-
tional to ji(kr)/kr so as to cancel the kr/jl(kr) factor that
multiplies them. From a numerical methods viewpoint,
the constancy of Alm and Bm when r is varied provides a
test of the stability of one's numerical integration routines.
Once I determined the grid sizes for the 0 and integra-
tions so that the computed values of Alm and Blm were in-
dependent of r, I chose the value r = a for all subsequent
computations. The value r = a was also employed by
Barton et al.'0 Finally, in their derivation of the three-
dimensional integrals for Alm and Bm, Gouesbet et al.3 3

used the orthogonality relation
ram~~~~~~~~~~~~i

jd(kr)jl(kr)jl, k r) = 2(21 + 1) 8 (7)

This equation is not correct sincejl(kr) andjl(kr) are not
orthogonal for I # 1 and I + ' = even. Despite the in-
correctness of Eq. (7), their final result for Alm and Bm
and my Eqs. (6) are correct.

Once the incident beam is expanded into partial waves,
the derivation of the partial-wave scattering amplitudes
is analogous to the plane-wave incidence derivation. If
we take

scattered = ± 2 +l (-3im)hl (kr)PI1I[cos(0)]
i-0 m-i 1 + 1
X exp(imqp),

ioTM=- 21 + 1)scattered = ( )(-arlm)hl '(kr)PI1m[cos(0)]

X exp(imqi) (8)
for the partial-wave decomposition of the scattered wave
scalar radiation potential and

'inside = 2 l ( )j(kr)m[cos(0)
I=.m-I 1(1 1

X exp(imqp),

inside = I 2l (nl)jl(nkr)PImI[cos(0)1
- m-l ( + 1)

James A. Lock
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for the partial-wave decomposition of the interior scalar
radiation potential, the continuity of E0, Ed, Bo, B, at
r = a gives

lim Escattered(r, 0, 4)
r--x

_ i exp(ikr) IS2(, 0)1 - S (0,() X

kr

lim Bscattered, 4) exp(ikr)[Sl(0,49)) + S2 (0,4))z]
ckr

(10)

lim Iscattered(r, 0,4)) = 
2 kr (0)12 + 1S2 (0,4))12],

(11)

where

21 +1
Si(,)) = 0 + [imami~rIml(0) + pimTl3mT1(0)1

1(1 + 1)

X exp(im~p),

S2(,4) = 21 + 1 [im l3m7lml (0I) + amTilm(0)]

-i211 + 1)

x exp(imso), (12)

X Il(0) = 1 p1sM[cos (0)] 0
sin 0

TiIm(0) = d PIm-[cos (0)], (13)
dO

aim = Almai,

faim = Bimb, (14)

and where ai and b1 are the plane-wave partial wave scat-
tering amplitudes of Mie theory. Equations (10)-(14),
with either Eqs. (5) or (6) used to evaluate the incident
beam partial-wave coefficients, represent the formal solu-
tion to the scattering of arbitrary incident beam by a
spherical particle. For plane-wave incidence with the ini-
tial electric field polarized in the x direction, we obtain

Encd(r,0,0* = exp[ikr cos(0)]sin(0)cos(4),

cB1Tn'cd(r, 0, = exp[ikr cos(0)]sin(0)sin()). (15)

many applications s << 1, and the Davis first-order formal-
ism is adequate. If the beam is traveling in the z direction
and the focal waist is at the origin, the Davis first-order
formalism gives the 02x polarized incident fields as

Ein _ exp(ikz) [p(x2 + y2)/w2

1 + (2izs)/w e 1 + (2izs)/w J

X [X -- 1 2izs)a,
Eayd = EL sin(0)cos(O) + E F cos(0),

inc incin

exp(ikz) x -(x2 + y 2 )/w 2

cBinc - 1 + (2izs)/w exp 1 + (2izs)/w J

X [rY(- 1 (+) uzj

cBiyncd = cBin, sin(o)sin(+) + cBinc cos(0).

(19)

(20)

(21)

(22)

The various terms of Eqs. (19) and (21) have the following
physical interpretations. The dying exponential part of

[_ (X 2 + 2)/W21
ep 1 + (2izs)lw 

represents the Gaussian falloff of half-width w of the
fields in the z = 0 focal plane. The oscillatory portion of
the exponential represents an approximation to the curva-
ture of the planes of constant phase to either side of the
focal plane. The magnitude of the denominator of the
argument of the exponential describes the widening of
the Gaussian beam before and after the focal plane. The
overall denominators of Einc and N describe the decrease
in amplitude that accompanies the widening of the beam
away from the focal plane. Finally, Einc and Bfnc are a
result of the curvature of the planes of constant phase to
either side of the focal plane along with requirement that
the directions of the fields be transverse. This behavior
is pictorially represented in Fig. 1. If the beam focal
point is located at (x0, yo, z0) rather than at the origin, one
makes the replacements

x -> x - XO,

Y - Y - Yo,
As a result Eqs. (5) give

Alm= 1

0o

z - z - o

if m = _1

if otherwise'

if m = +1
if otherwise'

and Eqs. (12) reduce to the familiar expressions

S (04() 21 + 1 [ailvl'(0) + bi'(0)]sin(4),
~,1(1 + 1)

S2(0,4)) = + [a'i-'(0) + b7ri'(0)]cos()). (18)
1(1 + 1)

If the arbitrary incident beam is a focused Gaussian
beam, the Davis formalism may be used to express Einc
and Bi'nacd as a series expansion in powers of s = A/27rw,
where w is the half-width of the incident beam.3 4 For

(23)

in Eqs. (19) and (21). For a tightly focused laser beam
where s is not necessarily small, more terms in the power-
series expansions of Einc and Binc are required, produc-
ing the so-called Davis third-order 4 or Davis fifth-order3 5

formulas, depending on the number of terms that are
retained.

If the center of the spherical particle is on the symmetry
axis of a first-order Davis beam (i.e., on-axis incidence),
the Gaussian beam scattering formulas of Eqs. (5) and
(10)-(14) simplify almost to the extent that they do for
plane-wave incidence. Using Eqs. (19)-(22), we can deter-
mine that the radial components of the first-order Davis
incident fields on axis are of the form

El'ncd = exp[ikr cos(0)] f(kr, 0)sin(0)cos(4)),

cBinacd = exp[ikr cos(0)]f(kr,0)sin(0)sin()). (24)

James A. Lock
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computation of the incident beam partial-wave coefficients
Alm and Blm, (c) the computation of the angular functions
7rll1m(0) and TrimI(0), and (d) the truncation of the double sum
in I and m. We need not address the computation of ai
and bi since the issues involved in their calculation have
been extensively analyzed in the literature.37 3 9

In evaluating Alm and Blm, we must first compute the
Pilml cos(0). We do this for m 2 1 by starting with

P~,I cos(0)] = 0,

(a)

z

y
(b)

Fig. 1. (a) Intensity of a Gaussian beam as a function of position
in the yz plane. The beam is propagating in the positive z direc-
tion, and the center of the focal waist is at y = z = 0. The
dashed curves represent the nominal width of the beam as a func-
tion of z. (b) The planes of constant phase of the Gaussian beam
as a function of position in the yz plane. The curvature of the
planes of constant phase for z < 0 and z > 0 is due to the conver-
gence and divergence of the beam on each side of the focal plane.
The dashed curves represent the nominal width of the beam as a
function of z.

Substituting Eqs. (24) into Eqs. (5) and Eqs. (5) into
Eqs. (10)-(14), only m = ±1 contribute, and

S,(0,4) = E j( + )Ij[al7rj'(O) + bl()sin(,

S 2(1 + 1)
S2(0,4)) = 2l + 1 Iiai''(0) + bi'(0)lcos(4)),

, (l + 1)
(25)

where

(.i1l-l kr 1
2 j(kr) ( + 1)

x 7 sin2 (0)dOf(kr,0)exp[ikr cos(0)]PIl[cos(0)]. (26)

This simplification does not occur if the Gaussian beam is
incident off axis, and the simplification assumes a some-
what more elaborate form for the fifth-order Davis beam
on axis.3 6

3. NUMERICAL CONSIDERATIONS
FOR CALCULATING THE FAR-FIELD
SCATTERED INTENSITY

The computational details that must be addressed in the
implementation of Eqs. (5) and (10)-(14) fall into four gen-
eral classes: (a) the computation of the plane-wave inci-
dence partial-wave scattering amplitudes ai and bl, (b) the

Pil[cos(0) = 1 3 X 5... (21 - 1)sin(0)

-(21 - 1)!! sin(0)

and using the upward-recursion relation

P+,m [cos(0)] = 21 + 1 cos(0)PIm [cos(0)]
I+ 1 - M

(27)

+ m Pij m[cos(0)]. (28)

For m = 0, we start with

P0 [cos(0)] = 1,

P[cos(0)] = cos(0) (29)

and use the upward-recursion relation

P+,[cos(0)] = I + 1 cos()P[cos(0)] - PI[cos(0)].

(30)

Another consideration in evaluating the two-dimensional
integrals of Eqs. (5) is the choice of a grid size for the 0 and
4) integrations. When Eqs. (5) are evaluated at r = a, the
most rapidly varying term in the Davis first-order fields is
the exp[ika cos(0)] factor of Eqs. (19) and (21). This fac-
tor undergoes ka/1' cycles of oscillation in the interval 0 c
0 - r, with the oscillations being slower near 0 = 0, ir and
faster near 0 = 7r/2. Thus an angular grid size of

AO = 7r/(lOka) (31)

gives 31 samplings per cycle of the exp[ika cos(0)] factor
averaged over the entire interval 0 0 c wr and 20 sam-
plings per cycle for the most rapidly oscillating region
at 0 7r/2. In addition, the sum over partial waves I is
truncated in traditional Mie programs at 9

Imax = ka + 4.05(ka)1/3 + 2, (32)

which for large spheres is approximately ma ka. The
associated Legendre polynomial in the integrand of Eqs. (5)
with the most rapid oscillations is then Pmaxlml[cos(0)].
This function has "lma./2 oscillations in the interval
0 0 7, and the angular grid size of Eq. (31) again gives
20 samplings per oscillation of PlmaIlml.

The most rapid dependence in the integrand of Eqs. (5)
is the exp(-imo) factor, which has m cycles of oscillation
in the interval 0 c 4 c 2r. An angular grid size of

100 + 20m

samples the dependence at a much finer scale than does
Eq. (31) for the 0 dependence. For plane-wave incidence,

James A. Lock
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the use of Eqs. (31) and (33) for the angular grid in
Eqs. (5) produced numerical values of the coefficients that
differed from the analytical results of Eqs. (16) and (17) by
<3 parts in 106.

For the evaluation point r = a, the spherical Bessel
functions appearing in Eqs. (5) may be calculated by up-
ward recursion in double precision by using

j (ka) - sin(ka)
ka

jk)=sin(ka) cos(ka) (4ji(ka) = (a:- ¢ (34)
(ka)2 - ka

jl+,(ka) = 21 ji(ka) - jil-(a). (35)
ka

The function T1(0) is then computed by the upward-
recursion relation

TimI(0) = cos(0)ri1mI(0) - ( + IOI)I1iMI(0). (40)

For m = 0, 7ri(0) diverges at 0 = 0, ir. However, this func-
tion does not contribute to S, and S2 since only the quan-
tity im7rllml(o) appears in Eqs. (12).

To compute ri'(0), we calculate PI cos(0) by means of
Eqs. (29) and (30) and Pi'[cos(0)] by

Po'[cos(0)] = 0,

Pl'[cos(0)] = Pi_1[cos(0)] + cos(0)Pi_1'[cos(0)]. (41)

Varying the evaluation parameter r to values greater than
a preserves the accuracy of their upward-recursion evalu-
ation by using Eqs. (34) and (35). It also provides the
above-mentioned test of the stability of the numerical in-
tegration routine and determines the value of s for tightly
focused laser beams at which the first-order Davis for-
malism no longer represents an adequate approxima-
tion to a solution of Eq. (3). Numerical tests on Eq. (26)
showed that the Davis first-order beam parameterization
of Eqs. (19)-(22) is valid to 5 parts in 105 in the evaluation
of I, for s = 0.0067 (i.e., w = 12 Am at A = 0.5145 gm).
The accuracy decreases to 30 parts in 105 for s = 0.01.
For narrow beams it becomes necessary to use the Davis
fifth-order formalism to obtain few-parts-in-105 accuracy
in the evaluation of Alm, Blm, and II. Another test of the
accuracy of the integration routine for the evaluation of
Alm and Bm is provided by the symmetry properties that
these coefficients have for a Davis first-order beam. It
can be analytically shown by examining the 4) integration
that, for xo # 0, yo = 0, and m 2 1,

Al-m = Alm,

Bi-m = -Blm

and, for xo = 0, yo #A 0, and m 2 1,

Al-. = -Alm for m = even
Aim for m = odd

Bm f Bim for m = even
_Blm for m = odd

(36)

(37)

The angular functions irllml(0) and Tilml(0) are computed
in the following way. For m 2 1 we start with

i1-1i(0) = 0,
irl(0) = (21 - 1)!! sin'-'(0) (38)

Then rl is given by

'lr(0) = -sin(0)Pi'[cos(0)]. (42)

The angular functions have the following properties:
When

PiIml[cos(0)] (l + Iml)! 
(l - IMl) + )Jim [ ( ) ] (43)

is used for 0 - 0, r the angular functions approach

rilm-(0) IIm xiMI(0) 1 ( + ml)! 0/2)lm11 (44)

in this limit. This ensures that both aim and f
31m contrib-

ute equally to diffraction, as was the case for plane-wave
incidence. For I >> 1 and away from 0 = 0, IT with the use
of the asymptotic form

2 \1/2

'lm~o(0)] A>t)[sin(0)]l/1m-2

[(Is + 1 0 + (45)_7T

the angular functions approach

ITZIMI(o) --)> [sin(0)] -3/211ml-1/2

x Cos[(l + 1 0 + I m 17r _ ok,

T, Iml (0) (-) sin(O) -1/211ml+1/2

and use the upward-recursion relation

21+1 10
IT.1+1Im!(0) = l .ncos0IirImI01z () I + 1 - Im| 

l + Iml ITI ,ImI(0)

X sini + 2 + - - rllml(0).
2 2 4

(46)

(39) Then, just as for plane-wave incidence TI1ml >> IImI and
the TE (TM) partial-wave scattering amplitude, bi (ai) in

James A. Lock
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Si (S2 ) becomes associated with the TE (TM) polarized
light rays.

In evaluating the double sum over I and m in Eqs. (12),
it is of great value to interchange the order of the sums
and obtain

1max

Si(0,) = > 21 + 1 BiobiT'(0)

m-I -m 21(1 + 1)

x[-Al+m exp(imo + A exp(-imo)]
Imax

+ E 2 1 1.m(1)
n-1 -in 21(1 + 1) ini~ 0

x [Bl+m exp(imo + B exp(-imn),

S2 (0' 0) 2 2 ~ 1 AloalTI (o)

Imax 21 + 1

m+ l-m 21(1 + 1) a m (0)
x [A+ exp(im4) + A- exp(-im)]imax

21+1 rim ()

+ i-in 21(l + 1) Im

x [B'm exp(im) - Bm exp(-im)], (47)

where

A+ =A,.
for m 1
for in 1 (48)

and similarly for B . Interchanging the order of the

integrals of Eqs. (26), (5), and (6), respectively. Since the
partial-wave scattering amplitudes am and 3iim obey
Eqs. (14), the localization approximation for Alm and Bm
may be used for morphological scattering resonances, near
fields, and interior fields as well as for far-field scattering.
For an on-axis laser beam, the approximation in our nota-
tion takes the form

II 

r- + /2)2/k2W21
exp 1 - (2izos)/w J

1 - (2izos)/w (50)

A derivation of this expression is given in Appendix A.
Relation (50) may be physically interpreted as the Gaus-
sian amplitude profile of the incident rays that strike the
surface of the sphere at the various angles of incidence.4 0

For an off-axis beam, the localization approximation is 6

{[k2XO2 + k2y02 + (+ 12)2]/k'w2
Kim ex 1 - (2iZoS)/W

2 1 - (2izos)/w

x > > (IjpQj-2+1,m + 1Pj-2p lm)exp-ikz0),
j=O p=0

exp{[k2XO2 + k2yo2 +(I +lS12)2]/k2W2
Bm- Kim 1 -(2izos)1w

2i 1 - (2izos)/w

X > > C'Iyp
8j-2p+1,m - 'p8j- 2p-,)exp(-ikzo),

j-O p-O
(51)

where

2l4l + 1)
21 + 1 (2i)

2 \Iml-1

21 + 1) (2i) (-1)mI/

2l2 + 1 l (2) (-1)Imj/2-1/2

for m = 0

for m = even and Iml 2 2, (52)

for m = odd

sums is useful because the scattering amplitudes S (0,4)
and S2(0,) are often rapidly convergent in m. In rela-
tions (44) and (46) the angular functions rlml and T1imI grow
with increasing m. However, it can be shown that Al, and
Bm decrease with increasing m as

Alm Blm - expE-( + 1/2)2/k2w2] ()
(lIM - 1)!

(49)
If Alm and Blm decrease faster than Iriin and il'I increase,
the sums over m in Eqs. (47) will be rapidly convergent.
For example, for A = 0.5145 pAm, w = 20 ,um, a =
43.3 m, n = 1.33, x = z = 0, and yo = 40 m (i.e., far
off-axis incidence), we have A10 B - 102, All Bi1
10-2, A 12 - B 2 10-4, A13 - BR3 - 10-6, A14 - B14 10-9,
and A15 - B - 10-12. Thus truncation of the m sum at
Mma = 5 introduces little error. This value of mnx was
used in all the calculations reported in Section 4.

Finally, Gouesbet's localization approximation'6 permits
one to evaluate Aim and BRi to few-parts-in-10 5 accuracy
without performing the one-, two-, or three-dimensional

= (x0 - iyo)jP(xo +
(j -p)!p!

[ ( + 1/2)s/w 1j.
L1 - (2 izos)/w] (53)

The stationary-phase method of deriving relation (50) that
is presented in Appendix A is not generalizable to the case
of off-axis incidence. This is discussed in Appendix A.
Furthermore, the form of the localization approximation
for the Davis third-order and Davis fifth-order beams is
not known at present. Convergence of the localization
approximation to Al, and Bim to 10 parts in 105 (and often
to 1 part in 105) of their values obtained by numerical in-
tegration of Eqs. (5) was achieved by truncating thej sum
at j = 21. For all the results reported in Section 4, the
values of Al and Blm were calculated by means of the lo-
calization approximation.

4. FAR-FIELD SCATTERED INTENSITY
I(0, p) FOR GAUSSIAN BEAM INCIDENCE

The results that have already appeared for I(0,4) for the
scattering of a Gaussian laser beam by a spherical particle

James A. Lock
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or two internal reflections (p = 2,3, respectively) produce
rainbows that dominate the scattering in the backward
hemisphere. Similarly, for Gaussian beam incidence with
x = z = 0 andyo = -40, 0, and 40 Am, the dominant ray
trajectories are shown in Figs. 6(a), 6(b), and 6(c), respec-
tively. For yo = -40 Am, only the p = 1,2 rays provide
strong contributions since the p = 0,3 rays leave the par-

- tide on the opposite side. For yo = 0 pum, only paraxial
rays strike the particle, giving p = 1 transmission domi-
nance in the forward hemisphere and p = 0 reflection
dominance in the backward hemisphere. No rainbows are
expected to appear since all rainbows require rays that are
incident near the edges of the particle. For yo = 40 Am,

Fig. 2. Scattering geometry. A Gaussian laser beam polarized
in the x direction propagating parallel to the z axis and displaced
from it by the distance yo in the yz plane is incident upon a spheri-
cal particle. The scattered light is measured at the scattering
angle 0 to the right of the z direction in the yz plane (0 = x/2) by
the detector D.

108

106

a 10

102

100

108

180 106

1040 (degrees)

Fig. 3. Far-field scattered intensity I,(0) = lSI(0)12 as a function
of scattering angle for a plane wave with A = 0.5145 gm and po-
larized in the x direction incident upon a spherical particle with
a = 43.3 Atm and n = 1.33.

look quite different from the I(0) graphs for plane-wave in-
cidence.'8 In this section I interpret the various features
of the I(0, 4) curves for both an on-axis and an off-axis 72x
polarized Davis first-order Gaussian laser beam of w =
20 Am and A = 0.5145 j.m that is incident upon a spheri-
cal particle of a = 43.3 ,m and n = 1.33. The geometry
is shown in Fig. 2. The scattered intensity is measured
in the horizontal yz plane corresponding to 4 = Ir/ 2 . For
this situation IS,(O)12 for plane-wave incidence is shown
in Fig. 3. Similarly, ISl(0,Ir/2)l2 for Gaussian beam in-
cidence with xo = 0, zo = 0, and yo equal to -40, 0, and
40 ,m is shown in Figs. 4(a), 4(b), and 4(c), respectively.
Since the beamwidth is approximately half of the particle
diameter, Figs. 4(a)-4(c) exhibit quite different behaviors,
and since 27ra/A = 528.8 for this particle, the features of
the far-field scattered intensity are expected to be quali-
tatively understood on the basis of the interaction of geo-
metrical light rays with the particle. For plane-wave
incidence, the important ray trajectories are shown in
Fig. 5. The diffracted rays and the transmitted rays
(p = 1) dominate near-forward scattering, the specularly
reflected rays (p = 0) dominate the scattering for 0 
900, and the rays that emerge from the particle after one

102

100

y y0 = -40 Am

it - X , I III : 
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0 (degrees)
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20 60 100 140 180
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(b)
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(c)
Fig. 4. Far-field scattered intensity I(0,7r/2) = IS,(0,7r/2)l2 as a
function of scattering angle for a Davis first-order Gaussian laser
beam with A = 0.5145 m and w = 20 m and polarized in the x
direction incident upon a spherical particle with a = 43.3 Am and
n = 1.33. The center of the focal waist of the beam is located at
(a) xo = zo = 0, yo = -40 gm; (b) xo = zO = 0, yo = 0 Am; and
(c) xo = zo = 0, Yo = 40 gm. The center of the particle is at the
origin of coordinates.

yo'
7T

/-TI/2

y

-
7I

J

, . . . . . . . . . . . . . . .

James A. Lock

zzz

rK__11

I

Y 0 - --- 1-..



700 J. Opt. Soc. Am. A/Vol. 10, No. 4/April 1993

the physical mechanisms that produce strong scattering
for plane-wave incidence are greatly reduced in strength,
permitting the otherwise much weaker physical mecha-
nisms (i.e., high-order rainbows) to influence the behavior
of the scattered intensity. For example, in Fig. 8(a) the
reductions inp = 0 andp = 3 permit thep = 6 andp = 10
rainbows to dominate the scattering for 0 1300 and
0 1000, respectively. In Fig. 8(c) the reductions in
p = 1 and p = 2 permit the p = 4,7,11 rainbows to domi-
nate the scattering for 0 approximately equal to 400, 1400
and 1800, respectively. For much smaller droplets, e.g.,
a = 5 m, rainbow formation is strongly suppressed, and
the features of the (0, ) graphs for Gaussian beam inci-
dence do not have this interpretation.

Fig. 5. Dominant ray trajectories for plane-wave incidence are
specular reflection (p = 0), transmission (p = 1), transmission
after one internal reflection (p = 2), and transmission after two
internal reflections (p = 3).

only the p = 0,3 rays are expected to dominate because
the p = 1,2 rays emerge from the particle on the oppo-
site side.

We tested these geometric optics predictions by per-
forming a Debye-series decomposition of the partial-wave
scattering amplitudes for both plane-wave and Gaussian
beam incidence. The Debye-series decomposition of the
plane-wave partial-wave scattering amplitudes may be
written as

p

biJ = L1 - Ti22- T21 (R11)PTI,b, 2 ~~~p=4 (54)

where the first term represents the diffraction of the
spherical multipole partial waves, the second term repre-
sents their reflection from the surface of the particle, and
the third term represents their penetration into the par-
ticle and subsequent exit after p - 1 internal reflections.
The expressions for R", R 22, T 2' and Ti2 in terms of
spherical Bessel and spherical Neumann functions are
given elsewhere.25 29 Since the partial-wave scattering
amplitudes a and I1im for Gaussian beam incidence have
the product decomposition of Eqs. (14), the Debye-series
analysis of both plane-wave incidence and Gaussian beam
incidence proceeds identically.

The individual Debye-series components for plane-wave
incidence for p 12 are given in Figs. 7(a) and 7(b). As
expected from ray theory, the sum of diffraction plus 0 
p 3 plus the interference among these terms almost
exactly fits the full Mie scattering curve of Fig. 3. The
rainbows for 4 p 10 and p = 12 do not visibly con-
tribute to the scattered intensity because of the greatly
decreased amplitude of the spherical multipole waves
after many internal reflections. An exception is provided
by the p = 11 rainbow that occurs near 0 = T. Its contri-
bution to I(0) is amplified because of the axial focusing
characteristic of glory scattering.4 '-4 3

The individual Debye-series components for Si(0,r/2) 2

for Gaussian beam incidence with x0 = z = 0 and yo
equal to -40, 0, and 40 m are given in Figs. 8(a), 8(b),
and 8(c), respectively. Since the width of the Gaussian
beam is smaller than the diameter of the particle, many of

p=2
(a)

p=1

p=0
(b)

(c)
Fig. 6. Dominant ray trajectories for Gaussian beam incidence
for w << a are (a) p = 1, 2 foryo < 0; (b) p = 0,1 for yo - 0; and
(c) p = 0,3 foryo > 0.
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sitioning of an incident Gaussian laser beam when the
beam width was much smaller than the diameter of the
droplet. The experimental apparatus is described in de-
tail in Ref. 29. Briefly, the polarized A = 0.5145-Am
beam of a 5-W argon-ion laser was focused by a 25-cm
focal-length lens. The waist of the focused beam was

lad measured to be 2w = 40 ± 5 m. This focused beam was
incident upon falling water droplets produced by a vibrat-
ing orifice generator. For the two experimental runs, the
diameter of the droplets was measured to be 2a = 47.8 +
1.5 Am and 2a = 86.6 ± 1.5 Am. In the first case, the

180 beam waist was -84% of the particle diameter, and in the

108 -

106

104

102

100

180

y0 =-40 Irm

180

0 (degrees)

(a)

0 (degrees)

(b)
Fig. 7. Debye-series contributions to Il(o) = IS,(O)12 for plane-
wave incidence with the polarization in the x direction, A =
0.5145 jim, a = 43.3 ,m, and n = 1.33. (a) The sum of the con-
tributions that are due to diffraction plus p = 0,1, 2,3 almost
exactly fit the full Mie intensity of Fig. 3. (b) The contributions
that are due to the 4 ' p c 12 rainbows are weak compared with
the contributions of p • 3. The dashed curve represents the
sum of 0 ' p c 3 from Fig. 7(a).

For plane-wave incidence, the presence of high-order
rainbows was evident only in the Fourier transform of the
scattered intensity,27'44'45 which corresponds to the glare
spot observations reported in Refs. 19, 20, and 46. This
was true because the high-order rainbows were obscured
by the reflected and transmitted light and because the
Fourier transform separates overlapping signals of differ-
ent spatial frequencies. For Gaussian beam incidence
with w < a, the presence of certain high-order rainbows
should be evident in the scattered intensity itself since
the scattering processes are now channeled to either left-
of-center or right-of-center scattering angles, again sepa-
rating the formerly overlapping signals of plane-wave
incidence. This physical interpretation also explains the
results of Ref. 47 for Gaussian beam incidence upon an
absorbing sphere. The absorption extinguishes the p 2 1
Debye terms corresponding to waves that are transmitted
through the sphere, leaving only diffraction and specular
reflection to contribute to far-field scattering.

5. OBSERVATION OF RAINBOWS PRODUCED
BY A GAUSSIAN BEAM

An experiment was performed to observe the dependence
of the strength of the different-order rainbows on the po-
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Fig. 8. Debye-series contributions to Il(0,r/2) = S,(0,ir/2)2 for a
Davis first-order Gaussian beam incident with the polarization
in the x direction, A = 0.5145 Am, w = 20 Am, a = 43.3 Am, and
n = 1.33. (a) For yo = -40.0 ,m, the sum of the contributions
that are due to diffraction plus p = 0,1, 2,6,10 almost exactly fit
the full wave-theory intensity of Fig. 4(a). (b) Foryo = O ,m, the
sum of the contributions that are due to diffraction plusp = 0, 1, 2
almost exactly fit the full wave-theory intensity of Fig. 4(b).
(c) For yo = 40.0 Am, the sum of the contributions that are due
to diffraction plus p = 0, 3, 7,11 almost exactly fit the full wave-
theory intensity of Fig. 4(c).
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flection contributes. All these features are faithfully re-
produced in the theoretical intensity of Fig. 9(b).

The experimental intensity for a 23.9 ,m and x0 =

o= 0, yo = -22 ,m is shown in Fig. 10(a), and the corre-
sponding theoretical intensity I (0,IT/2 ) for Gaussian beam

incidence is given in Fig. 10(d). Again the agreement be-

tween theory and experiment is qualitatively quite good.

The broad bright region on the left-hand side of Fig. 10(a)
is the p = transmitted rays. Since the critical scatter-
ing angle for transmission 29is 0, 82.80, the sharp cutoff
of the transmitted light for 0 0; is readily evident in

Fig. 10(a). The first-order rainbow (p = 2) and its first

two supernumeraries appear prominently on the right-
hand side of Fig. 10(a). The second-order rainbow and

'- |the specularly reflected light have been channeled to the
other side of the droplet by the placement of the incident
laser beam. According to Fig. 8(a), the fifth- and ninth-

(a) order rainbows (p = 6,10, respectively) should appear
weakly in the broad dark region between the transmission
cutoff and the first-order rainbow. Neither appears in
Fig. 10(a), and it is uncertain whether exposing the film
for much longer periods of time would have unambiguously
showed them without producing bleedover from the adja-
cent overexposed regions.

The experimental intensity for a 23.9 Am and x =

z = 0, and o 7 m is shown in Fig. 10(c), and the
corresponding theoretical intensity I(0,iT/2) for Gaussian
beam incidence is given in Fig. 10(e). For this case,

__________,________,____,___,____,____,__ the scattered-light level is much weaker and is rela-
20 60 100 140 180 tively devoid of interesting features. The paraxial beam

incidence has produced neither the first- nor the second-
Scattering angle (degrees) order rainbow. There is a single broad dim fringe

(b) extending for 900 < 0 < 1000 with finer interference
perimental intensity spectrum for 300 0 S 1500 patterns to each side. These details are also evident in
or a plane wave that is polarized in the x direction Fig. 10(e), which again shows the average light level to
.5145 Am incident upon a spherical water droplet be nearly constant for 0 > 400. Referring to Fig. 8(b),
m. The reflection-transmission interference is

d side of the photograph, and the second- and first- this largely featureless pattern is probably the result of

along with their first few supernumeraries are on weak reflection-transmission interference for 0 < 900
side. (b) I(0) = S,(8)1 2 for plane-wave incidence and weak reflection-one- or two-internal-reflection in-
parameters as in the experiment whose results are terference for 0 > 1000.

The experimental intensity for a 43.3 Am and x0 =

zo = O y 40 m is shown in Fig. 10(b). The corre-
t was -46% of the diameter. The light that sponding theoretical intensity I(0,IT/2) for Gaussian beam

I into the angular region 700 < < 110 and incidence is given in Fig. 4(c). Again the comparison be-

00 exposed a strip of Polaroid film that was tween theory and experiment is quite good, although more

number of centimeters away. supernumeraries of the second-order rainbow are evident

'this method, a minimally focused laser beam in Fig. 10(b) than can be easily identified in Fig. 4(c). De-

) m) was incident upon the droplets. The creasing the beam width to w = 15 Am in the theoretical

ttered intensity is shown in Fig. 9(a). Since intensity improved the agreement. The broad bright re-

ly focused beam with w >> a approximates gion on the left-hand side of Fig. 10(b) is the specularly

e, Fig. 9(a) should be compared with the reflected light (p = 0). As is shown in Fig. 8(c), it ex-

intensity I (0) for plane-wave incidence tends all the way out to the second-order rainbow supernu-
ne particle and beam parameters given in meraries and does not have a sharp cutoff as did the

'he comparison between theory and experi- transmitted light in Figs. 10(a) and 10(d). On the right-

tatively quite good. The bright, fine period- hand side of Fig. 10(e) is the second-order rainbow

ance pattern on the left-hand side of Fig. 9(a) (p = 3), its supernumeraries to its left, and a single broad
ion-transmission interference pattern [p = dim fringe to the right. Again referring to Fig. 8(c), I

g. 7(a)]. The scattering is weakest near the tentatively identify the single broad fringe with the sixth-

>. 9(a) at 0 1000 corresponding to specular order rainbow (p = 7) rather than the first-order rainbow

On the right-hand side of Fig. 9(a) are the (p = 2) for two reasons: first, the placement of the inci-

rainbow (p = 3) with its first three supernu- dent Gaussian beam should have decreased the intensity

its left and the first-order rainbow (p = 2) of thep = 2 rainbow to -10% of the intensity of thep = 7

two supernumeraries to its right. Between rainbow, and second, the first-order rainbow peak should

inder's dark band, in which only specular re- be narrower than the second-order rainbow peak, whereas
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Fig. 10. (a) Experimental intensity spectra for 300 0 1500
(left to right) for a focused Gaussian laser beam polarized in the x
direction and with A = 0.5145 ,m and w 20 Am incident upon
a spherical water droplet with a = 23.9 Am and yo -22 Am.
The transmitted light is on the left-hand side of the photograph,
and the first-order rainbow is on the right-hand side. (b) The
experimental intensity for a 43.3 Am and yo 40 Am. The
specularly reflected light is on the left-hand side of the photo-
graph, and the second-order rainbow is on the right-hand side.
The single wide dim fringe to the right of the main second-order
rainbow fringe is tentatively identified as the main fringe of the
sixth-order rainbow. Compare this photograph with Fig. 4(c).
(c) The experimental intensity for a 23.9 ,m and yo 7 ,m.
The scattered light is much dimmer, and both the first- and
second-order rainbows are absent. (d) Il(0,ar/2) = Si(0,1r/2)2

with the same parameters as in the experiment whose result is
shown in (a). (e) I1(0,ir/2) = ISi(0,7r/2)1 with the same parame-
ters as in the experiment whose result is shown in (c).

in Fig. 10(b) the single dim broad fringe is approximately
twice as wide as the second rainbow peak. Thus I believe
that I have observed a high-order rainbow in the light that
was scattered from an incident Gaussian beam by a
spherical water droplet.

6. CONCLUSION

The ubiquity of experiments that scatter small-diameter
laser beams off millimeter-sized raindrops or that scatter
focused laser beams off small water droplets produced

(a)

(b)

(C)
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by vibrating orifice generators necessitates a theory for
Gaussian beam scattering and fast-running computer
programs to implement it. The theory of Gaussian beam
scattering as developed by Gouesbet et al. and Barton
et al. may be straightforwardly and rapidly computed and
is thus expected to be of great use in a variety of experi-
mental situations. The notation that I employed in Sec-
tion 2 is a hybrid of their notations. I have chosen what
I believe are the best features of each of their formalisms
in constructing my own. Computer programs for calcu-
lating Gaussian beam scattering already exist. However,
in Section 3 I have given what I believe is a fuller account
of the numerical details that are involved in constructing
such programs than exists elsewhere in the literature.
Similarly, the far-field scattered intensities that I calcu-
lated in Section 4 have also appeared elsewhere. How-
ever, I have given a detailed physical motivation for the
novel features of these I(0,4)) spectra, namely, that they
arise from the contributions of high-order rainbows and a
simultaneous suppression of a number of the mechanisms
that dominate for plane-wave incidence. In Section 5 I
have given tentative evidence that these high-order rain-
bow contributions do in fact occur.

APPENDIX A: DERIVATION OF THE
LOCALIZATION APPROXIMATION FOR AN
ON-AXIS GAUSSIAN BEAM

For a Davis first-order Gaussian beam on axis, the radial
component of the incident fields is given by Eqs. (24), and
the incident beam partial-wave coefficient I, is given
by Eq. (26). Consider first the special case f(kr, 0) = 1.
Using the partial-wave decomposition of the scalar plane
wave48 and the identity

1( + 1)
sin(0)P11[cos(0)] = 21 { Pzi[cos(0)1 - P,1o()1

The sin2 (0) factor in the integrand ensures that the inter-
vals near 0 = 0, 7r do not contribute to the integral. Thus,
for I >> 1, P1

1[cos(0)] may be replaced by relation (45), and

V 1 sin[(l+" I-J, sin'(0)d0[ 2 in I/2 LX --
to [or sin(0) 2 4

X f(kr,0) exp[ikr cos(0)].

By use of the substitution

t Ta = 0- -
2

(A7)

(A8)

to change to a symmetric integration interval, this becomes

'/2 [ 21 1/2 [
J = J cos

2 (a)da 1 Ics21 sin lI

IT cosa) LXX f kr, a+ expll-ikr sin(a)]r2 lI~(
= . J cos2(a)dca[ 2 o1Cos ]d fIkrca+ +
2z -X/ f l r cos(a) ' 2

X exp [i(l + 1 )a - ikr sin(a) - 0i

X I cos2( )da[ 21(] f(krca+ A)
x -e il2 + r cos( ) 2

[ (x 2) ] krsna (A9)

The interval near a = 0 provides the largest contribution
to the integral. For this situation the integrand of second
integral in Eq. (A9) is always rapidly varying, thus con-
tributing little to the value of J,. However, the complex
exponential in the integrand of the first integral has a
stationary point when a is zero and kr = + (1/2). Thus
the value of J, is well approximated if the slowly varying
factor f is evaluated at the stationary point

we obtain

J sin(0)d0PI [cos(0)]exp[ikr cos(0)] = 2ifji(kr),

sin2(0)d0Pi 1[cos(0)]exp[ikr cos(0)] = 2i'-11(1 + 1)

X ji(kr)/kr. (A3)

Consider now the integral

J,= 7 sin 2(0)dOPj 2[cos(0)]f(kr,0)exp[ikr cos(0)], (A4)

1
kr cos(0) -- 0, kr sin(0) - I + 2 (Al:

and brought outside the integral. We thus obtain

J ( f + 1,, f) 7 sin2 (0)d0Pz 1[cos(0)]exp[ikr cos(0)]

- [(1 + 2 -2)2i-11(l + 1)jl(kr)/kr.

where f(kr, 0) is slowly varying. Such is the case for the
Davis first-order beam of Eqs. (19)-(22), where

f(kr,) = 1 exp k2r2 sin2(0)/k2W2]
f (k r, 0) :r coDexp/D

x 1- 2iskr cos(0)/kw exp(-ikzo), (A5)

D = 1 + 2i[kr cos(0) - kzols (A6)
kw

(A12)

The incident beam partial-wave coefficient I, is then

ft 2 2) (A13)

which for the incident beam function of Eq. (A5) gives re-
lation (50). This argument is analogous to the stationary-
phase derivation of van de Hulst's localization principle,
which associates a geometrical light ray with the small
group of partial waves for which the phase is stationary.

(A2)

kr = 1 + I,
2

or

I2 (A10)
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For the Davis first-order beam, we found relation (A13)
to be within 1 part in 105 of the value of I, by using direct
integration with r = a. For the function

f(kr,0) = exp[ Dsin(O)/k2W2 (A14)

which is also slowly varying but is not an approximate
solution to the Helmholtz equations, as was Eq. (AS),
we found relation (A13) to be within only 1 part in 102 of
the value of I, by using direct integration with r = a. It
appears that the closer f(kr, 0) in Eqs. (24) is to a solution
of the Helmholtz equation, the better the localization
approximation works. I conjecture that there may well be
a way to prove the localization approximation by using
the properties of functions f(kr, 0), whose scalar radiation
potential satisfies Eq. (3).

This conjecture would be of special importance for
off-axis incidence since the stationary-phase method of
relations (A1)-(A13) fails for this situation. For example,
for the Davis first-order beam off axis, following Ref. 16,
we have

Eirncd(r 0,) = [Fcos() + Gxo)]

X exp{2r sin(0)[xo cos(4 + o sin()]/w 2 D}

=-E jp exp[i( - 2p + 1)4)1
2 j=O P=o

2 0 0

+ - 3 3 jp exp[i(j - - 1)41
2j=o P=o

. j
+ Gxo 3 t jp exp[i(j- 2p)(P], (A15)

j=o p=O

where

F = qPoo exp[ikr cos(0)]sin(0) [1 - 2 (0)/w],

(A16)

G = loo exp[ikr cos(0)] 2is cos(')/w (A17)
D

(P'oo = 1 -exp{[r2 sin2(0) + x0
2 + Yo2]/W2exp(-ikz),

°° e5 D e (ik )

(j - p)!p! D>y= (xo - iyoY (xo + iyOY' [r sin(0)/w2 ] (A19)

The 4 integration in Eqs. (5) may be performed to give

Alm = j 1(kr) (1 iml)! j sin(0)d0P 1
m [cos(0)]

X I 'Yp15 Q-2p11m +-3 E '%p8 j-2p-1, m
2j=o p=O 2 j=O p=O

OD j 

+ Gxo E 2%iP8j-2pm) (A20)
j=0 p=0

The integrals in Eq. (A20) that are associated with the F
terms are of the form

7 sin2 (0)d0P m[cos(0)]fm(kr,)exp[ikr cos(0)], (A21)

where fm(kr, 0) is a slowly varying function. At this point
one would like to evaluate the slowly varying factor in the
integrand at the stationary point of relations (A10) and
A(11) to obtain the expressions of relations (51)-(53), bring
it outside the integral, and evaluate the remaining integral

sin 2(0)d0P1
m [cos(0)]exp[ikr cos(0)]

0
(A22)

analytically. This integral is proportional to spherical
Bessel functions divided by (kr)(m+)12 for odd m and is
proportional to Bessel functions divided by (kr)(m+)12 for
even m. These forms will not cancel the kr/j(kr) factor in
Eq. (A20), except for m = 1. Thus a different derivation
of the localization approximation for off-axis incidence
must be sought.
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