26 research outputs found

    Joint Time Switching and Transmission Scheduling for Wireless-Powered Body Area Networks

    Get PDF
    Outfitting humans with on-body/in-body sensor nodes, wireless body area networks (WBANs) are positioned as the key technology to enhance future telehealth service. The newly emerged wireless power transfer (WPT) and energy harvesting (EH) technology provides a potential of continuous power supply for WBANs. Since the radio frequency (RF) signals can carry energy as well as information at the same time, the time switching between the WPT phase and the wireless information transfer (WIT) phase should be carefully scheduled. By considering a telehealth application scenario (in which multiple patients coexist in a ward and each of them is monitored by multiple sensor nodes), this paper proposes to allocate the duty cycles for the WPT and WIT phases and schedule the transmission time for the WIT links in a joint manner. First, a frame structure for simultaneous information and power transfer (SWIPT) is designed over the time-and-spectrum domain. With the aim to satisfy the minimum rate demands of all the sensor nodes, the optimal duty time for the WPT phase and the optimal transmission time for the WIT links are jointly found by using the convex optimization technique. Finally, a fast algorithm is developed to search the optimal solution by introducing an admission control. The simulation results show that the proposed algorithm can effectively exploit the broadcasting property of RF energy radiation. If the network load were controlled below a certain level, the rate demands of all the sensor nodes in the network can be satisfied

    Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area Networks in Sports Applications

    Get PDF
    RÉSUMÉ Un Réseau Corporel Sans Fil (RCSF, Wireless Body Area Network en anglais ou WBAN) permet de collecter de l'information à partir de capteurs corporels. Cette information est envoyée à un hub qui la transforme et qui peut aussi effectuer d'autres fonctions comme gérer des événements corporels, fusionner les données à partir des capteurs, percevoir d’autres paramètres, exécuter les fonctions d’une interface d’utilisateur, et faire un lien vers des infrastructures de plus haut niveau et d’autres parties prenantes. La réduction de la consommation d'énergie d’un RCSF est un des aspects les plus importants qui doit être amélioré lors de sa conception. Cet aspect peut impliquer le développement de protocoles de Contrôles d'Accès au Support (CAS, Media Access Control en anglais ou MAC), protocoles de transport et de routage plus efficients. Le contrôle de la congestion est un autre des facteurs les plus importants dans la conception d’un RCSF, parce que la congestion influe directement sur la Qualité De Service (QDS, Quality of Service en anglais ou QoS) et l’efficience en énergie du réseau. La congestion dans un RCSF peut produire une grande perte de paquets et une haute consommation d’énergie. La QDS est directement impactée par la perte de paquets. L’implémentation de mesures additionnelles est nécessaire pour atténuer l’impact sur la communication des RCSF. Les protocoles de CAS pour RCSF devraient permettre aux capteurs corporels d’accéder rapidement au canal de communication et d’envoyer les données au hub, surtout pour les événements urgents tout en réduisant la consommation d’énergie. Les protocoles de transport pour RCSF doivent fournir de la fiabilité bout-à-bout et de la QDS pour tout le réseau. Cette tâche peut être accomplie par la réduction du ratio de perte de paquets (Packet Loss Ratio en anglais ou PLR) et de la latence tout en gardant l'équité et la faible consommation d'énergie entre les noeuds. Le standard IEEE 802.15.6 suggère un protocole de CAS qui est destiné à être applicable à tous les types de RCSF; toutefois, ce protocole peut être amélioré pour les RCSF utilisés dans le domaine du sport, où la gestion du trafic pourrait être différente d’autres réseaux. Le standard IEEE 802.15.6 comprend la QDS, mais cela ne suggère aucun protocole de transport ou système de contrôle du débit. Le but principal de ce projet de recherche est de concevoir une architecture pour RCSF en trois phases : (i) Conception d’un mécanisme sensible au contexte et efficient en énergie pour fournir une QDS aux RCSF; (ii) Conception d’un mécanisme fiable et efficient en énergie pour fournir une récupération des paquets perdus et de l’équité dans les RCSF; et (iii) Conception d’un système de contrôle du débit sensible au contexte pour fournir un contrôle de congestion aux RCSF. Finalement, ce projet de recherche propose une architecture fiable, sensible au contexte et efficiente en énergie pour RCSF utilisés dans le domaine du sport. Cette architecture fait face à quatre défis : l'efficacité de l'énergie, la sensibilité au contexte, la qualité de service et la fiabilité. La mise en place de cette solution aidera à l’amélioration des compétences, de la performance, de l’endurance et des protocoles d’entraînement des athlètes, ainsi qu’à la détection des points faibles. Cette solution pourrait être prolongée à l’amélioration de la qualité de vie des enfants, des personnes malades ou âgées, ou encore aux domaines militaires, de la sécurité et du divertissement. L’évaluation des protocoles et schémas proposés a été faite par simulations programmées avec le simulateur OMNeT++ et le système Castalia. Premièrement, le protocole de CAS proposé a été comparé avec les protocoles de CAS suivants : IEEE 802.15.6, IEEE 802.15.4 et T-MAC (Timeout MAC). Deuxièmement, le protocole de CAS proposé a été comparé avec le standard IEEE 802.15.6 avec et sans l’utilisation du protocole de transport proposé. Finalement, le protocole de CAS proposé et le standard IEEE 802.15.6 ont été comparés avec et sans l’utilisation du système de contrôle du débit proposé. Le protocole de CAS proposé surpasse les protocoles de CAS IEEE 802.15.6, IEEE 802.15.4 et T-MAC dans le pourcentage de pertes de paquets d’urgence et normaux, l’efficacité en énergie, et la latence du trafic d’urgence et du trafic normal. Le protocole de CAS proposé utilisé avec le protocole du transport proposé surpasse la performance du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacité en énergie, et la latence du trafic normal. Le système de contrôle du débit proposé a amélioré la performance du protocole de CAS proposé et du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacité en énergie, et la latence du trafic d’urgence.----------ABSTRACT Information collected from body sensors in a Wireless Body Area Network (WBAN) is sent to a hub or coordinator which processes the information and can also perform other functions such as managing body events, merging data from sensors, sensing other parameters, performing the functions of a user interface and bridging the WBAN to higher-level infrastructure and other stakeholders. The reduction of the power consumption of a WBAN is one of the most important aspects to be improved when designing a WBAN. This challenge might imply the development of more efficient Medium Access Control (MAC), transport and routing protocols. Congestion control is another of the most important factors when a WBAN is designed, due to its direct impact in the Quality of Service (QoS) and the energy efficiency of the network. The presence of congestion in a WBAN can produce a big packet loss and high energy consumption. The QoS is also impacted directly by the packet loss. The implementation of additional measures is necessary to mitigate the impact on WBAN communications. The MAC protocols for WBANs should allow body sensors to get quick access to the channel and send data to the hub, especially in emergency events while reducing the power consumption. The transport protocols for WBANs must provide end-to-end reliability and QoS for the whole network. This task can be accomplished through the reduction of both the Packet Loss Ratio (PLR) and the latency while keeping fairness and low power consumption between nodes. The IEEE 802.15.6 standard suggests a MAC protocol which is intended to be applicable for all kinds of WBANs. Nonetheless, it could be improved for sports WBANs where the traffic-types handling could be different from other networks. The IEEE 802.15.6 standard supports QoS, but it does not suggest any transport protocol or rate control scheme. The main objective of this research project is to design an architecture for WBANs in three phases: (i) Designing a context-aware and energy-efficient mechanism for providing QoS in WBANs; (ii) Designing a reliable and energy-efficient mechanism to provide packet loss recovery and fairness in WBANs; and (iii) Designing a context-aware rate control scheme to provide congestion control in WBANs. Finally, this research project proposes a reliable, context-aware and energy-efficient architecture for WBANs used in sports applications, facing four challenges: energy efficiency, context awareness, quality of service and reliability. The benefits of this solution will help to improve skills, performance, endurance and training protocols of athletes, and deficiency detection. Also, it could be extended to enhance the quality of life of children, ill and elderly people, and to security, military and entertainment fields. The evaluation of the proposed protocols and schemes was made through simulations programed in the OMNeT++ simulator and the Castalia framework. First, the proposed MAC protocol was compared against the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC (Timeout MAC) protocol. Second, the proposed MAC protocol was compared with the IEEE 802.15.6 standard with and without the use of the proposed transport protocol. Finally, both the proposed MAC protocol and the IEEE 802.15.6 standard were compared with and without the use of the proposed rate control scheme. The proposed MAC protocol outperforms the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC protocol in the percentage of emergency and normal packet loss, the energy effectiveness, and the latency of emergency and normal traffic. The proposed MAC protocol working along with the proposed transport protocol outperforms the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness, and the latency of normal traffic. The proposed rate control scheme improved the performance of both the proposed MAC protocol and the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness and the latency of emergency traffic

    Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

    Get PDF

    Toward energy-efficient and trustworthy eHealth monitoring system

    Get PDF
    The rapid technological convergence between Internet of Things (IoT), Wireless Body Area Networks (WBANs) and cloud computing has made e-healthcare emerge as a promising application domain, which has significant potential to improve the quality of medical care. In particular, patient-centric health monitoring plays a vital role in e-healthcare service, involving a set of important operations ranging from medical data collection and aggregation, data transmission and segregation, to data analytics. This survey paper firstly presents an architectural framework to describe the entire monitoring life cycle and highlight the essential service components. More detailed discussions are then devoted to {em data collection} at patient side, which we argue that it serves as fundamental basis in achieving robust, efficient, and secure health monitoring. Subsequently, a profound discussion of the security threats targeting eHealth monitoring systems is presented, and the major limitations of the existing solutions are analyzed and extensively discussed. Finally, a set of design challenges is identified in order to achieve high quality and secure patient-centric monitoring schemes, along with some potential solutions

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    corecore